首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 195 毫秒
1.
Quantitative measurements of nuclear DNA content based on Feulgen reaction and the analysis of CCD images has been proposed. The measurements were performed in the monochrome CCD option (650 × 514 pixels) with a wavelength of 551 nm. The linear dependence of photomatrix element signals on the falling light was shown with a multigrade light absorption filter. The optimal microscope and camera settings and an approach for elimination of the optic blur are proposed. It was found that the contribution of background fluorescence of Feulgen-stained nuclei into the measurements was negligible. Densitometric measurements of the DNA content in blood cells of four vertebrate species (Gallus domesticus, Danio rerio, Homo sapiens, Rana arvalis) were consistent with the literature data. The precision of our approach is comparable to other known cytometry methods (). The current improvement of CCD technical parameters and the widespread use of CCD cameras in biological applications give perspectives for the development of the suggested approach for measuring the quantity of cellular DNA.  相似文献   

2.
In this study we aimed at the development of a cytometric system for quantification of specific DNA sequences using fluorescence in situ hybridization (ISH) and digital imaging microscopy. The cytochemical and cytometric aspects of a quantitative ISH procedure were investigated, using human peripheral blood lymphocyte interphase nuclei and probes detecting high copy number target sequences as a model system. These chromosome-specific probes were labeled with biotin, digoxigenin, or fluorescein. The instrumentation requirements are evaluated. Quantification of the fluorescence ISH signals was performed using an epi-fluorescence microscope with a multi-wavelength illuminator, equipped with a cooled charge couple device (CCD) camera. The performance of the system was evaluated using fluorescing beads and a homogeneously fluorescing specimen. Specific image analysis programs were developed for the automated segmentation and analysis of the images provided by ISH. Non-uniform background fluorescence of the nuclei introduces problems in the image analysis segmentation procedures. Different procedures were tested. Up to 95% of the hybridization signals could be correctly segmented using digital filtering techniques (min-max filter) to estimate local background intensities. The choice of the objective lens used for the collection of images was found to be extremely important. High magnification objectives with high numerical aperture, which are frequently used for visualization of fluorescence, are not optimal, since they do not have a sufficient depth of field. The system described was used for quantification of ISH signals and allowed accurate measurement of fluorescence spot intensities, as well as of fluorescence ratios obtained with double-labeled probes.  相似文献   

3.
BACKGROUND: Flow cytometers, which are commercially available, do not necessarily meet all demands of actual biomedical research. This is the case for the investigation of mechanisms involved in cell volume regulation, which requires electrical volume measurement and ratiometric multichannel fluorescence analysis for the simultaneous assessment of different physiologic parameters (intracellular pH and the intracellular concentration of calcium ions, etc). METHODS AND RESULTS: We describe the construction of a new nonsorting flow cytometer designed for the simultaneous acquisition of seven parameters including fluorescence signals, forward and perpendicular light scatter, cell volume according to the electrical Coulter principle, and flow cytometric imaging. The instrument is equipped with three different light sources. A tunable argon-ion laser generates efficient excitation of the most standard fluorescent probes in the visible spectral range, and an arc lamp provides the means for ultraviolet excitation at low cost. Because of the spatial filtering by the excitation and detection optics, two independent sets of dual fluorescence measurements can be performed, a prerequisite for flexible ratiometric fluorescence analysis. A flow video microscope integrated into the optical system optionally generates either brightfield or phase images of selected flowing particles. Only particles whose individual datasets meet predefined gating conditions are imaged in real time. To avoid smear effects, the motion of the object to be imaged (speed approximately 8 m/s) is frozen on the target of a CCD camera by flash illumination. For this purpose, a high radiance gas discharge lamp with 25-mJ electric pulse energy provides an illumination time of 18 ns (full width half maximum). Test results obtained from latex spheres and cells are shown. CONCLUSIONS: Test results indicate that our instrument can perform Coulter measurements in combination with flexible optical analysis. Moreover, integration of an adapted video microscope into a flow cytometer is an approach to overcome the gap between flow and image cytometry.  相似文献   

