首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of site of application, growth environment, droplet size, and formulation adjuvants on the retention and uptake of 14C-chlormequat by wheat cv. Avalon and barley cv. Sonja have been examined using solutions applied by a micro-sprayer. Wheat plants retained a higher proportion of droplets on initial impaction than barley irrespective of growth stage, site of application or formulation. Leaf retention increased approximately two-fold with increase in surfactant concentration (0·03·0–3% w/v) or decrease in droplet size (200-125 μm) but declined markedly with age of leaf. Uptake, which was greater into wheat than barley, increased with increase in surfactant concentration, growth temperature and droplet size, with a combination of decrease in irradiance plus a rise in soil moisture, and after exposure to simulated dew. Droplet reflection increased and chlormequat uptake declined when the fungicide preparations Bavistin and Radar replaced Agral 90 in the spray mixtures. Droplets impacted more readily and spread more extensively over the damaged surfaces of field grown leaves. Both tissue combustion and autoradiography showed that chlormequat translocated readily only in immature tissues.  相似文献   

2.
Progenitor cells in vascular repair   总被引:2,自引:0,他引:2  
PURPOSE OF REVIEW: A common characteristic of all types of vascular disease is endothelial dysfunction/damage followed by an inflammatory response. Although mature endothelial cells can proliferate and replace damaged cells in the vessel wall, recent findings indicate an impact of stem and progenitor cells in repair process. This review aims to briefly summarize the recent findings in stem/progenitor cell research relating to vascular diseases, focusing on the role of stem/progenitor cells in vascular repair. RECENT FINDINGS: It has been demonstrated that endothelial progenitor cells present in the blood have an ability to repair damaged arterial-wall endothelium. These cells may be derived from a variety of sources, including bone marrow, spleen, liver, fat tissues and the adventitia of the arterial wall. In response to cytokine released from damaged vessel wall and adhered platelets, circulating progenitor cells home in on the damaged areas. It was also reported that the adhered progenitor cells can engraft into endothelium and may differentiate into mature endothelial cells. SUMMARY: Vascular progenitor cells derived from different tissues have an ability to repair damaged vessel, in which the local microenvironment of the progenitors plays a crucial role in orchestrating cell homing and differentiation.  相似文献   

3.
Naiki T  Karino T 《Biorheology》2000,37(5-6):371-384
To substantiate the occurrence of flow-dependent concentration or depletion of atherogenic lipoproteins, which has been theoretically predicted to take place at a blood/endothelium boundary, we have studied the effects of perfusion pressure and wall shear rate on the accumulation and uptake of microspheres by cultured vascular endothelial cells in a monolayer. The study was carried out by flowing a cell culture medium containing fetal calf serum and fluorescent microspheres through a parallel-plate flow chamber having a cultured bovine aortic endothelial cell (BAEC) monolayer on one wall of the chamber. The microspheres had a nominal diameter of 19 nm, approximately the same as that of low-density lipoproteins, and thus served as models and tracers of plasma proteins and lipoproteins. Experiments were carried out in steady flow in the physiological range of wall shear rate and water filtration velocity at the monolayer, while monitoring the intensity of fluorescence of the spheres accumulated at and taken up by the endothelial cells. It was found that in a perfusate containing only fluorescent microspheres, due to increased phagocytic activity of the endothelial cells, the intensity of fluorescence which reflected the number of the microspheres taken up by the endothelial cells, increased almost linearly with time and independently of wall shear rate. However, with perfusates containing fetal calf serum, this abnormal phenomenon did not occur, and the intensity of fluorescence increased with increasing perfusion pressure and decreasing wall shear rate. It was also found that the number of fluorescent microspheres accumulated at and taken up by the BAEC monolayer was shear-dependent only at low wall shear rates, and increased sharply when the flow rate was reduced to zero. These results provided solid experimental evidence that flow-dependent concentration or depletion of macromolecules occurs at the luminal surface of the endothelium at physiological wall shear rates and water filtration velocities, and strongly supports the hypothesis that flow-dependent concentration polarization of lipoproteins plays an important role in the localization of atherosclerosis and intimal hyperplasia in man by facilitating the uptake of atherogenic lipoproteins by endothelial cells.  相似文献   

