首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clostridium perfringens enterotoxin (CPE) is an important virulence factor for both C. perfringens type A food poisoning and several non-food-borne human gastrointestinal diseases. Recent studies have indicated that C. perfringens isolates associated with food poisoning carry a chromosomal cpe gene, while non-food-borne human gastrointestinal disease isolates carry a plasmid cpe gene. However, no explanation has been provided for the strong associations between certain cpe genotypes and particular CPE-associated diseases. Since C. perfringens food poisoning usually involves cooked meat products, we hypothesized that chromosomal cpe isolates are so strongly associated with food poisoning because (i) they are more heat resistant than plasmid cpe isolates, (ii) heating induces loss of the cpe plasmid, or (iii) heating induces migration of the plasmid cpe gene to the chromosome. When we tested these hypotheses, vegetative cells of chromosomal cpe isolates were found to exhibit, on average approximately twofold-higher decimal reduction values (D values) at 55 degrees C than vegetative cells of plasmid cpe isolates exhibited. Furthermore, the spores of chromosomal cpe isolates had, on average, approximately 60-fold-higher D values at 100 degrees C than the spores of plasmid cpe isolates had. Southern hybridization and CPE Western blot analyses demonstrated that all survivors of heating retained their cpe gene in its original plasmid or chromosomal location and could still express CPE. These results suggest that chromosomal cpe isolates are strongly associated with food poisoning, at least in part, because their cells and spores possess a high degree of heat resistance, which should enhance their survival in incompletely cooked or inadequately warmed foods.  相似文献   

2.
Clostridium perfringens type A isolates can carry the enterotoxin gene (cpe) on either their chromosome or a plasmid, but food poisoning isolates usually have a chromosomal cpe gene. This linkage between chromosomal cpe isolates and food poisoning has previously been attributed, at least in part, to better high-temperature survival of chromosomal cpe isolates than of plasmid cpe isolates. In the current study we assessed whether vegetative cells and spores of chromosomal cpe isolates also survive better than vegetative cells and spores of plasmid cpe isolates survive when the vegetative cells and spores are subjected to low temperatures. Vegetative cells of chromosomal cpe isolates exhibited about eightfold-higher decimal reduction values (D values) at 4°C and threefold-higher D values at −20°C than vegetative cells of plasmid cpe isolates exhibited. After 6 months of incubation at 4°C and −20°C, the average log reductions in viability for spores of plasmid cpe isolates were about fourfold and about threefold greater, respectively, than the average log reductions in viability for spores from chromosomal cpe isolates. C. perfringens type A isolates carrying a chromosomal cpe gene also grew significantly faster than plasmid cpe isolates grew at 25°C, 37°C, or 43°C. In addition, chromosomal cpe isolates grew at higher maximum and lower minimum temperatures than plasmid cpe isolates grew. Collectively, these results suggest that chromosomal cpe isolates are commonly involved in food poisoning because of their greater resistance to low (as well as high) temperatures for both survival and growth. They also indicate the importance of proper low-temperature storage conditions, as well as heating, for prevention of C. perfringens type A food poisoning.  相似文献   

3.
About 1 to 2% of Clostridium perfringens isolates carry the enterotoxin gene (cpe) necessary for causing C. perfringens type A food poisoning. While the cpe gene can be either chromosomal or plasmid borne, food poisoning isolates usually carry a chromosomal cpe gene. Previous studies have linked this association between chromosomal cpe isolates (i.e., C-cpe isolates) and food poisoning, at least in part, to both the spores and vegetative cells of C-cpe isolates being particularly resistant to high and low temperatures. The current study now reveals that the resistance phenotype of C-cpe isolates extends beyond temperature resistance to also include, for both vegetative cells and spores, enhanced resistance to osmotic stress (from NaCl) and nitrites. However, by omitting one outlier isolate, no significant differences in pH sensitivity were detected between the spores or vegetative cells of C-cpe isolates versus isolates carrying a plasmid-borne cpe gene. These results indicate that both vegetative cells and spores of C-cpe isolates are unusually resistant to several food preservation approaches in addition to temperature extremes. The broad-spectrum nature of the C-cpe resistance phenotype suggests these bacteria may employ multiple mechanisms to persist and grow in foods prior to their transmission to humans.  相似文献   

