首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To identify possible alterations of the L-type calcium currents (ICa,L) in cardiomyopathy, ICa,L were recorded in atrial myocytes dissociated from the nonfailing heart (NF) of patients undergoing corrective open-heart surgery and explanted failing heart (FH) of patients with dilated cardiomyopathy undergoing heart transplantation. The patch-clamp technique was applied in the single-electrode whole-cell mode. The electrophysiological properties of ICa,L, including cell capacitance and current density, were similar in atrial myocytes from both groups of patients. Further to identify possible alterations of the myocardial beta-adrenergic pathway in cardiomyopathy, we examined the effects of isoproterenol, forskolin, 8-Br-cAMP and IBMX on ICa,L in both groups of atrial myocytes. Perfusion of isoproterenol (1 M) significantly increased the peak ICa,L by 515 ± 44% in 6 atrial myocytes from NF but increased only by 135 ± 25% in 27 atrial myocytes from FH. However, forskolin (1 M) or 8-Br-cAMP (0.1 mM) increased the peak ICa,L to a similar extent in atrial myocytes from NF and FH. IBMX (20 M) also induced a comparable increase in the peak ICa,L by 213 ± 31% (n=5) and 207 ± 59% (n=4) in atrial myocytes from NF and FH, respectively. The above findings suggest that in atrial myocytes obtained from FH the beta-adrenoceptor numbers might be decreased but no impairment of the signal transduction cascade occurred beyond the GTP binding proteins level.  相似文献   

2.
Currents entering through single channels with conductivity 10 pS were produced on the membrane of an isolated neuron of the fresh-water molluskPlanorbarius corneus in the presence of suberyldicholine (5 µM) by the patch-clamp technique (cell-attached configuration). The times of stay of the channels in the open and closed states, as well as the durations of pulse bursts and clusters, were measured. The distributions of the time intervals obtained experimentally were approximated for open states by one exponential function: to=27±3 msec (n=21), and for closed states by a sum of three exponentials: tc1=9.5±1.0 msec (n=21); tc2=171±33 msec (n=19); tc3=5.2±1.0 sec (n=21). The burst durations are characterized by the presence of two exponential functions in the distribution: tb2=20±14 msec (n=10), tb2=203±23 msec (n=10), and the clusters by three exponential functions: tk1=33±11 msec (n=8), tk2=274±84 msec (n=8), and tk3=1.5±0.5 sec (n=9). Thus, for work of a chemoactivated channel associated with nicotinic-type cholinoreceptors in a mollusk neuron we can suggest a kinetic scheme with one open and three nonconducting states: C O D1A2 D2A2. The two "long-lived" closed states of the channel may be associated with desensitization of the integral response of the neurons to the application of suberyldicholine. Values were obtained for the rate constants of these proposed reactions. It is suggested that this model may be useful in analyzing the action of cholinomimetics and blockers on the molluskan neuronal membrane.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 23, No. 5, pp. 588–595, September–October, 1991.  相似文献   

3.
Summary Transepithelial electrogenic Na transport (INa) was investigated in the colon of the frog Xenopus laevis with electrophysiological methods in vitro. The short circuit current (Isc) of the voltage-clamped tissue was 24.2±1.8 A·cm-2 (n=10). About 60% of this current was generated by electrogenic Na transport. Removal of Ca2+ from the mucosal Ringer solution stimulated INa by about 120%. INa was not blockable by amiloride (0.1 mmol·l-1), a specific Na-channel blocker in epithelia, but a fully and reversible inhibition was achieved by mucosal application of 1 mmol·l-1 lanthanum (La3-). No Na-self-inhibition was found, because INa increased linearly with the mucosal Na concentration. A stimulation of INa by antidiuretic hormones was not possible. The analysis of fluctuations in the short circuit current (noise analysis) indicated that Na ions pass the apical cell membrane via a Ca-sensitive ion channel. The results clearly demonstrate that in the colon of Xenopus laevis Na ions are absorbed through Ca-sensitive apical ion channels. They differ considerably in their properties and regulation from the amiloride-sensitive Na channel which is typically found in the colon of vertebrates.Abbreviations G T transepithelial conductance - I sc short circuit current - I Na transepithelial Na-current - m mucosal - s serosal - PDS power density spectrum - f frequency - f c corner frequency of the Lorentzian component of the PDS - S(f) power density of the Lorentzian component of the PDS - So plateau value of the Lorentzian component of the PDS  相似文献   

