首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To establish latent infections in B-cells, gammaherpesviruses express proteins in the infected B-cells of the host that spuriously activate signalling pathways located downstream of the B-cell receptor. One such protein is M2, a murine gammaherpesvirus 68-encoded molecule that activates the Vav1/Rac1 pathway via the formation of trimolecular complexes with Scr family members. Previous reports have shown that the formation of this heteromolecular complex involves interactions between a proline rich region of M2 and the Vav1 and Fyn SH3 domains. Here, we show that the optimal association of these proteins requires a second structural motif encompassing two tyrosine residues (Tyr120 and 129). These residues are inducibly phosphorylated by Fyn in non-hematopoietic cells and constitutively phosphorylated in B-cells. We also demonstrate that the phosphorylation of Tyr120 creates specific docking sites for the SH2 domains of both Vav1 and Fyn, a condition sine qua non for the optimal association of these two signalling proteins in vivo. Interestingly, signaling experiments indicate that the expression of M2 in B-cells promotes the tyrosine phosphorylation of Vav1 and additional signaling proteins, a biological process that requires the integrity of both the M2 phosphotyrosine and proline rich region motifs. By infecting mice with viruses mutated in the m2 locus, we show that the integrity of each of these two M2 docking motifs is essential for the early steps of murine gammaherpesvirus-68 latency. Taken together, these results indicate that the M2 phosphotyrosine motif and the previously described M2 proline rich region work in a concerted manner to manipulate the signaling machinery of the host B-cell.  相似文献   

2.
Zinc finger antiviral protein (ZAP) is a host factor that specifically inhibits the replication of certain viruses by binding to specific viral mRNAs and repressing mRNA expression. Here we report that ZAP inhibits expression of murine gammaherpesvirus 68 (MHV-68) M2, which plays important roles in establishment and maintenance of viral latency. Downregulation of endogenous ZAP in cells harboring latent MHV-68 promoted lytic replication of the virus. These results suggest that ZAP inhibits M2 expression and regulates the maintenance of MHV-68 latency.  相似文献   

3.
Gammaherpesviruses subvert eukaryotic signaling pathways to favor latent infections in their cellular reservoirs. To this end, they express proteins that regulate or replace functionally specific signaling proteins of eukaryotic cells. Here we describe a new type of such viral-host interaction that is established through M2, a protein encoded by murine gammaherpesvirus 68. M2 associates with Vav proteins, a family of phosphorylation-dependent Rho/Rac exchange factors that play critical roles in lymphocyte signaling. M2 expression leads to Vav1 hyperphosphorylation and to the subsequent stimulation of its exchange activity towards Rac1, a process mediated by the formation of a trimolecular complex with Src kinases. This heteromolecular complex is coordinated by proline-rich and Src family-dependent phosphorylated regions of M2. Infection of Vav-deficient mice with gammaherpesvirus 68 results in increased long-term levels of latency in germinal center B lymphocytes, corroborating the importance of the M2/Vav cross talk in the process of viral latency. These results reveal a novel strategy used by the murine gammaherpesvirus family to subvert the lymphocyte signaling machinery to its own benefit.  相似文献   