4.
Clostridium perfringens is an important anaerobic pathogen causing food-borne gastrointestinal (GI) diseases in humans and animals. It is thought that C. perfringens food poisoning isolates typically carry the enterotoxin gene (cpe) on their chromosome, while isolates from other GI diseases, such as antibiotic-associated diarrhea, carry cpe on a transferable plasmid. However, food-borne GI disease outbreaks associated with C. perfringens isolates carrying plasmid-borne cpe (plasmid cpe isolates) were recently reported in Japan and Europe. To investigate whether retail food can be a reservoir for food poisoning generally, we evaluated Japanese retail meat products for the presence of two genotypes of enterotoxigenic C. perfringens. Our results demonstrated that approximately 70% of the Japanese retail raw meat samples tested were contaminated with low numbers of C. perfringens bacteria and 4% were contaminated with cpe-positive C. perfringens. Most of the cpe-positive C. perfringens isolates obtained from Japanese retail meat carried cpe on a plasmid. The plasmid cpe isolates exhibited lower spore heat resistance than did chromosomal cpe isolates. Collectively, these plasmid cpe isolates might be causative agents of food poisoning when foods are contaminated with these isolates from equipment and/or the environment after cooking, or they may survive in food that has not been cooked at a high enough temperature.  相似文献   

5.
Clostridium perfringens type A, is both a ubiquitous environmental bacterium and a major cause of human gastrointestinal disease, which usually involves strains producing C. perfringens enterotoxin (CPE). The gene (cpe) encoding this toxin can be carried on the chromosome or a large plasmid. Interestingly, strains carrying cpe on the chromosome and strains carrying cpe on a plasmid often exhibit different biological characteristics, such as resistance properties against heat. In this study, we investigated the genetic properties of C. perfringens by PCR-surveying 21 housekeeping genes and genes on representative plasmids and then confirmed those results by Southern blot assay (SB) of five genes. Furthermore, sequencing analysis of eight housekeeping genes and multilocus sequence typing (MLST) analysis were also performed. Fifty-eight C. perfringens strains were examined, including isolates from: food poisoning cases, human gastrointestinal disease cases, foods in Japan or the USA, or feces of healthy humans. In the PCR survey, eight of eleven housekeeping genes amplified positive reactions in all strains tested. However, by PCR survey and SB assay, one representative virulence gene, pfoA, was not detected in any strains carrying cpe on the chromosome. Genes involved in conjugative transfer of the cpe plasmid were also absent from almost all chromosomal cpe strains. MLST showed that, regardless of their geographic origin, date of isolation, or isolation source, chromosomal cpe isolates, i) assemble into one definitive cluster ii) lack pfoA and iii) lack a plasmid related to the cpe plasmid. Similarly, independent of their origin, strains carrying a cpe plasmid also appear to be related, but are more variable than chromosomal cpe strains, possibly because of the instability of cpe-borne plasmid(s) and/or the conjugative transfer of cpe-plasmid(s) into unrelated C. perfringens strains.  相似文献   

6.
An enterotoxin (cpe) plasmid was cured from a Clostridium perfringens non-food-borne gastrointestinal disease (NFBGID) isolate, and the heat resistance levels of wild-type, cpe knockout, and cpe plasmid-cured strains were compared. Our results demonstrated that (i) wild-type cpe has no influence in mediating high-level heat resistance in C. perfringens and (ii) the cpe plasmid does not confer heat sensitivity on NFBGID isolates.  相似文献   

7.
Clostridium perfringens type A isolates can carry the enterotoxin gene (cpe) on either their chromosome or a plasmid, but food poisoning isolates usually have a chromosomal cpe gene. This linkage between chromosomal cpe isolates and food poisoning has previously been attributed, at least in part, to better high-temperature survival of chromosomal cpe isolates than of plasmid cpe isolates. In the current study we assessed whether vegetative cells and spores of chromosomal cpe isolates also survive better than vegetative cells and spores of plasmid cpe isolates survive when the vegetative cells and spores are subjected to low temperatures. Vegetative cells of chromosomal cpe isolates exhibited about eightfold-higher decimal reduction values (D values) at 4 degrees C and threefold-higher D values at -20 degrees C than vegetative cells of plasmid cpe isolates exhibited. After 6 months of incubation at 4 degrees C and -20 degrees C, the average log reductions in viability for spores of plasmid cpe isolates were about fourfold and about threefold greater, respectively, than the average log reductions in viability for spores from chromosomal cpe isolates. C. perfringens type A isolates carrying a chromosomal cpe gene also grew significantly faster than plasmid cpe isolates grew at 25 degrees C, 37 degrees C, or 43 degrees C. In addition, chromosomal cpe isolates grew at higher maximum and lower minimum temperatures than plasmid cpe isolates grew. Collectively, these results suggest that chromosomal cpe isolates are commonly involved in food poisoning because of their greater resistance to low (as well as high) temperatures for both survival and growth. They also indicate the importance of proper low-temperature storage conditions, as well as heating, for prevention of C. perfringens type A food poisoning.  相似文献   