4.
5.
The glycocalyx layer on the surface of an endothelial cell is an interface barrier for uptake of macromolecules, such as low-density lipoprotein and albumin, in the cell. The shear-dependent uptake of macromolecules thus might govern the function of the glycocalyx layer. We therefore studied the effect of glycocalyx on the shear-dependent uptake of macromolecules into endothelial cells. Bovine aorta endothelial cells were exposed to shear stress stimulus ranging from 0.5 to 3.0 Pa for 48 h. The albumin uptake into the cells was then measured using confocal laser scanning microscopy, and the microstructure of glycocalyx was observed using electron microscopy. Compared with the uptake into endothelial cells under static conditions (no shear stress stimulus), the albumin uptake at a shear stress of 1.0 Pa increased by 16% and at 3.0 Pa decreased by 27%. Compared with static conditions, the thickness of the glycocalyx layer increased by 70% and the glycocalyx charge increased by 80% at a shear stress of 3.0 Pa. The albumin uptake at a shear stress of 3.0 Pa for cells with a neutralized (no charge) glycocalyx layer was almost twice that of cells with charged layer. These findings indicate that glycocalyx influences the albumin uptake at higher shear stress and that glycocalyx properties (thickness and charge level) are involved with the shear-dependent albumin uptake process.  相似文献   

6.
It is well known that atherosclerosis occurs at very specific locations throughout the human vasculature, such as arterial bifurcations and bends, all of which are subjected to low wall shear stress. A key player in the pathology of atherosclerosis is the endothelium, controlling the passage of material to and from the artery wall. Endothelial dysfunction refers to the condition where the normal regulation of processes by the endothelium is diminished. In this paper, the blood flow and transport of the low diffusion coefficient species adenosine triphosphate (ATP) are investigated in a variety of arterial geometries: a bifurcation with varying inner angle, and an artery bend. A mathematical model of endothelial calcium and endothelial nitric oxide synthase cellular dynamics is used to investigate spatial variations in the physiology of the endothelium. This model allows assessment of regions of the artery wall deficient in nitric oxide (NO). The models here aim to determine whether 3D flow fields are important in determining ATP concentration and endothelial function. For ATP transport, the effects of a coronary and carotid wave form on mass transport is investigated for low Womersley number. For the carotid, the Womersley number is then increased to determine whether this is an important factor. The results show that regions of low wall shear stress correspond with regions of impaired endothetial nitric oxide synthase signaling, therefore reduced availability of NO. However, experimental work is required to determine if this level is significant. The results also suggest that bifurcation angle is an important factor and acute angle bifurcations are more susceptible to disease than large angle bifurcations. It has been evidenced that complex 3D flow fields play an important role in determining signaling within endothelial cells. Furthermore, the distribution of ATP in blood is highly dependent on secondary flow features. The models here use ATP concentration simulated under steady conditions. This has been evidenced to reproduce essential features of time-averaged ATP concentration over a cardiac cycle for small Womersley numbers. However, when the Womersley number is increased, some differences are observed. Transient variations are overall insignificant, suggesting that spatial variation is more important than temporal. It has been determined that acute angle bifurcations are potentially more susceptible to atherogenesis and steady-state ATP transport reproduces essential features of time-averaged pulsatile transport for small Womersley number. Larger Womersley numbers appear to be an important factor in time-dependent mass transfer.  相似文献   

7.
A mathematical model is presented herein to determine the effect of convection on macromolecular transport across an artery wall due to transmural or osmotic pressure differences. The model is based on an extension of the leaky junction-cell turnover model of Weinbaum et al. (1985) to take into account a combined transport mechanism of convection and diffusion and also to provide the leaky junctions in the model with a finite resistance, thus allowing the results to be extended to intercellular clefts with a retarding extracellular matrix or to macromolecules whose dimensions are nearly the same as the junctional width. The results from this improved model show that the effect of pressure on transarterial macromolecular transport is important especially for cell turnover rates greater than 1% and that significant changes in the equilibrium balance of the cholesterol carrying LDL molecules in the arterial wall can occur due to a very small fraction of leaky junctions. At very high turnover rates (large fraction of leaky junctions) the effect of convection on macromolecular transport becomes dramatic and explains the very large increases in uptake observed experimentally after artificially inducing extensive endothelial damage.  相似文献   

