首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nucleophosmin/B23 is a nucleolar phosphoprotein. It has been shown that B23 binds to nucleic acids, digests RNA, and is localized in nucleolar granular components from which preribosomal particles are transported to cytoplasm. The intracellular localization of B23 is significantly changed during the cell cycle. Here, we have examined the cellular localization of B23 proteins and the effect of mitotic phosphorylation of B23.1 on its RNA binding activity. Two splicing variants of B23 proteins, termed B23.1 and B23.2, were complexed both in vivo and in vitro. The RNA binding activity of B23.1 was impaired by hetero-oligomer formation with B23.2. Both subtypes of B23 proteins were phosphorylated during mitosis by cyclin B/cdc2. The RNA binding activity of B23.1 was repressed through cyclin B/cdc2-mediated phosphorylation at specific sites in B23. Thus, the RNA binding activity of B23.1 is stringently modulated by its phosphorylation and subtype association. Interphase B23.1 was mainly localized in nucleoli, whereas B23.2 and mitotic B23.1, those of which were incapable of binding to RNA, were dispersed throughout the nucleoplasm and cytoplasm, respectively. These results suggest that nucleolar localization of B23.1 is mediated by its ability to associate with RNA.  相似文献   

2.
We have purified a Ca2+ dependent ribonuclease from the oocytes of Xenopus leavis. Two properties of this ribonuclease set it apart from other known nucleases. First, Ca2+ was required for ribonuclease activity, and Mg2+ would not substitute. Second, the enzyme specifically degraded RNA and digestion of double or single stranded DNA was not observed. Ca2+ dependent ribonuclease activity of the purified 36-kDa protein was directly observed after renaturation of the protein following electrophoresis in an SDS-Laemmli gel. In addition, the enzyme was shown to have endoribonuclease activity at numerous sites. The Ca2+ dependence suggests that the ribonuclease activity may be modulated by changes in the level of intracellular Ca2+ and thereby provide a direct link to signal transduction systems.  相似文献   

3.
The kinetics and regulatory properties of phosphatidylinositol (PI) kinase were studied in chromaffin granule ghosts isolated from the bovine adrenal medulla. Phosphatidylinositol 4-phosphate (PIP) was the major 32P-labelled phospholipid formed when the isolated membranes were phosphorylated by [gamma-32P]ATP. The PI kinase activity was rather independent of pH, but highly dependent on Mg2+ with a maximal stimulation at 60 mM Mg2+. By contrast, KCl and NaCl had a slight inhibitory effect. The Km value for MgATP was 44 and 62 microM in the presence of 1 and 20 mM MgCl2, respectively. The PI kinase was almost fully and reversibly inhibited by free Ca2+ (calmodulin-independent) in the nanomolar and low micromolar range, depending on the concentration of Mg2+. The inhibition was not dependent on Ca2+-stimulated protein phosphorylation, and it could not be explained by a dephosphorylation of PIP.  相似文献   

4.
Deoxyribonuclease (DNase) activities have been partially purified from human serum and pancreas. Several of their physical and enzymatic characteristics were determined and compared in order to evaluate their relatedness. Human serum deoxyribonuclease has an isoelectric point in the range of 3.9 to 4.3 and a molecular weight of 33,000 to 38,000. Optimal enzymatic activity at pH 7.0 was dependent on both Mg2+ and Ca2+, whereas a pH optimum of from 5.5 to 5.8 was observed in the presence of Mg2+ and ethylene glycol bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA). The proportion of single strand or double strand breakage products at early stages of DNA digestion were variable functions of the composition of the buffers employed for the reactions. Single strand break age was predominant under all reaction conditions. Double strand breakage occurred with greatest frequency under neutral conditions in the presence of Mg2+ and Ca2+, was inhibited by the inclusion of 0.15 M NaCl, and did not occur at pH 5.8 in the presence of Mg2+, EGTA, and 0.15 M NaCl. Human pancreas deoxyribonuclease exhibited essentially the same physical properties and enzymatic characteristics as those of the human serum enzyme. Thus, human serum deoxyribonuclease may originate in this pancreas.  相似文献   