4.
An inexpensive microcomputer-based image analysis system is described in which an Apple microcomputer acquires data from a video camera or video cassette recorder and measures the brightness of the image received at specified points or areas. Suggested uses for this apparatus include measurements of chlorophyll fluorescence in algal cells, determination of the effects of ultraviolet illumination on chlorophyll fluorescence, estimation of total amounts of chlorophyll in a microscope field, and microspectrophotometic and microdensitometic measurements. A similar ssytem using the IBM personal computer with a different interface is also described.  相似文献   

5.
Summary A cytofluorometric apparatus with incident illumination for fluorescence excitation is described here.Cytophotometric fluorescence measurements (UV- and blue excitation) of acriflavine-acridine yellow-, coriphosphine- and pararosaniline-Schiff stained di-, tetra- and octoploid liver nuclei, leucocytes and sperms (Feulgen reaction) were found to agree with the absorbance data obtained from the same slide by means of the integrating microdensitometer.The stoichiometry of the fluorescence emission is discussed in detail. It is emphasized that not a linear, but an exponential relationship exists between the emitted fluorescence intensity and the concentration of the fluorescent substance.Cytofluorometry of Feulgen-stained nuclei has proved to be as reliable and fast as the absorbance scanning measurements at the intergrating microdensitometer.  相似文献   

6.
In this study we examined the reproducibility of several stains used to measure nuclear DNA by image cytometry. The specimens were touch preparations of liver and testis from mouse and liver, intestine and brain from rat, fixed in either neutral formalin or Carnoy's solution. The tested stains included four Feulgen methods (pararosaniline, azure-A, thionin and acriflavine), the gallocyanine-chromalum stain and two fluorescent stains (acridine orange and propidium iodide). Absorbance measurements employed a video image analysis system; fluorescence measurements were from a scanning microspectrophotometer. The acriflavine-Feulgen stain was analyzed for both absorbance and fluorescence. All seven stains were quantitative for DNA and gave reproducible results. The absorbance measurements had a lower coefficient of variation (CV) than the fluorescence values. In a nested analysis of variance of the pararosaniline Feulgen stains, cell-to-cell variability accounted for 67% of the total variance; slide-to-slide, 9%; and batch-to-batch, 24%. These values did not change significantly when the staining was performed in an automatic staining machine. For DNA analysis using image cytometry, we conclude that the Feulgen staining technique is the most useful. In particular, acriflavine-Feulgen-stained cells fixed in Carnoy's fluid give the least variation between measurement values and the most accurate ratios between the separate ploidy groups. For fluorescence cytometry we recommend Carnoy's fixation and the acriflavine-Feulgen stain because of its narrow CV as compared to acridine orange and propidium iodide.  相似文献   

7.
We introduce a new, non-invasive technique to measure linear electron transfer in intact leaves under steady-state illumination. Dark-interval relaxation kinetic or ‘DIRK’ analysis is based on measurements of the initial rates of relaxation of steady-state absorbance signals upon a rapid light-dark transition. We show that estimates of electron flux by DIRK analysis of absorbance signals, reflecting redox changes in the photosynthetic electron transfer chain, can yield quantitative information about photosynthetic flux when the light-dependent partitioning of electrons among redox components of the electron transfer chain are considered. This concept is modeled in computer simulations and then demonstrated in vivo with tobacco plants under non-photorespiratory conditions resulting in linear relationships between DIRK analysis and gross carbon assimilation (AG). Estimation based on DIRK analysis of the number of electrons transferred through the photosynthetic apparatus for each CO2 fixed was within 20% of the theoretical value. Possible errors and future improvements are discussed. We conclude that the DIRK method represents a useful tool to address issues such as plant stress and photosynthetic regulation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Voltage-sensitive dyes produce absorbance and fluorescence changes that can be used to image voltage. The present study develops a systematic approach to the optimization of these signals. A mathematical analysis assesses the dye optical density (OD) that optimizes the signal-to-noise ratio in absorbance and fluorescence measurements. The signal-to-noise ratio is maximal for a dye OD of 2 (natural logarithm) in absorbance and ~1 in fluorescence. The fluorescence result is approximate because, in contrast to absorbance, the optimal dye OD varies with the amount of scattering and intrinsic absorbance of the tissue. The signal-to-noise ratio of absorbance is higher in thick preparations such as brain slices; fluorescence is superior in thin preparations such as cell culture. The optimal OD for absorbance and fluorescence, as well as the superiority of absorbance, were confirmed experimentally on hippocampal slices. This analysis also provided insight into the interpretation of signals normalized to resting light intensities. With both absorbance and fluorescence, the normalized signal (I/I) varies with OD, and does not reflect the change in dye absorbance. In absorbance this problem is remedied by dividing I/I by the dye OD to obtain the absorbance change. For fluorescence a correction is possible, but is more complicated. Because this analysis indicates that high levels of stain optimize the signal-to-noise, dyes were tested for pharmacological actions and phototoxicity. The absorbance dye RH155 was found to have pharmacological action at high staining levels. The fluorescent dye RH414 was phototoxic. Adverse effects could not be detected with the absorbance dye RH482.  相似文献   