4.
Depolarization-dependent outward currents were analyzed using the single-electrode voltage clamp technique in the dendritic membrane of an identified nonspiking interneuron (LDS interneuron) in situ in the terminal abdominal ganglion of crayfish. When the membrane was depolarized by more than 20 mV from the resting potential (65.0 ± 5.7 mV), a transient outward current was observed to be followed by a sustained outward current. Pharmacological experiments revealed that these outward currents were composed of 3 distinct components. A sustained component (I s) was activated slowly (half rise time > 5 msec) and blocked by 20 mM TEA. A transient component (I t1) that was activated and inactivated very rapidly (peak time < 2.5 msec, half decay time < 1.2 msec) was also blocked by 20 mM TEA. Another transient component (I t2) was blocked by 100 M 4AP, activated rapidly (peak time < 10.0 msec) and inactivated slowly (half decay time > 131.8 msec). Two-step pulse experiments have revealed that both sustained and transient components are not inactivated at the resting potential: the half-maximal inactivation was attained at –21.0 mV in I t1, and –38.0 mV in I t2. I s showed no noticeable inactivation. When the membrane was initially held at the resting potential level and clamped to varying potential levels, the half-maximal activation was attained at –36.0 mV in I s, –31.0 mV in I t1 and –40.0 mV in I t2. The activation and inactivation time constants were both voltage dependent. A mathematical model of the LDS interneuron was constructed based on the present electrophysiological records to simulate the dynamic interaction of outward currents during membrane depolarization. The results suggest that those membrane conductances found in this study underlie the outward rectification of the interneuron membrane as well as depolarization-dependent shaping of the excitatory synaptic potential observed in current-clamp experiments.  相似文献   

5.
The dorsal skin of the leech Hirudo medicinalis was used for electrophysiological measurements performed in Ussing chambers. The leech skin is a tight epithelium (transepithelial resistance = 10.5±0.5 k· cm-2) with an initial short-circuit current of 29.0±2.9 A·cm-2. Removal of Na+ from the apical bath medium reduced short-circuit current about 55%. Ouabain (50mol·l-1) added to the basolateral solution, depressed the short-circuit current completely. The Na+ current saturated at a concentration of 90 mmol Na+·l-1 in the apical solution (K M=11.2±1.8 mmol·l-1). Amiloride (100 mol·l-1) on the apical side inhibited ca. 40% of the Na+ current and indicated the presence of Na+ channels. The dependence of Na+ current on the amiloride concentration followed Michaclis-Menten kinetics (K i=2.9±0.4 mol·l-1). The amiloride analogue benzamil had a higher affinity to the Na+ channel (K i=0.7±0.2 mol·l-1). Thus, Na+ channels in leech integument are less sensitive to amiloride than channels known from vertebrate epithelia. With 20 mmol Na+·l-1 in the mucosal solution the tissue showed an optimum amiloride-inhibitable current, and the amiloride-sensitive current under this condition was 86.8±2.3% of total short-circuit current. Higher Na+ concentrations lead to a decrease in amiloride-blockade short-circuit current. Sitmulation of the tissue with cyclic adenosine monophosphate (100 mol·l-1) and isobutylmethylxanthine (1 mmol·l-1) nearly doubled short-circuit current and increased amiloride-sensitive Na+ currents by 50%. By current fluctuation analysis we estimated single Na+ channel current (2.7±0.9 pA) and Na+ channel density (3.6±0.6 channels·m-2) under control conditions. After cyclic adenosine monophosphate stimulation Na+ channel density increased to 5.4±1.1 channels·m-2, whereas single Na+ channel current showed no significant change (1.9±0.2 pA). These data present a detailed investigation of an invertebrate epithelial Na+ channel, and show the similarities and differences to vertebrate Na+ channels. Whereas the channel properties are different from the classical vertebrate Na+ channel, the regulation by cyclic adenosine monophosphate seems similar. Stimulation of Na+ uptake by cyclic adenosine monophosphate is mediated by an increasing number of Na+ channels.Abbreviations slope of the background noise component - ADH antidiuretic hormone - cAMP cyclic adenosine monophosphate - f frequency - f c coner frequency of the Lorentzian noise component - Hepes N-hydroxyethylpiperazine-N-ethanesulphonic acid - BMX isobutyl-methylxanthine - i Na single Na+ channel current - I Na max, maximal inhibitable Na+ current - I SC short circuit current - K i half maximal blocker concentration - K M Michaelis constandard error of the mean - S (f) power density of the Lorentzian noise component - S 0 plateau value of the Lorentzian noise component - TMA tetramethylammonium - Trizma TRIS-hydroxymethyl-amino-methane - V max maximal reaction velocity - V T transepithelial potential - K half maximal blocker concentration  相似文献   

