首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When subjected to a series of elevated Al and H+ concentrations spanning environmentally relevant levels, the dragonfly Libellula julia respired at a rate lower than the controls. This trend was consistent at all levels but only attained significance (p < 0.05) at pH 4.0 with A1 levels of 3.0 and 30 mg 1–1. Low pH alone does not depress respiratory rates as greatly as Al and low pH combined. The authors speculate on some apparent inconsistencies found in the literature.  相似文献   

2.
The physiological responses of last instarLibellula julia nymphs exposed for 96 (or 192) h to low pH (4.0 and 2.3) and elevated Al concentrations (0.3, 3, and 30 mg l–1) at low pH were investigated. To some extent, both low pH alone and Al at low pH were found to affect water balance (wet weight and hemolymph volume), ionic regulation (hemolymph osmolality and concentrations of Na+, Cl, and K+), and acid-base balance (hemolymph pH). The extent and significance of these alterations are discussed.  相似文献   

3.
Mangas-Ramírez  Ernesto  Sarma  S.S.S.  Nandini  S. 《Hydrobiologia》2004,526(1):255-265
In most toxicity studies using Cladocera, bioassays are routinely done to determine median lethal concentration (LC50) or the responses to sublethal exposure. However, information on the patterns of recovery of cladocerans exposed to different concentrations of toxicants is scarce. This is important because cladocerans exposed to toxicants for a short duration may later recuperate under favourable conditions. Using the life table demographic and population growth, the present study was conducted to evaluate the recovery patterns of Monia macrocopa exposed to five different concentrations (0, 25, 50, 75 and 100% of 24 h LC50 for CdCl2 or methyl parathion) and then returned to toxicant-free medium containing alga (Chlorella vulgaris) at low (0.25 × 106cells ml–1), medium (0.5 × 106cells ml–1) or high (1 × 106cells ml–1) levels. We measured selected life history variables such as average lifespan, life expectancy at birth, gross and net reproductive rates, generation time and the rate of population increase. Results indicated that regardless of food concentration, surviving individuals of M. macrocopa exposed to a median lethal concentration did not recover. The effect of food level was significant at 25 and 50% of the median lethal concentration for cadmium or methyl parathion. Age-specific fecundity curves showed that exposure to either toxicant for a duration as short as 24 h at one-fourth of the LC50 showed reduced output of offspring, especially at a lower food level. At and above exposures of 0.037 mgl–1 of methyl parathion, no reproduction occurred. The highest gross and net reproductive rates (127 and 55 offspring female–1) were obtained in controls at the high (1 × 106 cells ml–1) algal food level. The rate of population increase obtained from life table data was around 0.7 per day in controls but decreased when exposed to toxicant concentrations. The rates of population increase per day derived from population growth data varied from 0.22 to 0.33 per day for the controls, depending on the food levels.  相似文献   

4.
Oxygen consumption, ammonia excretion and changes in O:N ratios by the dragonfly Somatochlora cingulata were measured in four nymphal growth stages, relative to aluminum concentrations and low pH. A differential reduction in respiration and ammonia excretion rates resulted in an increase in ON ratios for all nymphal stages. The earlier stages, however, were the most sensitive. The ratios obtained were indicative of a decreased dependence on protein reserves and increased utilization of carbohydrates or lipid reserves. Also observed was an increase in the haemolymph pH and glutamate levels with a concomitant accumulation of tissue ammonia.  相似文献   

5.
The toxicity and growth of Microcystis aeruginosa (UV-006) from the Hartbeespoort Dam, South Africa were investigated at different temperatures and photon fluence rates under laboratory conditions. Cells harvested in late logarithmic growth phase were most toxic when grown at 20°C (LD50) median lethal dose [IP, mouse]=25.4 mg kg-1). Toxicity was markedly reduced at growth temperatures above 28° C. Fluence rate had a smaller effect on the toxicity of the cells, but toxicity tended to be less at the very low and high light fluences. Optimal conditions for growth did not coincide with those for toxin production. Well-aerated cultures of this isolate kept at pH 9.5 by CO2 addition, a temperature of 20–24° C, a fluence rate of 145 mol photons m-2 s-1 and harvested in the late logarithmic growth phase yielded the maximum quantity of toxin.Abbreviation LD50 median lethal dose An abstract of this work, presented as a poster at the IUBS symposium on toxins and lectins, held at the CSIR, Pretoria, South Africa during 1982 was published in S. Afr. J. Sci. 78, 375 (1982)  相似文献   