9.
With the realization that bacteria display phenotypic variability among cells and exhibit complex subcellular organization critical for cellular function and behavior, microscopy has re‐emerged as a primary tool in bacterial research during the last decade. However, the bottleneck in today's single‐cell studies is quantitative image analysis of cells and fluorescent signals. Here, we address current limitations through the development of Oufti, a stand‐alone, open‐source software package for automated measurements of microbial cells and fluorescence signals from microscopy images. Oufti provides computational solutions for tracking touching cells in confluent samples, handles various cell morphologies, offers algorithms for quantitative analysis of both diffraction and non‐diffraction‐limited fluorescence signals and is scalable for high‐throughput analysis of massive datasets, all with subpixel precision. All functionalities are integrated in a single package. The graphical user interface, which includes interactive modules for segmentation, image analysis and post‐processing analysis, makes the software broadly accessible to users irrespective of their computational skills.  相似文献   

10.
Low uniformity in illumination across the image plane impairs the ability of a traditional epifluorescence microscope to quantify fluorescence intensities. Two microlens arrays (MLAs) were introduced into the illumination path of two different epifluorescence microscope systems to improve the uniformity of the illumination. Measurements of the uniformity of illumination were performed with a CCD camera in the focal plane and with fluorescent beads in the image plane. In semi critical alignment, a uniformity of illumination of 15-23% was found compared with 1-2% in the modified system. Coefficient of variation (CV) of fluorescent beads measured on the unmodified system was 20.4% ± 5.3% in semi critical alignment and 10.8% ± 1.3% in Koehler alignment. On the MLA systems, CV was 7.9% ± 2.0% and on a flow cytometer, the CV was 6.7% ± 0.7%. Implementation of MLAs in an epifluorescence microscope improves the uniformity of illumination, thereby reducing the variation in detection of fluorescent signals of the measured objects and becomes equivalent to that of flow cytometry.  相似文献   

11.
High temporal resolution video imaging of intracellular calcium   总被引:6,自引:0,他引:6  
T Takamatsu  W G Wier 《Cell calcium》1990,11(2-3):111-120
We have developed a system for imaging intracellular free calcium ion concentration ([Ca2+]i) at the highest rate possible with conventional video equipment. The system is intended to facilitate quantitative study of rapid changes in [Ca2+]i in cells that move. It utilizes intensified video cameras with nearly ideal properties and digital image processing to produce two images that can be ratioed without artifacts. Two dichroic mirrors direct images of cellular Indo-1 fluorescence at two different wavelengths to two synchronized video cameras, each consisting of a fast micro-channel plate image intensifier optically coupled with a tapered fiber optic bundle to a CCD image sensor. The critical technical issues in this dual-image system are: (1) minimization and correction of the small geometric and other types of differences in the images provided by the two cameras; and (2) the signal-to-noise ratio that can be achieved in single frames. We have used this system to obtain images of [Ca2+]i at 16.7 ms intervals in voltage-clamped single cardiac cells perfused internally with Indo-1 (pentapotassium salt). The images indicate that, except for the nuclear regions, [Ca2+]i is uniform during normal excitation-contraction coupling. In contrast, changes in [Ca2+]i propagate in rapid 'waves' during the spontaneous release of Ca2+ that accompanies certain 'Ca2(+)-overload conditions.'  相似文献   