6.
7.
Summary The influence of nerve growth factor (NGF) on Na currents of rat dorsal root ganglia (DRG) was studied in neurons obtained from newborns and cultured for 2–30 hr inserum-free defined medium (SFM). Cell survival for the period studied was 78–87% both with and without NGF. Na currents were detected in all cells cultured for 6–9 hr. They were also detected after 2 hr in culture in 21.5% of the cells cultured without NGF (–NGF cells), and in 91.5% of the cells cultured with NGF (+NGF cells). Current density of the -NGF cells was 2.3 and 2 pA/m2 after growth for 2 and 6–9 hr, respectively, compared to 3.0 and 3.9 pA/m2 for the +NGF cells. The +NGF cells were separated into fast (F), Intermediate (I) and slow (S) cells, based on the Na current they expressed, while -NGF cells were all of theI type.F, I andS currents differed in their voltage-dependent inactivation (Vh 50=–79, –28 and –20 mV), kinetics of inactivation (tau h =0.55, 1.3 and 7.75 msec), and TTX sensitivity (K i=60, 550 and 1100nm). All currents were depressed by [Ca] o with aKd Ca of 22, 17 and 8mm forF, I andS currents, respectively. Current density ofF andS currents was 5.5 and 5 pA/m2 for theI current. The concentration-dependent curve ofI currentvs. TTX indicated thatI current has two sites: one withF-like and another withS-likeK i for TTX. Hybridization ofF andS currents yieldI-like currents. Thus, the major effect of NGF on Na currents in SFM is the accleration of Na current acquisition and diversity, reflected in an increase of either theS orF type in a cell.  相似文献   

8.
M2-cholinergic receptor activation by acetylcholine (ACh) is known to cause a negative inotropic and chronotropic action in atrial tissues. This effect is still controversial in ventricular tissues. The ACh-sensitive muscarinic K+ channel (I K(ACh)) activity was characterized in isolated feline atrial and ventricular myocytes using the patch-clamp technique. Bath application of ACh (1 m) caused shortening of action potential duration without prior stimulation with catecholamines in atrial and ventricular myocytes. Resting membrane potential was slightly hyperpolarized in both tissues. These effects of ACh were greater in atrium than in ventricle. ACh increased whole-cell membrane current in atrial and ventricular myocytes. The current-voltage (I-V) relationship of the ACh-induced current in ventricle exhibited inward-rectification whose slope conductance was smaller than that in atrium. In single channel recording from cell-attached patches, I K(ACh) activity was observed when ACh was induced in the pipette solution in both tissues. The channel exhibited a slope conductance of 47 ±1 pS (mean ± sd, n=14) in atrium and 47 ±2 pS (n= 10) in ventricle (not different statistically; ns). The open times were distributed according to a single exponential function with mean open lifetime of 2.0±0.3 msec (n= 14) in atrium and 1.9±0.3 msec (n=10) in ventricle (ns); these conductance and kinetic properties were similar between the two tissues. However, the relationship between the concentration of ACh and single channel activity showed a higher sensitivity to ACh in atrium (IC 50 =0.03 m) than in ventricle (IC 50 =0.15 m). In excised inside-out patches, ventricular I K(ACh) required higher concentrations of GTP to activate the channel compared to atrial channels. These results suggest a reduced I K(ACh) channel sensitivity to M2-cholinergic receptor-linked G protein (Gi) in ventricle compared to atrium in feline heart.  相似文献   

