首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
朱文俊  毛雪玲  邱晓挺 《微生物学报》2018,58(10):1701-1710
RNA聚合酶Ⅱ最大亚基Rpb1的羧基端结构域(carboxyl-terminal repeat domain,CTD)是RNA聚合酶Ⅱ发挥转录延伸功能所必需的,对其执行精确的转录调节功能至关重要。酵母细胞周期蛋白依赖性激酶CTDK-I(carboxyl-terminal repeat domain kinase,CTDK-I)由CTK1、CTK2和CTK3组成,作用于RNA聚合酶Ⅱ羧基端结构域,动态磷酸化CTD的七肽重复序列(YSPTSPS)来调控转录和翻译。酵母中的特异性蛋白CTK3与特殊的细胞周期蛋白CTK2结合形成异二聚体,再与CTDK-I的催化亚基CTK1结合以调节其活性。CTK1作为细胞周期蛋白CDK(cyclin dependent kinase,CDK)的同源蛋白,其结构与功能的研究可拓展人们对CDK蛋白家族的认识;CTK2-CTK3复合物对CTK1调控机制的研究也可为细胞周期蛋白抑制剂的研发提供新的思路。本文简述了酵母CTDK-I的功能特点及其亚基的结构与功能以及亚基间的相互作用,并展望了CTDK-I复合物的研究前景。  相似文献   

4.
5.
6.
The largest subunit of eukaryotic RNA polymerase II contains a carboxyl-terminal domain (CTD) which is comprised of repetitive heptapeptides with a consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. We demonstrate here that the mouse CTD expressed in and purified from Escherichia coli can be phosphorylated in vitro by a p34cdc2/CDC28-containing CTD kinase from mouse ascites tumor cells. The product of this reaction, a phosphorylated form of the CTD, contains phosphoserine and phosphothreonine, but not phosphotyrosine. The same phosphoamino acid content is observed in the in vivo phosphorylated CTD from a mouse cell line. Synthetic peptides with naturally occurring non-consensus heptapeptide sequences can also be phosphorylated by CTD kinase in vitro. Phosphoamino acid analysis of these non-consensus heptapeptides together with direct sequencing of a phosphorylated heptapeptide reveals that serines (or threonines) at positions two and five are the sites phosphorylated by mouse CTD kinase. Thus, the -Ser(Thr)-Pro- motif common to p34cdc2/CDC28-containing protein kinases is the recognition site for mouse CTD kinase.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
The hepatitis C virus (HCV) NS5B protein is the viral RNA-dependent RNA polymerase required for replication of the HCV RNA genome. We have identified a peptide that most closely resembles a short region of the protein kinase C-related kinase 2 (PRK2) by screening of a random 12-mer peptide library displayed on the surface of the M13 bacteriophage with NS5B proteins immobilized on microwell plates. Competitive phage enzyme-linked immunosorbent assay with a synthetic peptide showed that the phage clone displaying this peptide could bind HCV RNA polymerase with a high affinity. Coimmunoprecipitation and colocalization studies demonstrated in vivo interaction of NS5B with PRK2. In vitro kinase assays demonstrated that PRK2 specifically phosphorylates NS5B by interaction with the N-terminal finger domain of NS5B (amino acids 1-187). Consistent with the in vitro NS5B-phosphorylating activity of PRK2, we detected the phosphorylated form of NS5B by metabolic cell labeling. Furthermore, HCV NS5B immunoprecipitated from HCV subgenomic replicon cells was specifically recognized by an antiphosphoserine antibody. Knock-down of the endogenous PRK2 expression using a PRK2-specific small interfering RNA inhibited HCV RNA replication. In contrast, PRK2 overexpression, which was accompanied by an increase of in the level of its active form, dramatically enhanced HCV RNA replication. Altogether, our results indicate that HCV RNA replication is regulated by NS5B phosphorylation by PRK2.  相似文献   

15.
16.
A high incidence of breast and ovarian cancers has been linked to mutations in the BRCA1 gene. BRCA1 has been shown to be involved in both positive and negative regulation of gene activity as well as in numerous other processes such as DNA repair and cell cycle regulation. Since modulation of the RNA polymerase II carboxy-terminal domain (CTD) phosphorylation levels could constitute an interface to all these functions, we wanted to directly test the possibility that BRCA1 might regulate the phosphorylation state of the CTD. We have shown that the BRCA1 C-terminal region can negatively modulate phosphorylation levels of the RNA polymerase II CTD by the Cdk-activating kinase (CAK) in vitro. Interestingly, the BRCA1 C-terminal region can directly interact with CAK and inhibit CAK activity by competing with ATP. Finally, we demonstrated that full-length BRCA1 can inhibit CTD phosphorylation when introduced in the BRCA1(-/-) HCC1937 cell line. Our results suggest that BRCA1 could play its ascribed roles, at least in part, by modulating CTD kinase components.  相似文献   

17.
18.
RSP5 is an essential gene in Saccharomyces cerevisiae and was recently shown to form a physical and functional complex with RNA polymerase II (RNA pol II). The amino-terminal half of Rsp5 consists of four domains: a C2 domain, which binds membrane phospholipids; and three WW domains, which are protein interaction modules that bind proline-rich ligands. The carboxyl-terminal half of Rsp5 contains a HECT (homologous to E6-AP carboxyl terminus) domain that catalytically ligates ubiquitin to proteins and functionally classifies Rsp5 as an E3 ubiquitin-protein ligase. The C2 and WW domains are presumed to act as membrane localization and substrate recognition modules, respectively. We report that the second (and possibly third) Rsp5 WW domain mediates binding to the carboxyl-terminal domain (CTD) of the RNA pol II large subunit. The CTD comprises a heptamer (YSPTSPS) repeated 26 times and a PXY core that is critical for interaction with a specific group of WW domains. An analysis of synthetic peptides revealed a minimal CTD sequence that is sufficient to bind to the second Rsp5 WW domain (Rsp5 WW2) in vitro and in yeast two-hybrid assays. Furthermore, we found that specific "imperfect" CTD repeats can form a complex with Rsp5 WW2. In addition, we have shown that phosphorylation of this minimal CTD sequence on serine, threonine and tyrosine residues acts as a negative regulator of the Rsp5 WW2-CTD interaction. In view of the recent data pertaining to phosphorylation-driven interactions between the RNA pol II CTD and the WW domain of Ess1/Pin1, we suggest that CTD dephosphorylation may be a prerequisite for targeted RNA pol II degradation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号