4.
Zinc finger antiviral protein (ZAP) is an interferon-inducible host antiviral factor that specifically inhibits the replication of certain viruses, including HIV-1 and Ebola virus. ZAP functions as a dimer formed through intermolecular interactions of its N-terminal tails. ZAP binds directly to specific viral mRNAs and inhibits their expression by repressing translation and/or promoting degradation of the target mRNA. ZAP is not a universal antiviral factor, since some viruses grow normally in ZAP-expressing cells. It is not fully understood what determines whether a virus is susceptible to ZAP. We explored the interaction between ZAP and murine gammaherpesvirus 68 (MHV-68), whose life cycle has latent and lytic phases. We previously reported that ZAP inhibits the expression of M2, which is expressed mainly in the latent phase, and regulates MHV-68 latency in cultured cells. Here, we report that ZAP inhibits the expression of ORF64, a tegument protein that is expressed in the lytic phase and is essential for lytic replication. MHV-68 infection induced ZAP expression. However, ZAP did not inhibit lytic replication of MHV-68. We provide evidence showing that the antiviral activity of ZAP is antagonized by MHV-68 RTA, a critical viral transactivator expressed in the lytic phase. We further show that RTA inhibits the antiviral activity of ZAP by disrupting the N-terminal intermolecular interaction of ZAP. Our results provide an example of how a virus can escape ZAP-mediated immunity.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Infection of mice by murine gammaherpesvirus 68 (MHV-68) is an excellent small-animal model of gammaherpesvirus pathogenesis in a natural host. We have carried out comparative studies of another herpesvirus, murine herpesvirus 76 (MHV-76), which was isolated at the same time as MHV-68 but from a different murid host, the yellow-necked mouse (Apodemus flavicollis). Molecular analyses revealed that the MHV-76 genome is essentially identical to that of MHV-68, except for deletion of 9,538 bp at the left end of the unique region. MHV-76 is therefore a deletion mutant that lacks four genes unique to MHV-68 (M1, M2, M3, and M4) as well as the eight viral tRNA-like genes. Replication of MHV-76 in cell culture was identical to that of MHV-68. However, following infection of mice, MHV-76 was cleared more rapidly from the lungs. In line with this, there was an increased inflammatory response in lungs with MHV-76. Splenomegaly was also significantly reduced following MHV-76 infection, and much less latent MHV-76 was detected in the spleen. Nevertheless, MHV-76 maintained long-term latency in the lungs and spleen. We utilized a cosmid containing the left end of the MHV-68 genome to reinsert the deleted sequence into MHV-76 by recombination in infected cells, and we isolated a rescuant virus designated MHV-76(cA8+)4 which was ostensibly genetically identical to MHV-68. The growth properties of the rescuant in infected mice were identical to those of MHV-68. These results demonstrate that genetic elements at the left end of the unique region of the MHV-68 genome play vital roles in host evasion and are critical to the development of splenic pathology.  相似文献   

12.
Willer DO  Speck SH 《Journal of virology》2003,77(15):8310-8321
Murine gammaherpesvirus 68 (gammaHV68; also known as MHV-68) can establish a latent infection in both inbred and outbred strains of mice and, as such, provides a tractable small-animal model to address mechanisms and cell types involved in the establishment and maintenance of chronic gammaherpesvirus infection. Latency can be established at multiple anatomic sites, including the spleen and peritoneum; however, the contribution of distinct cell types to the maintenance of latency within these reservoirs remains poorly characterized. B cells are the major hematopoietic cell type harboring latent gammaHV68. We have analyzed various splenic B-cell subsets at early, intermediate, and late times postinfection and determined the frequency of cells either (i) capable of spontaneously reactivating latent gammaHV68 or (ii) harboring latent viral genome. These analyses demonstrated that latency is established in a variety of cell populations but that long-term latency (6 months postinfection) in the spleen after intranasal inoculation predominantly occurs in B cells. Furthermore, at late times postinfection latent gammaHV68 is largely confined to the surface immunoglobulin D-negative subset of B cells.  相似文献   

13.
Murine gammaherpesvirus 68 (gammaHV68 [also known as MHV-68]) establishes a latent infection in mice, providing a small-animal model with which to identify host and viral factors that regulate gammaherpesvirus latency. While gammaHV68 establishes a latent infection in multiple tissues, including splenocytes and peritoneal cells, the requirements for latent infection within these tissues are poorly defined. Here we report the characterization of a spontaneous 9.5-kb-deletion mutant of gammaHV68 that lacks the M1, M2, M3, and M4 genes and eight viral tRNA-like genes. Previously, this locus has been shown to contain the latency-associated M2, M3, and viral tRNA-like genes. Through characterization of this mutant, we found that the M1, M2, M3, M4 genes and the viral tRNA-like genes are dispensable for (i) in vitro replication and (ii) the establishment and maintenance of latency in vivo and reactivation from latency following intraperitoneal infection. In contrast, following intranasal infection with this mutant, there was a defect in splenic latency at both early and late times, a phenotype not observed in peritoneal cells. These results indicate (i) that there are different genetic requirements for the establishment of latency in different latent reservoirs and (ii) that the genetic requirements for latency depend on the route of infection. While some of these phenotypes have been observed with specific mutations in the M1 and M2 genes, other phenotypes have never been observed with the available gammaHV68 mutants. These studies highlight the importance of loss-of-function mutations in defining the genetic requirements for the establishment and maintenance of herpesvirus latency.  相似文献   