9.
H. Satoh 《Amino acids》1995,9(3):235-246
Summary Effects of taurine on the delayed rectifier K+ channel in isolated 10-day-old embryonic chick ventricular cardiomyocytes were examined at different intracellular Ca2+ concentrations ([Ca]i), using whole-cell voltage and current clamp techniques. Experiments were performed at room temperature (22°C). Test pulses were applied between -20 to +90m V from a holding potential of -40mV. When [Ca]i was pCa 7, addition of 10 and 20 mM taurine to the bath solution reduced the delayed rectifier K+ current (IK) at +90mV by 17.4 ± 2.8% (n = 5, P < 0.01) and 25.5 ± 2.6% (n = 5, P < 0.001), respectively. In contrast, when [Ca]i was pCa 10, IK at +90 mV was enhanced by 19.1 ± 3.1% (n = 7, P < 0.01) at 10mM taurine, and by 29.3 ± 2.4% (n = 7, P < 0.001) at 20mM taurine. The voltage of half-maximum activation (V1/2) was shifted in a hyperpolarizing direction; at pCa 7, the value was +0.2 ± 2.2mV (n = 5) in control and -10.6 ± 1.8mV (n = 5) in 20mM taurine. At pCa 10, the V1/2 value was +18.5 ± 4.6mV (n = 5) in control and +6.6 ± 5.2mV (n = 5) in taurine (20mM). Taurine decreased the action potential duration (APD) at pCa 10, but at pCa 7 did not affect it. In addition, taurine enhanced the transient outward current in a concentration-dependent manner. These results indicate that taurine modulates the delayed rectifier K+ channel, an effect dependent on [Ca]i and capable of regulating APD.  相似文献   

10.
Summary Cell K activity,a k, was measured in the short-circuited frog skin by simultaneous cell punctures from the apical surface with open-tip and K-selective microelectrodes. Strict criteria for acceptance of impalements included constancy of the open-tip microelectrode resistance, agreement within 3% of the fractional apical voltage measured with open-tip and K-selective microelectrodes, and constancy of the differential voltage recorded between the open-tip and the K microelectrodes 30–60 sec after application of amiloride or substitution of apical Na. Skins were bathed on the serosal surface with NaCl Ringer and, to reduce paracellular Cl conductance and effects of amiloride on paracellular conductance, with NaNO3 Ringer on the apical surface.Under control conditionsa k r was nearly constant among skins (mean±SD=92±8mM, 14 skins) in spite of a wide range of cellular currents (5 to 70 A/cm2). Cell current (and transcellular Na transport) was inhibited by either apical addition of amiloride or substitution of Na by other cations. Although in some experiments the expected small increase ina k r after inhibition of cell current was observed, on the average the change was not significant (98±11mM after amiloride, 101±12mM after Na substitution), even 30 min after the inhibition of cell current. The membrane potential, which in the control state ranged from –42 to –77 mV, hyperpolarized after inhibition of cell current, initially to –109±5mV, then depolarizing to a stable value (–88±5mV) after 15–25 min. At this time K was above equilibrium (E k=98±2mV), indicating that the active pump mechanism is still operating after inhibition of transcellular Na transport.The measurement ofa k r permitted the calculation of the passive K current and pump current under control conditions. assuming a constant current source with almost all of the basolateral conductance attributable to K. We found a significant correlation between pump current and cell current with a slope of 0.31, indicating that about one-third of the cell current is carried by the pump, i.e., a pump stoichiometry of 3Na/2K.  相似文献   