8.
Atherosclerosis may be triggered by an elevated net transport of lipid-carrying macromolecules from plasma into the arterial wall. We hypothesised that whether lesions are of the thin-cap fibroatheroma (TCFA) type or are less fatty and more fibrous depends on the degree of elevation of transport, with greater uptake leading to the former. We further hypothesised that the degree of elevation can depend on haemodynamic wall shear stress characteristics and nitric oxide synthesis. Placing a tapered cuff around the carotid artery of apolipoprotein E -/- mice modifies patterns of shear stress and eNOS expression, and triggers lesion development at the upstream and downstream cuff margins; upstream but not downstream lesions resemble the TCFA. We measured wall uptake of a macromolecular tracer in the carotid artery of C57bl/6 mice after cuff placement. Uptake was elevated in the regions that develop lesions in hyperlipidaemic mice and was significantly more elevated where plaques of the TCFA type develop. Computational simulations and effects of reversing the cuff orientation indicated a role for solid as well as fluid mechanical stresses. Inhibiting NO synthesis abolished the difference in uptake between the upstream and downstream sites. The data support the hypothesis that excessively elevated wall uptake of plasma macromolecules initiates the development of the TCFA, suggest that such uptake can result from solid and fluid mechanical stresses, and are consistent with a role for NO synthesis. Modification of wall transport properties might form the basis of novel methods for reducing plaque rupture.  相似文献   

9.
Contractile elements in the regulation of macromolecular permeability   总被引:2,自引:0,他引:2  
The leakage of macromolecules from the vasculature to the interstitium is greatly accentuated by mediators of edema such as histamine and bradykinin. The mechanism for this effect is not well delineated although many agents that affect smooth muscle tone may also affect macromolecular leakage. Leakage occurs primarily from the small venules. The demonstration that mediators of edema produce interendothelial gaps in the venules as well as changes in the shape of the endothelial nuclei has led to the hypothesis that a contraction of a vascular wall component may be responsible for the observed leakage of macromolecules. This component does not appear to be the vascular smooth muscle itself. Two other elements of the vascular wall, the endothelium and the pericytes, have been shown to contain many of the same elements of the contractile machinery present in smooth muscle. Most recent studies have presumed that endothelial cell contraction is responsible for the formation of the interendothelial gaps through which the macromolecules move. However, endothelial contraction has been difficult to demonstrate experimentally. Alternatively, inasmuch as pericytic processes can end near endothelial junctions and there is an abundance of fibronectin between the pericytes and the endothelium, it may be a pericytic contraction that causes the interendothelial gap formation.  相似文献   

10.
G. Neuner  B. Beikircher 《Protoplasma》2010,243(1-4):145-152
Frost resistance of sprouting Picea abies shoots is insufficient for survival of naturally occurring late frosts. The cellular changes during sprouting appeared to be responsible for frost damage as frost events that damaged sprouting shoots did not damage older needles and stems. Whilst resting buds showed initial frost damage at ?15.0°C, 20 days later, current year’s growth was damaged at ?5.6°C. The decrease in frost resistance in sprouting shoots of P. abies was accompanied by a significant reduction of the cellular solute concentration, indicated by much less negative ΨoSAT values (increase from ?2.8 to ?1.2 MPa). ψoSAT decreased again after the final cell volume was reached and cell wall thickening began. After bud break, ice nucleation temperature increased from ?4.7°C to ?1.5°C. This increase was probably caused by the loss of bud scales, the onset of expansion growth of the central cylinder and the development of vascular tissue permitting the spread of ice from the stem into the growing needles. The onset of mesophyll cell wall thickening coincided with the lowest frost resistances. Cell wall thickening caused an increase in the modulus of elasticity, ε, indicating a decrease in tissue elasticity and after that frost resistance increased again. Metabolic and cytological changes that evidently leave little leeway for frost hardening are responsible for the low frost resistance in current year’s growth of P. abies. This low frost resistance will be significant in the future as the risk of frost damage due to earlier bud break is anticipated to even further increase.  相似文献   