8.
Clostridium perfringens, one of the most common causes of food poisonings, can carry the enterotoxin gene, cpe, in its chromosome or on a plasmid. C. perfringens food poisonings are more frequently caused by the chromosomal cpe-carrying strains, while the plasmid-borne cpe-positive genotypes are more commonly found in the human feces and environmental samples. Different tolerance to food processing conditions by the plasmid-borne and chromosomal cpe-carrying strains has been reported, but the reservoirs and contamination routes of enterotoxin-producing C. perfringens remain unknown. A comparative genomic hybridization (CGH) analysis with a DNA microarray based on three C. perfringens type A genomes was conducted to shed light on the epidemiology of C. perfringens food poisonings caused by plasmid-borne and chromosomal cpe-carrying strains by comparing chromosomal and plasmid-borne cpe-positive and cpe-negative C. perfringens isolates from human, animal, environmental, and food samples. The chromosomal and plasmid-borne cpe-positive C. perfringens genotypes formed two distinct clusters. Variable genes were involved with myo-inositol, ethanolamine and cellobiose metabolism, suggesting a new epidemiological model for C. perfringens food poisonings. The CGH results were complemented with growth studies, which demonstrated different myo-inositol, ethanolamine, and cellobiose metabolism between the chromosomal and plasmid-borne cpe-carrying strains. These findings support a ubiquitous occurrence of the plasmid-borne cpe-positive strains and their adaptation to the mammalian intestine, whereas the chromosomal cpe-positive strains appear to have a narrow niche in environments containing degrading plant material. Thus the epidemiology of the food poisonings caused by two populations appears different, the plasmid-borne cpe-positive strains probably contaminating foods via humans and the chromosomal strains being connected to plant material.  相似文献   

9.

Background

Clostridium perfringens type A food poisoning (FP) is usually caused by C. perfringens type A strains that carry a chromosomal enterotoxin gene (cpe) and produce spores with exceptional resistance against heat and nitrites. Previous studies showed that the extreme resistance of spores made by most FP strains is mediated, in large part, by a variant of small acid soluble protein 4 (Ssp4) that has Asp at residue 36; in contrast, the sensitive spores made by other C. perfringens type A isolates contain an Ssp4 variant with Gly at residue 36.

Methodology/Principal Findings

The current study has further characterized Ssp4 properties and expression. Spores made by cpe-positive type C and D strains were found to contain the Ssp4 variant with Gly at residue 36 and were shown to be heat- and nitrite-sensitive; this finding may help to explain why cpe-positive type C and D isolates rarely cause food poisoning. Saturation mutagenesis indicated that both amino acid size and charge at Ssp4 residue 36 are important for DNA binding and for spore resistance. C. perfringens Ssp2 was shown to bind preferentially to GC-rich DNA on gel-shift assays, while Ssp4 preferred binding to AT-rich DNA sequences. Maximal spore heat and nitrite resistance required production of all four C. perfringens Ssps, indicating that these Ssps act cooperatively to protect the spore''s DNA, perhaps by binding to different chromosomal sequences. The Ssp4 variant with Asp at residue 36 was also shown to facilitate exceptional spore survival at freezer and refrigerator temperatures. Finally, Ssp4 expression was shown to be dependent upon Spo0A, a master regulator.

Conclusions/Significance

Collectively, these results provide additional support for the importance of Ssps, particularly the Ssp4 variant with Asp at residue 36, for the extreme spore resistance phenotype that likely contributes to C. perfringens type A food poisoning transmission.  相似文献   