11.
Summary The renal cell line LLC-PK1 cultured on a membrane filter forms a functional epithelial tissue. This homogeneous cell population exhibits rheogenic Na-dependentd-glucose coupled transport. The short-circuit current (I sc) was acccounted for by net apical-to-basolaterald-glucose coupled Na flux, which was 0.53±0.09(8) eq cm–2hr–1, andI sc, 0.50±0.50(8) eq cm–2hr–1. A linear plot of concurrent net Na vs. netd-glucose apical-to-basolateral fluxes gave a regression coefficient of 2.08. As support for a 21 transepithelial stoichiometry, sodium was added in the presence ofd-glucose and the response ofI sc analyzed by a Hill plot. A slope of 2.08±0.06(5) was obtained confirming a requirement of 2 Na for 1d-glucose coupled transport. A Hill plot ofI sc increase to addedd-glucose in the presence of Na gave a slope of 1.02±0.02(5). A direct determination of the initial rates of Na andd-glucose translocation across the apical membrane using phlorizin, a nontransported glycoside competitive inhibitor to identify the specific coupled uptake, gave a stoichiometry of 2.2 A coupling ratio of 2 for Na,d-glucose uptake, doubles the potential energy available for Na-gradient coupledd-glucose transport. In contrast to coupled uptake, the stoichiometry for Na-dependentphlorizin binding was 1.1±0.1(8) from Hill plot analyses of Na-dependent-phlorizin binding as a function of [Na]. Although occurring at the same site the process of Na-dependent binding of phlorizin differs from the binding and translocation ofd-glucose. Our results support a two-step, two-sodium model for Na-dependentd-glucose cotransport; the initial binding to the cotransporter requires a single Na andd-glucose, a second Na then binds to the ternary complex resulting in translocation.  相似文献   

12.
In order to assess the interaction between the cAMP-dependent and the cGMP-dependent phosphorylation pathways on the slow Ca2+ current (ICa(L)), whole-cell voltage-clamp experiments were conducted on embryonic chick heart cells. Addition of 8Br-cGMP to the bath solution reduced the basal (unstimulated) ICa(L). Intracellular application of the catalytic subunit of PK-A (PK-A(cat); 1.5 M) via the patch pipette rapidly potentiated ICa(L) by 215±16% (n=4); subsequent addition of 1 mM 8Br-cGMP to the bath reduced the amplitude of ICa(L) towards the initial control values (123±29%). Intracellular application of PK-G (25 nM pre-activated by 10–7 M cGMP), rapidly inhibited the basal ICa(L) by 64±6% (n=8). Heat-denatured PK-G was ineffective. Subsequent additions of relatively high concentrations of 8Br-cAMP (1 mM) or isoproterenol (ISO, 1–10 M) did not significantly remove the PK-G blockade of ICa(L). The results of the present study suggest that: (a) 8Br-cGMP can inhibit the basal or stimulated (by PK-A(cat)) ICa(L) in embryonic chick myocardial cells. (b) PK-G applied intracellularly inhibits the basal ICa(L).  相似文献   

13.
Summary We have studied current (I Str) through the Na, K pump in amphibian oocytes under conditions designed to minimize parallel undesired currents. Specifically,I Str was measured as the strophanthidin-sensitive current in the presence of Ba2–, Cd2+ and gluconate (in place of external Cl). In addition,I Str was studied only after the difference currents from successive applications and washouts of strophanthidin (Str) were reproducible. The dose-response relationship to Str in four oocytes displayed a meanK 0.5 of 0.4 m, with 2–5 m producing 84–93% pump' block. From baseline data with 12 Na+-preloaded oocytes, voltage clamped in the range [–170, +50 mV] with and without 2–5 m Str, the averageI Str depended directly onV m up to a plateau at 0 mV with interpolated zero current at –165 mV. In three oocytes, lowering the external [Na+] markedly decreased the voltage sensitivity ofI p , while producing only a small change in the maximal outwardI Str. In contrast, decreasing the external [K+] from 25 to 2.5mm reducedI Str at 0 mV without substantially affecting its voltage dependence. At K+ concentrations of 1mm, both the absolute value ofI Str at 0 mV and the slope conductance were reduced. In eight oocytes, the activation of the averagedI Str by [K+] o over the voltage interval [–30, +30 mV] was well fit by the Hill equation, with K=1.7±0.4mm andnH (the minimum number of K+ binding sites) =1.7±0.4. The results unequivocally establish that the cardiotonic-sensitive current ofRana oocytes displays only a positive slope conductance for [K+] o >1mm. There is therefore no need to postulate more than one voltage-sensitive step in the cycling of the Na, K pump under physiologic conditions. The effects of varying external Na+ and K+ are consistent with results obtained in other tissues and may reflect an ion-well effect.  相似文献   