12.
Simultaneous measurements of nonphotochemical quenching of chlorophyll fluorescence and absorbance changes in the 400- to 560-nm region have been made following illumination of dark-adapted leaves of the epiphytic bromeliad Guzmania monostachia. During the first illumination, an absorbance change at 505 nm occurred with a half-time of 45 s as the leaf zeaxanthin content rose to 14% of total leaf carotenoid. Selective light scattering at 535 nm occurred with a half-time of 30 s. During a second illumination, following a 5-min dark period, quenching and the 535-nm absorbance change occurred more rapidly, reaching a maximum extent within 30 s. Nonphotochemical quenching of chlorophyll fluorescence was found to be linearly correlated to the 535-nm absorbance change throughout. Examination of the spectra of chlorophyll fluorescence emission at 77 K for leaves sampled at intervals during this regime showed selective quenching in the light-harvesting complexes of photosystem II (LHCII). The quenching spectrum of the reversible component of quenching had a maximum at 700 nm, indicating quenching in aggregated LHCII, whereas the irreversible component represented a quenching of 680-nm fluorescence from unaggregated LHCII. It is suggested that this latter process, which is associated with the 505-nm absorbance change and zeaxanthin formation, is indicating a change in state of the LHCII complexes that is necessary to amplify or activate reversible pH-dependent energy dissipation, which is monitored by the 535-nm absorbance change. Both of the major forms of nonphotochemical energy dissipation in vivo are therefore part of the same physiological photoprotective process and both result from alterations in the LHCII system.  相似文献   

13.
Roots are highly responsive to environmental signals encountered in the rhizosphere, such as nutrients, mechanical resistance and gravity. As a result, root growth and development is very plastic. If this complex and vital process is to be understood, methods and tools are required to capture the dynamics of root responses. Tools are needed which are high-throughput, supporting large-scale experimental work, and provide accurate, high-resolution, quantitative data. We describe and demonstrate the efficacy of the high-throughput and high-resolution root imaging systems recently developed within the Centre for Plant Integrative Biology (CPIB). This toolset includes (i) robotic imaging hardware to generate time-lapse datasets from standard cameras under infrared illumination and (ii) automated image analysis methods and software to extract quantitative information about root growth and development both from these images and via high-resolution light microscopy. These methods are demonstrated using data gathered during an experimental study of the gravitropic response of Arabidopsis thaliana.  相似文献   

14.
BACKGROUND: Previous systems for dot (signal) counting in fluorescence in situ hybridization (FISH) images have relied on an auto-focusing method for obtaining a clearly defined image. Because signals are distributed in three dimensions within the nucleus and artifacts such as debris and background fluorescence can attract the focusing method, valid signals can be left unfocused or unseen. This leads to dot counting errors, which increase with the number of probes. METHODS: The approach described here dispenses with auto-focusing, and instead relies on a neural network (NN) classifier that discriminates between in and out-of-focus images taken at different focal planes of the same field of view. Discrimination is performed by the NN, which classifies signals of each image as valid data or artifacts (due to out of focusing). The image that contains no artifacts is the in-focus image selected for dot count proportion estimation. RESULTS: Using an NN classifier and a set of features to represent signals improves upon previous discrimination schemes that are based on nonadaptable decision boundaries and single-feature signal representation. Moreover, the classifier is not limited by the number of probes. Three classification strategies, two of them hierarchical, have been examined and found to achieve each between 83% and 87% accuracy on unseen data. Screening, while performing dot counting, of in and out-of-focus images based on signal classification suggests an accurate and efficient alternative to that obtained using an auto-focusing mechanism.  相似文献   