5.
The protein B23 is a major nucleolar phosphoprotein comprising two isoforms, B23.1 and B23.2, which differ only in their carboxyl-terminal short sequences, the N-terminal 255 residues being identical in both forms. Both B23.1 and B23.2 stimulated immunoaffinity-purified calf thymus DNA polymerase alpha in a dose-dependent manner. The stimulatory effect of protein B23.1, the longer isoform, was found to be 2-fold greater than that of B23.2. Purified DNA polymerase alpha bound tightly to a protein B23.1-immobilized column, while it bound weakly to a protein B23.2-immobilized column. Surface plasmon resonance studies by BIAcore further showed that protein B23.1 bound to the DNA polymerase alpha-(dA).(dT) complex more tightly than did protein B23.2. The protein B23 isoforms appear to interact directly with the DNA polymerase alpha protein and not through the bound nucleic acid. These observations indicated that protein B23 physically bound to the DNA polymerase alpha and stimulated the enzyme activity. Product analyses showed that protein B23 greatly enhanced the reaction both in amount and length of product DNA, whereas it did not significantly alter the processivity of polymerization. In contrast, protein B23 effectively protected DNA polymerase alpha from heat inactivation. These results suggest that protein B23 stabilizes DNA polymerase alpha that is detached from product DNA, allowing the enzyme to be recruited for further elongation. Moreover, experiments using various C-terminal deletion mutants of protein B23 indicated that 12 amino acids at the C-terminal end of B23.1, which are absent in B23.2, may be essential for the full stimulation of the DNA polymerase alpha.  相似文献   

6.
【目的】构建蜡样芽胞杆菌(Bacillus cereus)磷脂酶C(Phospholipase C,PLC)的重组乳酸克鲁维酵母(Kluyveromyces lactis)菌株、纯化重组蛋白并对其进行酶学性质分析。【方法】以B.cereus基因组DNA为模板,PCR扩增得到磷脂酶C基因(bcplc),构建重组乳酸克鲁维酵母表达质粒并转化到乳酸克鲁维酵母中,实现bcplc基因的表达。利用镍柱亲和层析纯化和脱盐柱得到电泳纯的重组磷脂酶C(rbcPLC)。【结果】成功构建产磷脂酶C的重组乳酸克鲁维酵母并纯化了重组磷脂酶C,纯化后rbcPLC经SDS-PAGE分析在40 kDa附近出现显性条带。NPPC法测得rbcPLC酶活为19251 U/mg,最适反应温度为80°C,最适pH为9.0。在低于40°C时,pH 7.0-8.0时,rbcPLC重组酶较稳定。Cu~(2+)和Co~(2+)对其有明显的抑制作用;Zn~(2+)、Mn~(2+)、Ca~(2+)、Mg~(2+)对其有明显的促进作用。【结论】首次实现了对蜡样芽胞杆菌来源的磷脂酶C在乳酸克鲁维酵母中的重组表达、纯化及其酶学性质分析,为其它食品安全性微生物来源的磷脂酶C的研究提供了借鉴意义。  相似文献   

7.
8.
Characterization of the deoxyribonuclease activity of diphtheria toxin   总被引:3,自引:0,他引:3  
Having discovered that the A domain of diphtheria toxin exhibits intrinsic nuclease activity (Chang, M. P., Baldwin, R. L., Bruce, B., and Wisnieski, B. J. (1989) Science 246, 1165-1168), we proceeded to examine the requirements for optimal enzymic expression. In vitro assays with linear double-stranded DNA demonstrated that optimal activity occurs at pH 7.5 and 37 degrees C. A characterization of the stringent cation-dependence of the reaction revealed increasing activity with increasing Mn2+ up to 30 mM. In contrast, activity levels with Ca2+ or Zn2+ alone peaked at 100 microM and with Mg2+ alone at 1 mM. The Zn2(+)- and Mg2(+)-stimulated activities appear to be dependent on trace amounts of Ca2+. Indeed, inclusion of 2 mM Ca2+ plus 3 mM Mg2+ in the reaction buffer promoted a high level of DNA cleavage even though very little cleavage was seen with either cation alone at 2-3 mM. Addition of 20-200 mM NaCl or KCl caused progressive inhibition. Detection of diphtheria toxin nuclease activity under physiologically relevant conditions suggests that it may be operative in vivo and supports our contention that diphtheria toxin-induced cytolysis is not a simple consequence of protein synthesis inhibition, but rather the final step in a cytolytic pathway linked to chromosomal integrity.  相似文献   

9.
Nucleophosmin (NPM1/B23) is a nucleolar protein implicated in growth-associated functions, in which the RNA binding activity of B23 plays essential roles in ribosome biogenesis. The C-terminal globular domain (CTD) of B23 has been believed to be the RNA binding domain because the splicing variant B23.2 lacking the CTD binds considerably less efficiently to RNA. However, the recognition of target RNAs by B23 remains poorly understood. Herein, we report a novel mechanism by which B23 recognizes specific RNA targets. We observed that the nucleolar retention of B23.3 lacking the basic region of B23.1 was lower than that of B23.1 because of its low RNA binding activity. Circular dichroism measurements indicated that the basic region and adjacent acidic regions of B23 are intrinsically disordered regions (IDRs). Biochemical analyses revealed that the basic IDR alone strongly binds to RNA with low specificity. The excessive RNA binding activity of the basic IDR was restrained by intra-molecular interaction with the acidic IDR of B23. Chemical cross-linking experiments and fluorescent labeling of bipartite tetracysteine-tagged proteins suggested that the inter- and intra-molecular interactions between the two IDRs contribute to the regulation of the RNA binding activity of CTD to control the cellular localization and functions of B23.  相似文献   