14.
Both erythromycin and clarithromycin have been reported to cause QT prolongation and the cardiac arrhythmia torsade de pointes in humans, however direct evidence documenting that these drugs produce this effect by blocking human cardiac ion channels is lacking. The goal of this study was to test the hypothesis that these macrolide antibiotics significantly block the delayed rectifier current (IKr) encoded by HERG (the human ether-a-go-go-related gene) at drug concentrations, temperature and ionic conditions mimicking those occurring in human subjects. Potassium currents in HEK 293 cells stably transfected with HERG were recorded using a whole cell voltage clamp method. Exposure of cells to erythromycin reduced the HERG encoded potassium current in a concentration dependent manner with an IC50 of 38.9 ± 1.2 M and Hill Slope factor of 0.4 ± 0.1. Clarithromycin produced a similar concentration-dependent block with an IC50 of 45.7 ± 1.1 M and Hill Slope factor of 1.0 ± 0.1. Erythromycin (25–250 M) and clarithromycin (5 or 25 M) also produced a significant decrease in the integral of the current evoked by an action potential shaped voltage clamp protocol. The results of this study document that both erythromycin and clarithromycin significantly inhibit the HERG potassium current at clinically relevant concentrations.  相似文献   

15.
Summary The use of an Ussing chamber with well-defined mixing characteristics coupled to a mass spectrometer permits the concurrent evaluation of transepithelial current and oxidative metabolism with improved temporal resolution. The time-course of the amiloride-sensitive currentI a and the rate of suprabasal CO2 productionJ CO2 sb were observed in 10 toad urinary bladders at short-circuit and after clamping at 100 mV, serosa positive. Following perturbation of (0100mV),I a declined sharply within 1/2 min, remained near constant 15 min, and then increased slightly.J CO2 sb declined more gradually, remained near constant at 4–7 min, and then declined further. Detailed analysis revealed an early quasi-steady state with near constancy ofJ CO2 sb starting at 2.9±1.1 (sd) min and lasting 4.7 ±1.8 (sd) min, followed by relaxation to a later steady state at about 15 min. During the early quasi-steady state,I a was also nearly constant. Considering that in steady statesI a/FJ Na a , the rate of transepithelial active Na transport, during the early quasi-steady state mean values ±se ofJ Na a ,J CO2 sb and (J Na a /J CO2 sb ) were, respectively, 29.9±1.7%, 59.4 ±3.2%, and 56.4±5.7% of values at short-circuit. Corresponding values during the late steady state were 41.4±6.0%, 38.2±6.1%, and 111.3±8.6%. Thus the flow ratioJ Na a /J CO2 sb was depressed significantly during the early quasi-steady state, but returned later to the original value. The results of measurements ofI a andJ CO2 sb in three hemibladders were qualitatively similar. In terms of a phenomenological black-box treatment the findings are consistent with earlier studies indicating incomplete coupling between transport and metabolism. Further studies will be required to clarify the molecular basis for these observations.  相似文献   