10.
Previous epidemiological studies have implicated Clostridium perfringens enterotoxin (CPE) as a virulence factor in the pathogenesis of several gastrointestinal (GI) illnesses caused by C. perfringens type A isolates, including C. perfringens type A food poisoning and non-food-borne GI illnesses, such as antibiotic-associated diarrhoea and sporadic diarrhoea. To further evaluate the importance of CPE in the pathogenesis of these GI diseases, allelic exchange was used to construct cpe knock-out mutants in both SM101 (a derivative of a C. perfringens type A food poisoning isolate carrying a chromosomal cpe gene) and F4969 (a C. perfringens type A non-food-borne GI disease isolate carrying a plasmid-borne cpe gene). Western blot analyses confirmed that neither cpe knock-out mutant could express CPE during either sporulation or vegetative growth, and that this lack of CPE expression could be complemented by transforming these mutants with a recombinant plasmid carrying the wild-type cpe gene. When the virulence of the wild-type, mutant and complementing strains were compared in a rabbit ileal loop model, sporulating (but not vegetative) culture lysates of the wild-type isolates induced significant ileal loop fluid accumulation and intestinal histopathological damage, but neither sporulating nor vegetative culture lysates of the cpe knock-out mutants induced these intestinal effects. However, full sporulation-associated virulence could be restored by complementing these cpe knock-out mutants with a recombinant plasmid carrying the wild-type cpe gene, which confirms that the observed loss of virulence for the cpe knock-out mutants results from the specific inactivation of the cpe gene and the resultant loss of CPE expression. Therefore, in vivo analysis of our isogenic cpe mutants indicates that CPE expression is necessary for these two cpe-positive C. perfringens type A human disease isolates to cause GI effects in the culture lysate:ileal loop model system, a finding that supports CPE as an important virulence factor in GI diseases involving cpe-positive C. perfringens type A isolates.  相似文献   

11.
Clostridium perfringens enterotoxin (encoded by the cpe gene) contributes to several important human, and possibly veterinary, enteric diseases. The current study investigated whether cpe locus organization in type C or D isolates resembles one of the three (one chromosomal and two plasmid-borne) cpe loci commonly found amongst type A isolates. Multiplex PCR assays capable of detecting sequences in those type A cpe loci failed to amplify products from cpe-positive type C and D isolates, indicating these isolates possess different cpe locus arrangements. Therefore, restriction fragments containing the cpe gene were cloned and sequenced from two type C isolates and one type D isolate. The obtained cpe locus sequences were then used to construct an overlapping PCR assay to assess cpe locus diversity amongst other cpe-positive type C and D isolates. All seven surveyed cpe-positive type C isolates had a plasmid-borne cpe locus partially resembling the cpe locus of type A isolates carrying a chromosomal cpe gene. In contrast, all eight type D isolates shared the same plasmid-borne cpe locus, which differed substantially from the cpe locus present in other C. perfringens by containing two copies of an ORF with 67% identity to a transposase gene (COG4644) found in Tn1546, but not previously associated with the cpe gene. These results identify greater diversity amongst cpe locus organization than previously appreciated, providing new insights into cpe locus evolution. Finally, evidence for cpe gene mobilization was found for both type C and D isolates, which could explain their cpe plasmid diversity.  相似文献   