11.
A mathematical model of endothelial cell calcium signalling and nitric oxide synthesis under flow conditions is presented. The model is coupled to two important environmental stimuli for endothelial cells: the frictional shear stress exerted on the cell membrane by the blood flow; and the binding of adenosine triphosphate in the bloodstream to cell surface receptors. These stimuli are closely linked to haemodynamic flow conditions and are, in general, spatially varying, allowing the cellular response in different regions of the endothelium to be evaluated. This is used to indicate which areas of the artery wall experience reduced bioavailability of nitric oxide, which is a major factor in the onset of atherosclerosis. The model thus directly addresses the key issue of the causative link, and its underlying biochemical mechanisms, between incidence of atherosclerosis and regions of low wall shear stress (WSS). Model results show that intracellular levels of free calcium and endothelial nitric oxide synthase are lower in endothelial cells adjacent to a region of recirculating flow than in cells adjacent to regions of fully developed arterial flow. This will lead to deficient levels of nitric oxide in the recirculation zone and hence a potentially elevated risk of developing atherosclerotic plaque. This is consistent with the observed spatial correlation between atherosclerosis and regions of disturbed blood flow and low WSS, and provides a mechanism for the localisation of the disease to sites such as arterial bifurcations and bends.  相似文献   

12.
The state of the arterial wall in elderly patients after the application of medicinal leech was analyzed using an Angioscan-01 diagnostic device. The effect of one medicinal leech on the endothelial vasomotor function of small resistance arteries and medium-sized muscular arteries was estimated. Arterial wall rigidity was assessed by measuring the arterial stiffness index and the augmentation index during stress testing in the form of brachial artery occlusion. It has been shown that the application of one medicinal leech has not only local, but also system effect on arterial endothelium by improving its vasomotor function through normalization of arterial wall stiffness. This process is supposed to involve the salivary cell secretion of medicinal leech, which is able to raise the NO level both in cells and in extracellular fluid and to activate e-NOS and n-NOS, as it has been shown recently in the culture of human vascular endothelial cells (HUVEC).  相似文献   

13.
Research studies over the last three decades have established that hemodynamic interactions with the vascular surface as well as surgical injury are inciting mechanisms capable of eliciting distal anastomotic intimal hyperplasia (IH) and ultimate bypass graft failure. While abnormal wall shear stress (WSS) conditions have been widely shown to affect vascular biology and arterial wall self-regulation, the near-wall localization of critical blood particles by convection and diffusion may also play a significant role in IH development. It is hypothesized that locations of elevated platelet interactions with reactive or activated vascular surfaces, due to injury or endothelial dysfunction, are highly susceptible to IH initialization and progression. In an effort to assess the potential role of platelet-wall interactions, experimentally validated particle-hemodynamic simulations have been conducted for two commonly implemented end-to-side anastomotic configurations, with and without proximal outflow. Specifically, sites of significant particle interactions with the vascular surface have been identified by a novel near-wall residence time (NWRT) model for platelets, which includes shear stress-based factors for platelet activation as well as endothelial cell expression of thrombogenic and anti-thrombogenic compounds. Results indicate that the composite NWRT model for platelet-wall interactions effectively captures a reported shift in significant IH formation from the arterial floor of a relatively high-angle (30 deg) graft with no proximal outflow to the graft hood of a low-angle graft (10 deg) with 20% proximal outflow. In contrast, other WSS-based hemodynamic parameters did not identify the observed system-dependent shift in IH formation. However, large variations in WSS-vector magnitude and direction, as encapsulated by the WSS-gradient and WSS-angle-gradient parameters, were consistently observed along the IH-prone suture-line region. Of the multiple hemodynamic factors capable of eliciting a hyperplastic response at the cellular level, results of this study indicate the potential significance of platelet-wall interactions coinciding with regions of low WSS in the development of IH.  相似文献   

14.
Hypertension, a risk factor for atherosclerosis, increases the uptake of low density lipoproteins (LDL) by the arterial wall. Our objective in this work was to use computational modeling to identify physical factors that could be partially responsible for this effect. Fluid flow and mass transfer patterns in the lumen and wall of an arterial model were computed in a coupled manner, replicating as closely as possible previous experimental studies in which LDL uptake into the artery wall was measured in straight, excised arterial segments. Under conditions of both flow and no-flow, simulations predicted an increase in concentration polarization of LDL at the artery wall when arterial pressure was increased from 120 to 160 mmHg. However, this led to only a slight increase in mean LDL concentration within the arterial wall. However, if the permeability of the endothelium to LDL was allowed to vary with intra-arterial pressure, then the simulations predicted that the uptake of LDL would be enhanced 1.9-2.6 fold at higher pressure. The magnitude of this increase was consistent with experimental data. We conclude that the concentration polarization effects, enhanced by elevated intra-arterial pressure, cannot explain the increase in LDL uptake seen under hypertensive conditions. Instead, the data are most consistent with a pressure-linked increase in endothelial permeability to LDL.  相似文献   