6.
Field-measured grazing rates (ml/animal/d) of cladocerans (mostly daphniids) and diaptomids were assembled from various published studies and plotted as a function of corresponding phytoplankton concentration (μg l−1 f.w.). Filtering rates of both zooplankton groups initially increased with seston concentration until maximal grazing rates were observed at approximately 4 × 102 and 1 × 102 μg l−1 for cladocerans and copepods, respectively; at higher algal concentrations, filtering rates of both declined as a function of food concentration. The shape of these curves are most consistent with Holling's (1966) Type 3 functional response. We found little support for the Type 3 functional response in published laboratory studies of Daphnia; most investigators report either a Type 1 or Type 2 response. The one study in which the Type 3 response was observed involved experiments where animals were acclimated at low food concentrations for 24 h, whereas those studies associated with response Types 1 or 2 had acclimation periods of only 1 to 3 h. We therefore assembled relevant data from the literature to examine the effect of acclimation period on the feeding rates of Daphnia at low food concentrations. In the absence of any acclimation, animals filtered at extremely low rates. After 2 h of acclimation, however, filtering rates increased 4 to 5-fold but declined again with longer durations; after > 70 h of pre-conditioning, filtering rates were almost as low as they had been with no acclimation. We also found little support for the Type 3 functional response in published studies of copepods. The only study associated with a Type 3 response involved a marine copepod that had been subjected to a starvation period of 48 h; however, an analysis of the effects of acclimation period did not yield conclusive evidence that filtering rates of freshwater copepods (Diaptomus and Eudiaptomus) decrease significantly with acclimation duration. The low filtering rates associated with long acclimation periods in laboratory experiments appears to be a direct result of animals becoming emaciated from prolonged exposure to low food concentrations, a situation which renders them incapable of high filtering rates. This may explain the Type 3 functional response for field cladocerans, since zooplankton in food-limiting situations are constantly exposed to low food concentrations, and would therefore have low body carbon and consequently less energy to filter-feed. We cannot, however, use this to explain the Type 3 response for field diaptomids, since copepods in the laboratory did not appear to lose body carbon even after 72 h of feeding at very low food levels, and there was inconclusive evidence that either Diaptomus or Eudiaptomus decrease their filtering rates with acclimation period. Although Incipient Limiting Concentrations (ILC) for Daphnia ranged from 1 to 8.5 × 103 μg 1−1, more than half of these fell between 1 and 3 × 103 μg l−1, bracketing the value of 2.7 × 102 μg l−1 for field cladocerans. There was, however, a great deal of variation in reported maximum ingestion rates (MIR), maximum filtering rates (MFR) and ILC values for Daphnia magna. ILC values from the few laboratory studies of freshwater copepods ranged between 0.5 to 2.8 × 103 μg 1−1, and was higher than the ILC value of approximately 0.2 × 103 μg l−1 calculated for field populations of D. minutus. Generally, there was considerable agreement among laboratory studies regarding the shape of grazing-rate and ingestion-rate curves when data were converted to similar units and presented on standardized scales.  相似文献   

7.
High affinity Ca-binding to rabbit aortic smooth muscle microsomes was reduced at low pH. To investigate the role of this Ca-binding, aortic strips were briefly exposed either to pH 5.1 or 7.3, subsequently incubated in a Ca-free medium at pH 7.3, and then challenged with 1 μM norepinephrine (NE). Tissues pretreated at pH 5.1 gave smaller contractions. Tissues loaded with 45Ca when exposed to pH 5.1 showed much larger release of 45Ca than those exposed to pH 7.3. Subsequently, all 45Ca-loaded tissues were placed at pH 7.3 and the effect of 100 μM NE on 45Ca-efflux was examined. Tissues exposed previously to pH 7.3 showed a NE-sensitive 45Ca-efflux but those pretreated at pH 5.1 did not. The results are consistent with, but do not prove, the hypothesis that the high affinity pH-sensitive Ca-binding to plasma membranes is a large Ca-pool and that the NE-sensitive Ca-pool is a small component of it.  相似文献   