12.
Clostridium perfringens type A isolates carrying a chromosomal copy of the enterotoxin (cpe) gene are involved in the majority of food poisoning (FP) outbreaks, while type A isolates carrying a plasmid-borne cpe gene are involved in C. perfringens-associated non-food-borne (NFB) gastrointestinal diseases. To cause diseases, C. perfringens spores must germinate and return to active growth. Previously, we showed that only spores of FP isolates were able to germinate with K+ ions. We now found that the spores of the majority of FP isolates, but none of the NFB isolates, germinated with the cogerminants Na+ and inorganic phosphate (NaPi) at a pH of ∼6.0. Spores of gerKA-KC and gerAA mutants germinated to a lesser extent and released less dipicolinic acid (DPA) than did wild-type spores with NaPi. Although gerKB spores germinated to a similar extent as wild-type spores with NaPi, their rate of germination was lower. Similarly, gerO and gerO gerQ mutant spores germinated slower and released less DPA than did wild-type spores with NaPi. In contrast, gerQ spores germinated to a slightly lesser extent than wild-type spores but released all of their DPA during NaPi germination. In sum, this study identified NaPi as a novel nutrient germinant for spores of most FP isolates and provided evidence that proteins encoded by the gerKA-KC operon, gerAA, and gerO are required for NaPi-induced spore germination.Clostridium perfringens is a gram-positive, anaerobic, spore-forming, pathogenic bacterium that causes a wide array of gastrointestinal (GI) diseases in both animals and humans (14, 15). However, Clostridium perfringens type A food poisoning (FP) is the most common C. perfringens-associated illness among humans and is currently ranked as the third most commonly reported food-borne disease (14). Mostly type A isolates that produce the C. perfringens enterotoxin have been associated with C. perfringens-related GI illnesses (14). C. perfringens cpe-positive isolates can carry the cpe gene on either the chromosome or a plasmid (3, 4). Interestingly, the majority of C. perfringens type A FP isolates carry a chromosomal copy of the cpe gene, while all non-food-borne (NFB) GI disease isolates carry a plasmid copy of cpe (3, 4, 11, 29). The genetic differences involved in the pathogenesis differences between C. perfringens FP and NFB isolates seem to involve more factors than the simple location of the cpe gene. For example, spores of FP isolates are strikingly more resistant than spores of NFB isolates to heat (100°C) (27), cold (4°C), and freezing (−20°C) temperatures (12) and to chemicals used in food industry settings (13), making FP spores more suited for FP environments. Under favorable environmental conditions, these dormant spores germinate to return to active growth, proliferate to high numbers, and then produce toxins to cause disease (14).Bacterial spores germinate when they sense the presence of nutrients (termed germinants) in the environment through their cognate receptors located in the spore inner membrane (18). For C. perfringens, some nutrients that initiate germination include l-asparagine, KCl, a mixture of l-asparagine and KCl, and a 1:1 chelate of Ca2+ and dipicolinic acid (DPA) (Ca-DPA) (20). The main receptor(s) involved in sensing these compounds is the GerKA and/or GerKC receptor(s), which is required for l-asparagine and Ca-DPA and only partially required for KCl and an l-asparagine-KCl mixture (20, 21). Upon binding of the germinant to its cognate receptor, a variety of biophysical events take place, including the release of monovalent ions (i.e., Na+, K+, and Li+) followed by the release of the spore''s large depot of Ca-DPA (28). In Bacillus subtilis, release of Ca-DPA acts as a signal for activation of the cortex-lytic enzyme CwlJ (17). In contrast, Ca-DPA release from the spore core has no role in triggering cortex hydrolysis during C. perfringens spore germination (19, 22, 23); instead, Ca-DPA induces germination via the GerKA and/or GerKC receptor(s) (20, 21). Degradation of the cortex in both species leads to hydration of the spore core up to levels found in growing bacteria, allowing resumption of enzymatic activity and metabolism, and consequently outgrowth (22, 28).The ability of bacterial spores to sense different nutrients appears to be tightly regulated by their adaptation to different environmental niches. For example, spores of FP isolates, but not NFB isolates, are capable of germinating with KCl (20), an intrinsic mineral of meats that are most commonly associated with FP, suggesting an adaptation of FP isolates to FP environments. In addition, the level of inorganic phosphate (Pi) is also significant in meat products (42 to 60 mM) (USDA [http://fnic.nal.usda.gov/nal_display/index.php?info_center=4&tax_level=1&tax_subject=242]). Similarly, sodium ions are also present in meats (∼30 mM), especially in processed meat products (∼300 to 400 mM) (USDA). Consequently, in this study we found that Na+ and Pi at ∼100 mM and pH 6.0 are unique cogerminants for spores of C. perfringens type A FP isolates, act through the GerKA and/or GerKC and GerAA receptors, and also require the presence of the putative Na+/K+-H+ antiporter, GerO, for normal germination.  相似文献   

13.
14.
From 1975 to 1999, Clostridium perfringens caused 238 food-borne disease outbreaks in Finland, which is 20% of all such reported outbreaks during these years. The fact that C. perfringens is commonly found in human and animal stools and that it is also widespread in the environment is a disadvantage when one is searching for the specific cause of a food-borne infection by traditional methods. In order to strengthen the evidence-based diagnostics of food poisonings suspected to be caused by C. perfringens, we retrospectively investigated 47 C. perfringens isolates by PCR for the cpe gene, which encodes enterotoxin; by reversed passive latex agglutination to detect the enterotoxin production; and by pulsed-field gel electrophoresis (PFGE) to compare their genotypes after restriction of DNA by the enzymes SmaI and ApaI. The strains were isolated during 1984 to 1999 from nine food-borne outbreaks of disease originally reported as having been caused by C. perfringens. In seven of the nine outbreaks our results supported the fact that the cause was C. perfringens. Our findings emphasize the importance of a more detailed characterization of C. perfringens isolates than mere identification to the species level in order to verify the cause of an outbreak. Also, to increase the probability of finding the significant cpe-positive C. perfringens strains, it is very important to isolate and investigate more than one colony from the fecal culture of a patient and screen all these isolates for the presence of the cpe gene before further laboratory work is done.  相似文献   