15.
The arterial vascular wall contains a non-neuronal intrinsic cholinergic system. The rate-limiting step in acetylcholine (ACh) synthesis is choline uptake. A high-affinity choline transporter, CHT1, has recently been cloned from neural tissue and has been identified in epithelial cholinergic cells. Here we investigated its presence in rat and human arteries and in primary cell cultures of rat vascular cells (endothelial cells, smooth muscle cells, fibroblasts). CHT1-mRNA was detected in the arterial wall and in all isolated cell types by RT-PCR using five different CHT1-specific primer pairs. Antisera raised against amino acids 29-40 of the rat sequence labeled a single band (50 kD) in Western blots of rat aorta, and an additional higher molecular weight band appeared in the hippocampus. Immunohistochemistry demonstrated CHT1 immunoreactivity in endothelial and smooth muscle cells in situ and in all cultured cell types. A high-affinity [3H]-choline uptake mechanism sharing characteristics with neuronal high-affinity choline uptake, i.e., sensitivity to hemicholinium-3 and dependence on sodium, was demonstrated in rat thoracic aortic segments by microimager autoradiography. Expression of the high-affinity choline transporter CHT1 is a novel component of the intrinsic non-neuronal cholinergic system of the arterial vascular wall, predominantly in the intimal and medial layers.  相似文献   

16.
S Chien  F Fan  M M Lee  D A Handley 《Biorheology》1984,21(4):631-641
The effects of variations in transmural pressure over a range of 0 to 200 mmHg on transendothelial transport of macromolecules were studied in the canine common carotid artery. The uptake of 125I-albumin per unit artery weight increased with rising pressure. There was no significant difference in albumin permeability per unit luminal surface area between 0 and 100 mmHg, but permeability nearly doubled when pressure was raised to 200 mmHg. The contribution of an increased rate of transendothelial vesicle diffusion, as evaluated from the experimental determination of the ratio of attached-to-free vesicles and theoretical modeling, was found to be negligible. The reduction in transendothelial vesicle diffusion distance due to pressure-induced thinning of the peripheral zone contributes to a 25% increase in permeability. With the use of colloidal Ag and Au of various sizes, vesicle loading of particles with diameters greater than or equal to 15 nm was found to be severely restricted at transmural pressure less than or equal to 100 mmHg, but it was significantly enhanced at 200 mmHg, when particles as large as 25 nm became detectable in endothelial vesicles and subendothelial space. This hypertension-induced increase in macromolecular transport across the endothelium may cause an overloading of the arterial wall with low-density lipoproteins and play a significant role in atherogenesis.  相似文献   

17.
Lung damage and pulmonary uptake of serotonin in intact dogs   总被引:3,自引:0,他引:3  
We examined the influence of glass bead embolization and oleic acid, dextran, and imipramine infusion on the pulmonary uptake of trace doses of [3H]serotonin and the extravascular volume accessible to [14C]antipyrine in anesthetized dogs. Embolization and imipramine decreased serotonin uptake by 53 and 61%, respectively, but no change was observed with oleic acid or dextran infusion. The extravascular volume accessible to the antipyrine was reduced by 77% after embolization and increased by 177 and approximately 44% after oleic acid and dextran infusion, respectively. The results suggest that when the perfused endothelial surface is sufficiently reduced, as with embolization, the uptake of trace doses of serotonin will be depressed. In addition, decreases in serotonin uptake in response to imipramine in this study and in response to certain endothelial toxins in other studies suggest that serotonin uptake can reveal certain kinds of changes in endothelial function. However, the lack of a response to oleic acid-induced damage in the present study suggests that serotonin uptake is not sensitive to all forms of endothelial damage.  相似文献   