8.
A glasshouse experiment was conducted to investigate the effect of soil pH on chickpea (Cicer arietinum) tolerance to isoxaflutole applied pre-emergence at 0, 75 (recommended rate) and 300 g a.i. ha−1. For this study, the variables examined were two desi chickpea genotypes (97039-1275 as a tolerant line and 91025-3021 as a sensitive line) and four pH levels (5.1, 6.9, 8.1, and 8.9). The results demonstrated differential tolerances among chickpea genotypes to isoxaflutole at different rates and soil pH levels. Isoxaflutole applied pre-emergence resulted in increased phytotoxicity with increases in soil pH and herbicide rate. Even the most tolerant chickpea genotype was damaged when exposed to higher pH and herbicide rates, as indicated by increased leaf chlorosis and significant reductions in plant height, and shoot and root dry weight. The effects were more severe with the sensitive genotype. The susceptibility of chickpea to this herbicide depends on genotype and soil pH which should be taken into account in breeding new lines, and in the agronomy of chickpea production.  相似文献   

9.
Freshwater salmonids exposed to low environmental pH typically suffer a net loss of ions, primarily Na+ and Cl, across the gills, resulting in reduced plasma and tissue ion concentrations. However, in recent experiments in our laboratory, juvenile rainbow trout, Oncorhynchus mykiss, fed a ration of 1% body weight d–1 or greater showed no ionoregulatory disturbance during chronic, sublethal acidification. This raised the possibility that these fish had acclimated to low pH in that they would be better able to withstand further, more severe acidification than fish that had no prior experience of acid conditions: previous studies had concluded that such acclimation does not occur. This hypothesis was tested by measuring unidirectional ion fluxes during a 24h acute acid challenge (pH 4.2) in juvenile rainbow trout that had previously been exposed to either ambient pH 6.2 (naive fish) or sublethal low pH 5.2 (acid pre-exposed fish) for 90 days, and fed a ration of either 1.0 or 0.25% d–1 (wet basis). No mortalities were observed during the acute acid challenge in the fish fed the higher ration and no differences between the two groups in the response of Na+ fluxes were observed. Sodium influx in both groups was significantly inhibited throughout the challenge and Na+ net flux was significantly stimulated over the first 6h. Prior to the acute acid challenge, the fish fed the lower ration that had previously been exposed to pH 5.2 had significantly lower plasma ion concentrations than those fish previously exposed to pH 6.2. Both groups suffered mortalities; those of the naive fish (22% by 24h) being markedly lower than those of the acid pre-exposed fish (68% by 24h). However, there were no significant differences in either Na+ or Cl fluxes between the two groups of fish during the acid challenge: both showed significant inhibition of ion influxes and significantly greater net ion losses, resulting in reduced plasma ion concentrations. These results indicate that rainbow trout are unable to acclimate to environmental acidification irrespective of the availability of dietary salts.  相似文献   

10.
The effects of aluminum ions on the generation of mobile inorganic phosphate (Pi) within the cells of excised maize (Zea mays L.) root tips were examined using 31P-nuclear magnetic resonance (31P-NMR) spectroscopy. When perfused with a solution containing 50 mM glucose and 0.1–5.0 mM Ca2+ at pH 4.0, 3–5-mm-long excised maize root tips from 3-d-old seedlings showed a significant (approx. 100%) increase in the amount of mobile Pi, (primarily vacuolar) over a period of 30 h. This increase was above that which can be accounted for by the hydrolysis of endogenous sugar phosphates and nucleotides. A change of the pH of the perfusion solution to 7.0 reduced the increase in Pi to approx. 50%. Omission of Ca2+ in the solution at pH 4.0 caused the mobile Pi to increase to about 170%. However, the presence of Al3+ or both Ca2+ and Al3+ in the solution resulted in a significant loss (35–50%) of mostly vacuolar Pi over the same period of time. When root tips containing up to 65% of newly released Pi, produced after 20 h perfusion, were exposed to Al3+, no additional increase in the level of the mobile-Pi signal area was noted. Exposure to Al3+ with Ca2+ and glucose under hypoxia at pH 4.0 resulted in a threefold decrease in intracellular Pi content after the root tips were returned to aerobic conditions. These results indicate that external pH plays an important role in the generation of mobile intracellular Pi and that the presence of both Ca2+ and Al3+ can independently suppress the production of this excess Pi and ultimately reduce the vacuolar Pi.Abbreviations and symbols NMR nuclear magnetic resonance - Pi morganic phosphate - UDPG uridine diphosphoglucose - chemical shift  相似文献   