15.
In the United States and Europe, food poisoning due to Clostridium perfringens type A is predominantly caused by C. perfringens isolates carrying a chromosomal enterotoxin gene (cpe). Neither the reservoir for these isolates nor the point in the food chain where these bacteria contaminate foods is currently understood. Therefore, the current study investigated whether type A isolates carrying a chromosomal cpe gene are present in two potential reservoirs, i.e., soil and home kitchen surfaces. No C. perfringens isolates were recovered from home kitchen surfaces, but most surveyed soil samples contained C. perfringens. The recovered soil isolates were predominantly type A, but some type C, D, and E soil isolates were also identified. All cpe-positive isolates recovered from soil were genotyped as type A, with their cpe genes on cpe plasmids rather than the chromosome. However, two cpe-positive soil isolates did not carry a classical cpe plasmid. Both of those atypical cpe-positive soil isolates were sporulation capable yet failed to produce C. perfringens enterotoxin, possibly because of differences in their upstream promoter regions. Collectively these results suggest that neither soil nor home kitchen surfaces represent major reservoirs for type A isolates with chromosomal cpe that cause food poisoning, although soil does appear to be a reservoir for cpe-positive isolates causing non-food-borne gastrointestinal diseases.  相似文献   

16.
The location of the cpe gene, encoding the enterotoxin responsible for food poisoning in humans, has been studied in a series of enterotoxigenic Ciostridium perfringens strains by means of pulsed field gel electrophoresis of genomic DNA. The cpe gene was found at the same chromosomal locus in strains associated with food poisoning in humans and was shown to be linked to a repetitive sequence, the Hin dlll repeat, and an open reading frame, ORF3, that may be part of an insertion sequence. In contrast, when the strains originated from domesticated livestock cpe was located on a large episome where it was often close to a copy of the transposable element IS 1151. In these cases, the Hin dlll repeat was not linked to the cpe gene although this was generally preceded by ORF3.  相似文献   

17.

Background  

Clostridium perfringens type A food poisoning is caused by enterotoxigenic C. perfringens type A isolates that typically possess high spore heat-resistance. The molecular basis for C. perfringens spore heat-resistance remains unknown. In the current study, we investigated the role of small, acid-soluble spore proteins (SASPs) in heat-resistance of spores produced by C. perfringens food poisoning isolates.  相似文献   

18.
Clostridium perfringens is a leading cause of bacterial food-borne illness in countries where consumption of meat and poultry is high. For example, each year in the United States, this organism is the second or third most common cause of confirmed cases of food-borne illness. Surveys of the incidence of this organism in retail foods were done in the 1960s without regard to whether isolates were enterotoxigenic. It is now known that not all strains of this organism possess the enterotoxin gene responsible for illness. We examined the incidence of this organism in 131 food samples from retail food stores in an area of the northeastern United States. Forty isolates were obtained by using the iron milk method at 45°C, with confirmation by use of motility nitrate and lactose gelatin media. The presence of the C. perfringens enterotoxin (cpe) and alpha toxin (cpa) genes was determined by PCR using previously published primer sequences. All isolates possessed cpa. None of the isolates were identified as carrying the cpe gene by this method or by another method using a digoxigenin-labeled gene probe. Consistent with these results, none of the sporulating-cell extracts contained enterotoxin as determined by reverse passive latex hemagglutination. Pulsed-field gel electrophoresis was used to determine the genetic relatedness of the isolates. About 5% of the isolates were considered to be closely related (2- to 3-band difference). The others were considered to be unrelated to one another. The results demonstrate the rarity of cpe+ strains in retail foods and the genetic diversity among nonoutbreak strains.  相似文献   

19.
20.
The Clostridium perfringens enterotoxin gene is on a transposon-like element, Tn5565, integrated in the chromosome in human food poisoning strains. The flanking IS elements, IS1470 A and B, are related to IS30. The IS element found in the transposon, IS1469, is related to IS200 and has been found upstream of cpe in all Type A strains. PCR and sequencing studies from cell extracts and plasmid isolations of C. perfringens indicate that Tn5565 can form a circular form with the tandem repeat (IS1470)2, similar to the transposition intermediates described for a number of IS elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号