14.
15.
Macrophage migration inhibitory factor (MIF) is involved in the generation of cell-mediated immune responses. Recently it has been reported that MIF also plays a role in cell proliferation and differentiation. In the present study, using a B-cell line, WEHI-231, and its stable MIF-antisense transfectant, WaM2, as a representative transfectant, we investigated the mechanism underlying regulation of the cell growth by MIF. WaM2 cells produced less MIF than vector control or parental WEHI-231 cells. Reduced and increased proportions were seen in G1 and S-phase cells, respectively, in WaM2 as compared with WEHI-231. Growth arrest and apoptosis after stimulation via surface Ig (sIg) were less prominent in WaM2 cells than those in WEHI-231. However, the addition of recombinant rat MIF did not reverse the inhibition of the growth arrest and apoptosis induced in WaM2 by cross-linking sIg. Almost the same amount of p27kip1 expression was detected in WaM2 cells as those in WEHI-231 and vector control cells. Cross-linking of sIg elevated the p27kip1 level equally in these cells irrespective of the MIF-antisense expression. Taken together, it seems that MIF plays a role in inducing apoptosis in B cells upon IgM cross-linking by regulating the cell cycle via a novel intracellular pathway.  相似文献   

16.
p95vav associates with the nuclear protein Ku-70.   总被引:6,自引:1,他引:5       下载免费PDF全文
The proto-oncogene vav is expressed solely in hematopoietic cells and plays an important role in cell signaling, although little is known about the proteins involved in these pathways. To gain further information, the Src homology 2 (SH2) and 3 (SH3) domains of Vav were used to screen a lymphoid cell cDNA library by the yeast two-hybrid system. Among the positive clones, we detected a nuclear protein, Ku-70, which is the DNA-binding element of the DNA-dependent protein kinase. In Jurkat and UT7 cells, Vav is partially localized in the nuclei, as judged from immunofluorescence and confocal microscopy studies. By using glutathione S-transferase fusion proteins derived from Ku-70 and coimmunoprecipitation experiments with lysates prepared from human thymocytes and Jurkat and UT7 cells, we show that Vav associates with Ku-70. The interaction of Vav with Ku-70 requires only the 150-residue carboxy-terminal portion of Ku-70, which binds to the 25 carboxy-terminal residues of the carboxy SH3 domain of Vav. A proline-to-leucine mutation in the carboxy SH3 of Vav that blocks interaction with proline-rich sequences does not modify the binding of Ku-70, which lacks this motif. Therefore, the interaction of Vav with Ku-70 may be a novel form of protein-protein interaction. The potential role of Vav/Ku-70 complexes is discussed.  相似文献   

17.
The CD40 molecule transmits a signal that abrogates apoptosis induced by ligation of the antigen receptor (BCR) in both primary B cells and B-cell lines such as WEHI-231. Expression of Bcl-xL and A1, antiapoptotic members of the Bcl-2 family, is enhanced by CD40 ligation, and is suggested to mediate CD40-induced B-cell survival. CD40 ligation also promotes cell cycle progression by increasing the levels of cyclin-dependent kinases (CDKs) required for cell cycle progression, and reducing expression of the CDK inhibitor p27(kip1). Here we demonstrate that cell cycle inhibition by retrovirus-mediated p27(kip1) expression does not modulate the levels of Bcl-xL or A1, but significantly reduces the survival of BCR-ligated WEHI-231 cells by CD40 ligation. This indicates that cell cycle progression is crucial for CD40-mediated survival of B cells.  相似文献   

18.
19.
Chemokine-binding proteins represent a novel class of antichemokine agents encoded by poxviruses and herpesviruses. One such protein is encoded by the M3 gene present in the murine gammaherpesvirus 68 (MHV-68) genome. The M3 gene encodes a secreted 44-kDa protein that binds with high affinity to certain murine and human chemokines and has been shown to block chemokine signaling in vitro. However, there has been no direct evidence that M3 blocks chemokine activity in vivo, nor has the nature of M3-chemokine interaction been defined. To better understand the ability of M3 to block chemokine activity in vivo, we examined its interaction with a specific subset of chemokines expressed in lymphoid tissues, areas where gammaherpesviruses characteristically establish latency. Here we show that M3 blocks in vitro chemotaxis induced by CCL19 and CCL21, chemokines expressed constitutively in secondary lymphoid tissues. Moreover, we provide evidence that chemokine M3 binding exhibits positive cooperativity. In vivo, the expression of M3 in the pancreas of transgenic mice inhibits recruitment of lymphocytes induced by transgenic expression of CCL21 in this organ. The ability of M3 to block the biological activity of chemokines may represent an important strategy used by MHV-68 to evade immune detection and favor viral replication in the infected host.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号