10.
Protein kinase [EC 2.7.1.37] of human erythrocyte membranes was solubilized with 0.5 M NaCl in 5 mM phosphate buffer, pH 6.7 at 4 degrees C and purified on a CM-Sephadex C-50 column, followed by affinity chromatography on a histone-Sepharose 4B column. The purified protein kinase gave a single band (molecular weight; 41,000) on examination by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The optimum pH of the enzyme was 8.0 and a millimolar range of concentration of Mg2+ was required for its maximum activity. Histone and protamine were well phosphorylated by the protein kinase but casein and phosvitin were poor phosphate acceptors for the enzyme. The enzymic activity was not stimulated by cyclic AMP (cAMP). A cAMP-finding protein from human erythrocyte membranes inhibited the activity of the protein kinase, but the activity was restored with cAMP. A heat stable protein inhibitor from rabbit skeletal muscle also inhibited this enzyme. From these observations, this protein kinase seemed to be a catalytic subunit of the membrane bound cAMP-dependent protein kinase. This enzyme was strongly inhibited with Ca2+ in the presence of 1 mM MgCl2. Various sulfhydryl reagents and polyamines also had inhibitory activity on the protein kinase. Natural substrates of the enzyme were investigated using heat treated membranes and 0.5 M NaCl extracted membrane residues. Band 4.1, 4.2, and 4.5 proteins were phosphorylated but band 2 (spectrin) and band 3 proteins were poor substrates for this protein kinase.  相似文献   

11.
(1) Light-dependent changes of the Mg2+ content of thylakoid membranes were measured at pH 8.0 and compared with earlier measurements at pH 6.6. In a NaCl and KCl medium, the light-dependent decrease in the Mg2+ content of the thylakoid membranes at pH 8.0 is found to be 23 nmol Mg2+ per mg chlorophyll, whereas in a sorbitol medium it is 83 nmol Mg2+ per mg chlorophyll. (2) A light dependent increase in the Mg2+ content of the stroma was detected wjem chloroplasts were subjected to osmotic shock, amounting to 26 nmol/mg chlorophyll. Furthermore, a rapid and reversible light-dependent efflux of Mg2+ has been observed in intact chloroplasts when the divalent cation ionophore A 23 187 was added, indicating a light-dependent transfer of about 60 nmol of Mg2+ per mg chlorophyll from the thylakoid membranes to the stroma. (3) CO2 fixation, but not phosphoglycerate reduction, could be completely inhibited when A 23 187 was added to intact chloroplasts in the absence of external Mg2+. If Mg2+ was then added to the medium, CO2 fixation was restored. Half of the maximal restoration was achieved with about 0.2 mM Mg2+, which is calculated to reflect a Mg2+ concentration in the stroma of 1.2 mM. The further addition of Ca2+ strongly inhibits CO2 fixation. (4) The results suggest that illumination of intact chloroplasts causes an increase in the Mg2+ concentration of 1-3 mM in the stroma. Compared to the total Mg2+ content of chloroplasts, this increase is very low, but it appears to be high enough to have a possible function in the light regulation of CO2 fixation.  相似文献   

12.
DNA-dependent RNA polymerase from Pseudomonas aeruginosa   总被引:3,自引:0,他引:3  
DNA-dependent RNA polymerase was purified from Pseudomonas aeruginosa. The subunit structure was typical of other eubacterial RNA polymerases in having beta' (157,000), beta (148,000), sigma (87,000), and alpha 2 (45,000) subunits as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was dependent on Mg2+, displaying optimal activity at 10 mM MgCl2. Ca2+ and Zn2+ could not replace MgCl2 in the assay system, while Mn2+, produced partial activity. KCl at concentrations greater than 10 mM inhibited enzyme activity. Optimal enzyme activity was observed at pH 8.5-9.0. The RNA polymerase was stable in 50% (w/v) glycerol at 4 degrees C for more than 3 months. Enzyme activity was inhibited in vitro by heparin, streptolydigin, streptovaracin, actinomycin D, and rifampicin.  相似文献   