15.
Fluorescence correlation spectroscopy is useful for detecting and characterizing molecular clusters that are smaller than or approximately equal to optical resolution in size. Here, we report the development of an approach in which the pixel-to-pixel fluorescence fluctuations from a single fluorescence image are spatially autocorrelated. In these measurements, tetramethylrhodamine-labeled, anti-trinitrophenyl IgE antibodies were specifically bound to substrate-supported planar membranes composed of trinitrophenyl-aminocaproyldipalmitoylphosphatidylethanolamine and dipalmitoylphosphatidylcholine. The antibody-coated membranes were illuminated with the evanescent field from a totally internally reflected laser beam, and the fluorescence arising from the IgE-coated membranes was recorded with a cooled CCD camera. The image was corrected for the elliptical Gaussian shape of the evanescent illumination after background subtraction. The spatial autocorrelation functions of the resulting images generated two useful parameters: the extrapolated initial values, which were related to the average cluster intensity and density; and the correlation distances, which were related to the average cluster size. These parameters varied with the IgE density, and unlabeled polyclonal anti-IgE enhanced the nonuniform IgE distributions. The autocorrelation functions calculated from images of planar membranes containing fluorescently labeled lipids rather than bound, labeled IgE demonstrated that the spatial nonuniformities were prominent only in the presence of IgE. Fluorescent beads were used to demonstrate the principles and the methods.  相似文献   

16.
Fluorescent speckle microscopy (FSM) uses a small fraction of fluorescently labeled subunits to give macromolecular assemblies such as the cytoskeleton fluorescence image properties that allow quantitative analysis of movement and subunit turnover. We describe a multispectral microscope system to analyze the dynamics of multiple cellular structures labeled with spectrally distinct fluorophores relative to one another over time in living cells. This required a high-resolution, highly sensitive, low-noise, and stable imaging system to visualize the small number of fluorophores making up each fluorescent speckle, a means by which to switch between excitation wavelengths rapidly, and a computer-based system to integrate image acquisition and illumination functions and to allow a convenient interface for viewing multispectral time-lapse data. To reduce out-of-focus fluorescence that degrades speckle contrast, we incorporated the optical sectioning capabilities of a dual-spinning-disk confocal scanner. The real-time, full-field scanning allows the use of a low-noise, fast, high-dynamic-range, and quantum-efficient cooled charge-coupled device (CCD) as a detector as opposed to the more noisy photomultiplier tubes used in laser-scanning confocal systems. For illumination, our system uses a 2.5-W Kr/Ar laser with 100-300mW of power at several convenient wavelengths for excitation of few fluorophores in dim FSM specimens and a four-channel polychromatic acousto-optical modulator fiberoptically coupled to the confocal to allow switching between illumination wavelengths and intensity control in a few microseconds. We present recent applications of this system for imaging the cytoskeleton in migrating tissue cells and neurons.  相似文献   

17.
Testing the two-state model: anomalous effector binding to human hemoglobin   总被引:1,自引:0,他引:1  
M C Marden  E S Hazard  Q H Gibson 《Biochemistry》1986,25(23):7591-7596
Three allosteric states are required to describe the relaxation of (carbon monoxy) hemoglobin following flash photolysis. Combined absorbance and fluorescence probes were used. The absorbance signals consist of a component corresponding to ligand recombination and a component for the R-T transition. The fluorescence of 8-hydroxy-1,3,6-pyrenetrisulfonate (HPT), an analogue of 2,3-diphosphoglycerate, shows rates and amplitudes correlated with the absorbance transients. Measurements were made at pII 6, 6.5, and 7.0 at CO partial pressures of 0.1 and 1 atm. The fractional photolysis was varied in each case to change the initial distribution of the R states. Data show an immediate absorbance change due to ligand dissociation, while the changes in the ligand isosbestic and the fluorescence signals occur with time constants of 80 microseconds (at pH 6.5). The signals then show a biphasic return to equilibrium, characteristic of the allosteric system. The measurements provide three independent probes of the kinetics of the substates of hemoglobin. Although the ligand binding data can be generally represented by a two-state model, the fluorescence data require T states with different affinities for HPT.  相似文献   