16.
Summary Inward currents carried by external Cs, Rb, NH4 and K through theI K1 channel were studied using a whole-cell voltage clamp technique. Cs, NH4, and Rb currents could be recorded negative to –40 mV following depolarizing prepulses (0 mV and 200–1000 msec in duration). The current activation displayed an instantaneous component followed by a monoexponential increase () to a peak amplitude. Subsequent inactivation was fit by a single exponential, i. With hyperpolarization, and i decreasede-fold per 36 and 25 mV, respectively. In Ca-free external solutions (pipette [Mg]0.3mm), inactivation was absent, consistent with the hypothesis that inactivation represents time- and voltage-dependent block of Cs, NH4, and Rb currents by external Ca. The inactivation and degree of steady-state block was greatest when Cs was the charge carrier, followed by NH4, and then Rb. K currents, however, did not inactivate in the presence of Ca. Na and Li did not carry any significant current within the resolution of our recordings. Comparison ofpeak inward current ratios (I x/IK) as an index of permeability revealed a higher permeance of Cs (0.15), NH4 (0.30), and Rb (0.51) relative to K (1.0) than that obtained by comparing thesteady-state current ratios (CsNH4RbK0.010.060.211.0). At any given potential, was smaller the more permeant the cation. In the absence of depolarizing prepulses, the amplitude of was reduced. Divalent-free solutions did not significantly affect activatio in the presence of 0.3mm pipette [Mg]. When pipette [Mg] was buffered to 50 m, however, removal of external Ca and Mg lead to a four- to fivefold increase in Cs currents and loss of both time-dependent activation and inactivation (reversible upon repletion of external Ca).These results suggest that (i) permeability ratios forI K1 should account for differences in the degree to which monovalent currents are blocked by extracellular Ca and (ii) extracellular or intracellular divalent cations contribute to the slow phase of activation which may represent either (a) the actual rate of Mg or Ca extrusion from the channel into the cell, a process which may be enhanced by repulsive interaction with the incoming permeant monovalent cation or (b) an intrinsic gating process that is strongly modulated by the permeant monovalent ion and divalent cations.  相似文献   

17.
Summary Electrical properties of isolated frog primary afferent neurons were examined by suction pipette technique, which combines internal perfusion with current or voltage clamp using a switching circuit with a single electrode. When K+ in the external and internal solutions was totally replaced with Cs+, extremely prolonged Ca spikes, lasting for 5 to 10 sec, and Na spikes, having a short plateau phase of 10 to 15 msec, were observed in Na+-free and Ca2+-free solutions, respectively. Under voltage clamp, Ca2+ current (I Ca) appeared at around –30 mV and maximum peak current was elicited at about 0 mV. With increasing test pulses to the positive side,I Ca became smaller and flattened but did not reverse. Increases of [Ca] o induced a hyperbolic increase ofI Ca and also shifted itsI-V curve along the voltage axis to the more positive direction. Internal perfusion of F blockedI Ca time-dependently. The Ca channel was permeable to foreign divalent cations in the sequence ofI Ca>I Ba>I SrI Mn>I Zn. Organic Ca-blockers equally depressed the divalent cation currents dose- and time-dependently without shifting theI-V relationships, while inorganic blockers suppressed these currents dose-dependently and the inhibition appeared much stronger in the order ofI Ba=I Sr>I Ca>I Mn=I Zn.  相似文献   

18.
Using the standard voltage-clamp technique in the whole-cell mode, we studied the characteristics of barium currents (I Ba; Ba2+ concentration in the external solution was 5 mM) carried through L-type Ca2+ channels in the membrane of myocytes of the resistive mesenteric artery from normotensive and genetically hypertensive rats (NR and GHR, respectively). To perforate the membrane, we used amphotericin B. The arbitrary density of I Ba through the plasma membrane of GHR myocytes significantly exceeded this parameter in the NR group. For both animal groups, activation curves plotted as the dependence of the membrane conductance (G Ba) on the membrane potential were not significantly different: the membrane potential for half activation (V 0.5) of I Ba in the NR myocytes was equal to 1.0 ± 0.3 mV with slope factor k = 6.3 ± 0.4 mV, whereas in the GHR myocytes V 0.5 = -1.6 ± 0.2 mV and k = 6.2 ± 0.5 mV. The stationary inactivation curves for I Ba differed significantly: in the NR myocytes, V 0.5 = -24.2 ± 0.4 mV and k = 8.3 ± 0.2 mV, whereas in the GHR myocytes such parameters were, respectively, -21.4 ± 0.4 and 8.7 ± 0.3 mV. The pattern of intersection of stationary activation and stationary inactivation curves for I Ba was indicative of the existence of a window current, i.e., the non-inactivating component of I Ba within the -40 to ±20 mV range; the phenomenon was clearly pronounced in the GHR myocytes. Differences in the arbitrary density of integral I Ba and window current were observed. These differences can cause an increased tone of the blood vessels in hypertensive animals.  相似文献   