13.
The reduction of nucleic acid by an endogenous polynucleotide phosphorylase and ribonuclease in cells of Brevibacterium JM98A (ATCC 29895) was studied. A simple process was developed for the activation of the endogenous RNA-degrading enzyme(s). RNA degradation was activated by the presence of Pi with 14.2 mumol of ribonucleoside 5'-monophosphate per g of cell mass accumulating extracellularly. The optimum pH for degradation of RNA was 10.5 and the optimum temperature was 55 to 60 degrees C. Enzymatic activity was inhibited by the presence of Ca2+, Zn2+, or Mg2+. Although some of the RNA-degrading enzymatic activity was associated with the ribosomal fraction, most was soluble. Both polynucleotide phosphorylase and ribonuclease activities were identified.  相似文献   

14.
The DNAase in human urine was purified about 30-fold with a recovery of 28%. This involved DEAE-cellulose and phosphocellulose chromatography steps and gel filtration on Sephadex G-75. The enzyme required divalent cations such as Co2+, Mg2+, Mn2+ and Zn2+ for activity, but Ca2+, Cu2+ and Fe2+ were ineffective. EDTA and G-actin inhibited the reaction. The maximum activity was observed at pH 5.5 in acetate buffer plus Co2+ or Mg2+ and Ca2+. It had a molecular weight of approximately 38 000, estimated by gel filtration on Sephadex G-75 and isoelectric point of around pH 3.9. The enzyme is an endonuclease which hydrolyzes native, double-stranded DNA about 3 to 4 times faster than thermally denatured DNA to produce 5'-phosphoryl- and 3'-hydroxyl-terminated oligonucleotides. The final preparation was free of non-specific acid and alkaline phosphatases, phosphodiesterase and ribonuclease activities.  相似文献   

15.
In experiments performed at 37 degrees C, Ca2+ reversibly inhibits the Na+-and (Na+ + K+)-ATPase activities and the K+-dependent phosphatase activity of (Na+ + K+)-ATPase. With 3 mM ATP, the Na+-ATPase was less sensitive to CaCl2 than the (Na+ + K+)-ATPase activity. With 0.02 mM ATP, the Na+-ATPase and the (Na+ + K+)-ATPase activities were similarly inhibited by CaCl2. The K0.5 for Ca2+ as (Na+ + K+)-ATPase inhibitor depended on the total MgCl2 and ATP concentrations. This Ca2+ inhibition could be a consequence of Ca2+-Mg2+ competition, Ca . ATP-Mg . ATP competition or a combination of both mechanisms. In the presence of Na+ and Mg2+, Ca2+ inhibited the K+-dependent dephosphorylation of the phosphoenzyme formed from ATP, had no effect on the dephosphorylation in the absence of K+ and inhibited the rephosphorylation of the enzyme. In addition, the steady-state levels of phosphoenzyme were reduced in the presence both of NaCl and of NaCl plus KCl. With 3 mM ATP, Ca2+ alone sustained no more than 2% of the (Na+ + K+)-ATPase activity and about 23% of the Na+-ATPase activity observed with Mg2+ and no Ca2+. With 0.003 mM ATP, Ca2+ was able to maintain about 40% of the (Na+ + K+)-ATPase activity and 27% of the Na+-ATPase activity seen in the presence of Mg2+ alone. However, the E2(K)-E1K conformational change did not seem to be affected. Ca2+ inhibition of the K+-dependent rho-nitrophenylphosphatase activity of the (Na+ + K+)-ATPase followed competition kinetics between Ca2+ and Mg2+. In the presence of 10 mM NaCl and 0.75 mM KCl, the fractional inhibition of the K+-dependent rho-nitrophenylphosphatase activity as a function of Ca2+ concentration was the same with and without ATP, suggesting that Ca2+ indeed plays the important role in this process. In the absence of Mg2+, Ca2+ was unable to sustain any detectable ouabain-sensitive phosphatase activity, either with rho-nitrophenylphosphate or with acetyl phosphate as substrate.  相似文献   