18.
The light minus dark difference spectrum and the kinetics of the indicator pigment C-550 have been measured at room temperature in isolate, envelope-free chloroplasts in the presence of 3-(3' ,4'-dichlorophenyl)-1,1-dimethylurea (DCMU). The C-550 spectrum indicates a band shift with peaks at 540 and 550 nm and has an isobestic point at 545 nm. On the assumption of 400 chlorophyll molecules per electron transfer chain the differentaial extinction coefficient delta epsilon (540-550) is calculated to be approximately 5 mM-1 . CM-1. The kinetics of the C-550 absorbance change, occurring upin the onset of continuous illumination, are shown to be biphasic and strictly correlated with the kinetics of the complementary area measured from the fluorescence induction curve under identical cinditions and with those of the absorbance increase at 320 nm due to photoreduction of Q. The lighted-induced change in these three parameters can be described as a function of the variable fluorescence yield change occurring under the same conditions. Such functions are non-linear and reveal a heterogeneous dependence of the variable fluorescence yield on the fraction of closed System II reaction centers. It is concluded that for every molecule of the primary electron acceptor Q of Photosystem II that is photochemically reduced there corresponds an equivalent change in the absorbance of the indicator pigment C-550 and in the size of the complementary area. Ths, C-550 and area are two valid parameters for monitoring the primary photochemical activity of System II at the room temperature.  相似文献   

19.
Real-time multi-wavelength fluorescence imaging of living cells   总被引:4,自引:0,他引:4  
S J Morris 《BioTechniques》1990,8(3):296-308
We describe a new real-time fluorescence video microscope design for capturing intensified images of cells containing dual wavelength "ratio" dyes or multiple dyes. The microscope will perform real-time capture of two separate fluorescence emission images simultaneously, improving the time resolution of spatial distribution of fluorescence to video frame rates (30 frames/s or faster). Each emission wavelength is imaged simultaneously by one of two cameras, then digitized, background corrected and appropriately combined at standard video frame rates to be stored at high resolution on tape or digital video disk for further off-line analysis. Use of low noise, high sensitivity image intensifiers, coupled to CCD cameras produce stable, high contrast images using ultra low light levels with little persistence or bloom. The design has no moving parts in its optical train, which overcomes a number of technical difficulties encountered in the present filter wheel designs for multiple imaging. Coupled to compatible image processing software utilizing PC-AT computers, the new design can be built for a significantly lower cost than many presently available commercial machines. The system is ideal for ratio imaging applications; the software can calculate the ratio of fluorescence intensities pixel by pixel and provide the information to generate false-color images of the intensity data as well as other calculations based on the two images. Thus, it provides a powerful, inexpensive tool for studying the real-time kinetics of changes in living cells. Examples are presented for the kinetics of rapidly changing intracellular calcium detected by the calcium indicator probe indo-1 and the redistribution kinetics of multiple vital dyes placed in cells undergoing cell fusion.  相似文献   

20.
Fluorescent Ca2+ indicator dyes can be introduced into cells through the same microelectrode used for intracellular voltage recording. Simultaneous measurement of cell membrane potential and intracellular Ca2+ concentration can be very helpful in interpreting the mechanisms of Ca2+ increases. This chapter describes fluorescence image acquisition using a CCD camera and a computer program that also records a synchronized membrane potential trace. The same program allows for preliminary data analysis. More elaborate analyses can be accomplished with commercial programs. We also describe quantitative evaluations of sources of error in the use of the statistic deltaF/F as an indicator of Ca2+ concentration. Especially important errors to minimize are changes in background fluorescence and inappropriate autofluorescence corrections. Some improvement of fluorescence images of cells deep within slices may be accomplished by masking. One method is described for making a mask based on the raw fluorescence image. With another method, highly detailed cell morphologies may be conveyed by using masks based on neurobiotin injections and camera lucida drawings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号