19.
We investigated the effects on the electrophysiological properties of ventricular muscle fibres from lizards kept at 20 °C of mild and severe hyperthyroidism. The hyperthyroidism was induced by a 4-day treatment with either 0.025 or 1.0 g triiodothyronine g-1 body weight, documented by increased serum levels of thyroid hormone. Triiodothyronine treatment did not modify the duration of the action potential recorded in vitro at 25 °C from ventricular muscles stimulated at 1 Hz. Recordings at higher temperatures were associated with a faster repolarization phase and a decrease of action potential duration in both euthyroid and hyperthyroid animals. However, in lizards treated with 1.0 g triiodothyronine · g-1 body weight, the 90% repolarization recovery times at 30 and 35 °C (95.6±14.9 ms and 53.0±6.0 ms, respectively), were significantly shorter than normal (177.6±29.2 and 107.2±18.1 ms, respectively). Action potential duration was also dependent on stimulation frequency of the preparations. Increased frequency led to significant decrease of the duration of action potentials recorded at 25 °C. In euthyroid preparations the reductions in 90% repolarization recovery time, owing to increases in stimulation frequency to 2.5 and 5 Hz, were 19.3±1.7 and 35.6±2.0 ms, respectively. In hyperthyroid preparations, the reductions in the 90% recovery time due to stimulus frequency increases varied from 35.4±1.9 and 58.1±2.1 ms at low hormone doses to 38.9±2.0 and 58.2±2.1 ms at high hormone doses. As a result of these differences, the action potential durations recorded from the two hyperthyroid preparations at high stimulation rates were shorter than from euthyroid preparations. The results obtained suggest that lizard cardiac tissue is responsive to hormone action at low environmental temperature, but the effects of such action become evident when the temperature and heart rate increase.Abbreviations A 20% integrated area above 20% depolarization - bw body weight - hw heart weight - FT 3 free triiodothyronine - RT 40 RT 50 RT 70 and RT 90 recovery time at 40, 50, 70, and 90% of repolarization, respectively - T 3 triiodothyronine - TT 3 Total triiodothyronine  相似文献   

20.

Background/Aims

Resveratrol has been demonstrated to be protective in the cardiovascular system. The aim of this study was to assess the effects of resveratrol on hydrogen peroxide (H2O2)-induced increase in late sodium current (I Na.L) which augmented the reverse Na+-Ca2+ exchanger current (I NCX), and the diastolic intracellular Ca2+ concentration in ventricular myocytes.

Methods

I Na.L, I NCX, L-type Ca2+ current (I Ca.L) and intracellular Ca2+ properties were determined using whole-cell patch-clamp techniques and dual-excitation fluorescence photomultiplier system (IonOptix), respectively, in rabbit ventricular myocytes.

Results

Resveratrol (10, 20, 40 and 80 µM) decreased I Na.L in myocytes both in the absence and presence of H2O2 (300 µM) in a concentration dependent manner. Ranolazine (3–9 µM) and tetrodotoxin (TTX, 4 µM), I Na.L inhibitors, decreased I Na.L in cardiomyocytes in the presence of 300 µM H2O2. H2O2 (300 µM) increased the reverse I NCX and this increase was significantly attenuated by either 20 µM resveratrol or 4 µM ranolazine or 4 µM TTX. In addition, 10 µM resveratrol and 2 µM TTX significantly depressed the increase by 150 µM H2O2 of the diastolic intracellular Ca2+ fura-2 fluorescence intensity (FFI), fura-fluorescence intensity change (△FFI), maximal velocity of intracellular Ca2+ transient rise and decay. As expected, 2 µM TTX had no effect on I Ca.L.

Conclusion

Resveratrol protects the cardiomyocytes by inhibiting the H2O2-induced augmentation of I Na.L.and may contribute to the reduction of ischemia-induced lethal arrhythmias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号