16.
Human erythrocyte membranes obtained by freeze-thawing of ghosts prepared in the absence or presence of EDTA, by washing with a 12 mosm medium at pH 7.7 or a 2 mosm medium at pH 6.5 contain both high and low Ca affinity (Mg + Ca)-ATPase activities. Incubation of ghosts in a less than 2 mosm medium at pH 7.5 or in 0.1 mm EDTA + 1 Him Tris-maleate (pH 8.0) results in removal of the high affinity (Mg + Ca)-ATPase activity from the membrane in a time dependent manner. Under similar conditions up to 25% of membrane proteins are removed. The soluble protein fraction extracted, although devoid of ATPase activity, reconstitutes with the remaining membrane residue with restoration of original (Mg + Ca)-ATPase activity. Addition of the soluble protein fraction to heat-treated membranes devoid of low affinity (Mg + Ca)-ATPase activity allows reconstitution of more than 33% of the original high affinity (Mg + Ca)-ATPase activity which has a Ca dissociation constant of approximately 1.6μm. Temperature and phospholipase A2 studies indicate that low affinity (Mg + Ca)-ATPase activity is phospholipid dependent in contrast to high affinity (Mg + Ca)-ATPase activity. Ruthenium red and LaCl3 inhibit both high and low affinity (Mg + Ca)-ATPase activities with similar potencies. The ease of removal of high affinity (Mg + Ca)-ATPase activity from the membrane by relatively mild conditions suggests that an activator protein or the high affinity (Mg + Ca)-ATPase itself is only loosely attached to the membrane. These studies show that low affinity (Mg + Ca)-ATPase activity is not an artifact and is distinct from high affinity (Mg + Ca)-ATPase activity. The low affinity (Mg + Ca)-ATPase activity is sensitive to Ca2+ in the concentration range from below 0.3 μm to 300 μm compatible with an association of this enzyme with Ca transport.  相似文献   

17.
Phosphorylated retinoblastoma protein and nucleolar protein B23 are putative stimulatory factors for DNA polymerase alpha. We showed that these two factors interacted with each other and stimulated the activity of DNA polymerase alpha synergistically. B23 exists in two isoforms designated as B23.1 and B23.2. While B23.1 bound to a retinoblastoma protein-conjugated column, B23.2 did not. These results indicate that B23.1 can directly bind to retinoblastoma protein. It was also shown that B23 was co-immunoprecipitated with both retinoblastoma protein and DNA polymerase alpha from a HeLa cell extract by monoclonal antibodies raised against these components. These results suggest that these three proteins exist as a complex in cells, at least in part. The simultaneous addition of both B23.1 and retinoblastoma protein caused stimulation of DNA polymerase alpha activity that is much higher than the sum of the stimulation by retinoblastoma protein and B23.1 alone. The maximal stimulation was attained at the molar ratio of DNA polymerase alpha/retinoblastoma protein/B23.1 = 1:1:12. Since B23 exists as a hexamer in solution, it may act as a stimulator of DNA polymerase alpha in a form of double-hexamer, in concert with the phosphorylated retinoblastoma protein.  相似文献   

18.
19.
When nuclei isolated from rat liver in a low salt buffer were washed with 0.1 M NaCl solution, the supernatant showed a deoxyribonuclease (DNase) activity. The activity required Mg2+ and in addition spermine or spermidine, and its optimal pH was 7.2-7.4. The activity was higher on denatured (single stranded) DNA than on double-helical DNA. With both substrates the activity was highest at a polyamine concentration at which the DNA-polyamine complex began to precipitate. No Mg2++Ca2+ dependent DNase activity was detected in the preparation.  相似文献   

20.
The microsomal fraction of frog sciatic nerves was found to contain Ca2+- or Mg2+-dependent hydrolytic activity toward different nucleoside di- and triphosphates. In the presence of Ca2+ substrate specificity was in the order CTP > UTP > GTP > ATP. When Mg2+ was used, the triphosphates were approximately equally good substrates. ATP hydrolytic activity was very similar with Ca2+ or Mg2+ as the cofactor, whereas Ca2+ was the more potent activator of hydrolysis of the other triphosphates tested. The preparation showed some activity toward the nucleoside diphosphates but none toward the monophosphates or p-nitrophenylphosphate. The enzymic properties of ATP hydrolysis were more closely studied. The hydrolysis was optimal at 18--24 degrees C in the presence of 1 mM-Ca2+ or 1 mM-Mg2+. Ca2+- and Mg2+-ATP hydrolysis displayed pH maxima around 8.0--8.5 and 7.4--8.0, respectively. Vmax values for Ca2+- and Mg2+-ATP hydrolysis similar: approx. 12 mumol Pi per h per mg protein with a Km value of approx. 0.05 mM. The ATP hydrolysis activity was inhibited by NaF but unaffected by ouabain, vanadate, cytochalasin B, and various drugs known to influence ATPase activity of mitochondria. Zn2+ stimulated the ATP hydrolysis activity at low concentrations (10(-6)-10(-5) M) and inhibited it at higher concentrations. The possibility that these observations account for stimulation and inhibition of axonal transport in frog sciatic nerves exposed to similar concentrations of Zn2+ is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号