18.
Uptake of circulating macromolecules by the arterial wall may be a critical step in atherogenesis. Here we investigate the age-related changes in patterns of uptake that occur in the rabbit. In immature aortas, uptake was elevated in a triangle downstream of branch ostia, a region prone to disease in immature rabbits and children. By 16-22 months, uptake was high lateral to ostia, as is lesion prevalence in mature rabbits and young adults. In older rabbits there was a more upstream pattern, similar to the disease distribution in older people. These variations were predominantly caused by the branches themselves, rather than reflecting larger patterns within which the branches happened to be situated (as may occur with patterns of haemodynamic wall shear stress). The narrow streaks of high uptake reported in some previous studies were shown to be post mortem artefacts. Finally, heparin (which interferes with the NO pathway) had no effect on the difference in uptake between regions upstream and downstream of branches in immature rabbits but reversed the difference in older rabbits, as does inhibiting NO synthesis directly. Nevertheless, examination of uptake all around the branch showed that changes occurred at both ages and that they were quite subtle, potentially explaining why inhibiting NO has only minor effects on lesion patterns in mature rabbits and contradicting the earlier conclusion that mechanotransduction pathways change with age. We suggest that recently-established changes in the patterns of haemodynamic forces themselves are more likely to account for the age-dependence of uptake patterns.  相似文献   

19.
The endothelial loss provoked by the methods of vascular cryopreservation used at most human vessel banks is one of the main factors leading to the failure of grafting procedures performed using cryopreserved vessel substitutes. This study evaluates the effects of the storage temperature and thawing protocol on the endothelial cell loss suffered by cryopreserved vessels, and optimises the thawing temperature and protocol for cryopreserving arterial grafts in terms of that producing least endothelial loss. Segments of the common iliac artery of the minipig (n = 20) were frozen at a temperature reduction rate of 1 degrees C/min in a biological freezer. After storing the arterial fragments for 30 days, study groups were established according to the storage temperature (-80, -145 or -196 degrees C) and subsequent thawing procedure (slow or rapid thawing). Fresh vessel segments served as the control group. Once thawed, the specimens were examined by light, transmission, and scanning electron microscopy. The covered endothelial surface was determined by image analysis. Data for the different groups were compared by one way ANOVA. When cryopreservation at each of the storage temperatures was followed by slow thawing, the endothelial cells showed improved morphological features and viability over those of specimens subjected to rapid thawing. Rapidly thawed endothelial cells showed irreversible ultrastructural damage such as mitochondrial dilation and rupture, reticular fragmentation, and peripheral nuclear condensation. In contrast, slow thawing gave rise to changes compatible with reversible damage in a large proportion of the endothelial cells: general swelling, reticular dilation, mitochondrial swelling, and nuclear chromatin condensation. Gradually thawed cryopreserved arteries showed a lower proportion of damaged cells identified by the TUNEL method compared to the corresponding rapidly thawed specimens (p < 0.05, for all temperatures). In all the groups in which vessels underwent rapid thawing (except at -145 degrees C), significant differences (p < 0.05) in endothelial cover values were recorded with respect to control groups. Storage of cryopreserved vessels at -80 degrees C followed by rapid thawing led to greatest endothelial cell loss (61.36+/-9.06% covered endothelial surface), while a temperature of -145 degrees C followed by slow thawing was best at preserving the endothelium of the vessel wall (89.38+/-16.67% surface cover). In conclusion, storage at a temperature of -145 degrees C in nitrogen vapour followed by gradual automated thawing seems to be the best way of preserving the endothelial surface of the arterial cryograft. This method gives rise to best endothelial cell viability and cover values, with obvious benefits for subsequent grafting.  相似文献   

20.
Using the cell-pressure probe the possibility of symplastic water flow between cells of the upper epidermis of barley leaves was investigated. Cells analysed had either an intact or a more or less damaged cellular environment. Cell damage caused large pressure differentials (0·9 MPa) between damaged and adjacent intact cells. Turgor in cells adjacent to damaged cells decreased significantly. Turgor decreases were the larger the more the adjacent, damaged cell was leaking (decreases by 2·5–4·4%). In cells surrounded by a patch of leaking cells, turgor decreased the most, by 18·1–20·4%. In contrast, half-times of water exchange (T1/2) of cells were not affected by a damaged cellular environment. Assuming that in the barley leaf epidermis, plasmodesmata close at pressure-differentials at or exceeding 0·2 MPa as shown for other plant cells (The Plant Journal 2, 741–750; Canadian Journal of Botany 65, 509–511), it is concluded that symplastic water flow contributes insignificantly to water exchange between cells. Mechanical damage to one individual cell is enough to induce significant turgor changes in neighbouring cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号