11.
To assess how the quality and properties of the natural dissolved organic carbon (DOC) could drive different effects on gill physiology, we analysed the ionoregulatory responses of a native Amazonian fish species, the tambaqui Colossoma macropomum, to the presence of dissolved organic carbon (DOC; 10 mg l−1) at both pH 7.0 and pH 4.0 in ion-poor water. The DOC was isolated from black water from São Gabriel da Cachoeira (SGC) in the upper Rio Negro of the Amazon (Brazil) that earlier been shown to protect a non-native species, zebrafish Danio rerio against low pH under similar conditions. Transepithelial potential (TEP), net flux rates of Na+, Cl and ammonia and their concentrations in plasma and Na+, K+ ATPase; v-type H+ ATPase and carbonic anhydrase activities in gills were measured. The presence of DOC had negligible effects at pH 7.0 apart from lowering the TEP, but it prevented the depolarization of TEP that occurred at pH 4.0 in the absence of DOC. However, contrary to our initial hypothesis, SGC DOC was not protective against the effects of low pH. Colossoma macropomum exposed to SGC DOC at pH 4.0 experienced greater net Na+ and Cl losses, decreases of Na+ and Cl concentrations in plasma and elevated plasma ammonia levels and excretion rates, relative to those exposed in the absence of DOC. Species-specific differences and changes in DOC properties during storage are discussed as possible factors influencing the effectiveness of SGC DOC in ameliorating the effects of the acid exposure.  相似文献   

12.
Acid and alkaline phosphatase activities were evaluated using batch fermenter cultues ofPenicillium citrinum, an organism used in studies of fungal functioning in soil. Fungal activity was assessed by monitoring rates of O2 utilization, glucose utilization, dry weight changes over time, and lengths of FDA-stained hyphae. At low growth rates (7 g dry wt increases·h–1·ml–1) and low culture activity, phosphatase activity at both pH 8.5 and 5.5 tended to decrease with culture age, with the exception that phosphatase activity at pH 8.5 peaked during early stationary phase. At higher growth rates (25 g dry wt increase·h–1·ml–1) and high culture activity, phosphatase activity tended to remain constant throughout the course of the experiment. The relationship between phosphatase activity and other measures of fungal activity was consistent only at low growth rates for acid phosphatase. These results suggest that phosphatase measurements will be of limited utility in assessing activity, except at low growth rates.  相似文献   

13.
Neem, Azadirachta indica A. Juss. (Meliaceae), seed oil (NSO) added to meridic diet at concentrations as low as 0.016% reduced pupation and prevented adult eclosion of obliquebanded leafroller, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae). At a rate of 0.0016%, NSO reduced the fitness of C. rosaceana, resulting in longer developmental times, lower adult eclosion rates, and reduced egg production compared with controls. The neem insecticide Margosan-O TM produced comparable results based on concentrations of the most biologically active constituent, azadirachtin. Pupation was completely inhibited at concentrations of 0.25% and 1.0% for larvae exposed at 5th or 6th instar, respectively; rates as low as 0.016% reduced pupal weights and adult eclosion rates. For larvae transferred to treated diet at 5th instar, physical abnormalities in the wings of adults occurred at a rate of 0.004% NSO and increased with increasing treatment rates. NSO at concentrations as high as 2.0% was not antifeedant to neonate larvae, based on 24 and 48 h choice test bioassays, when incorporated into a meridic diet.  相似文献   

14.
This study examines whether brown trout larval development retardation caused by an early episode of low pH and elevated aluminum toxicity affects the outcome of a later toxicity episode. Yolk‐sac brown trout, Salmo trutta L., were exposed to four different patterns of low pH (4.5) and aluminum (12 mol L?1) episodes. A continuous control (pH 5.6 and zero aluminum) was also provided.
Mortality in the control fish was 5.0%. The highest mortality (91.6%) occurred in S. trutta subjected to two later episodes (treatment 2) which were temporally very close together. Mortality declined (30%) as the interval between the two episodes (treatment 3) was increased. The lowest mortality (16.7%) occurred when the duration of the early episode was doubled (treatment 4). Mortality in animals exposed to only a single episode (treatment 1) at the late yolk‐sac stage was rather higher (51.6%) when compared with mortalities in animals exposed to double episodes, the first of which being in the early yolk‐sac stage (treatments 3 and 4). Mortality was found to be very significant both among treatments (two‐way analysis of variance (anova ), df=4, F‐value=3.01, P<0.05) and time periods (two‐way anova , df=5, F‐value=4.84, P<0.01).
In all treatments, gross development, net uptake of minerals (except Mg) and calcium deposition in the skeleton was impaired. The advantages and disadvantages of larval development retardation in the early yolk‐sac stage is discussed.  相似文献   

15.
M. Soedarjo  M. Habte 《Mycorrhiza》1995,5(5):337-345
Glomus aggregatum and Leucaena leucocephala were allowed to interact in a manganese-rich oxisol at pH 4.3–6.0 and at soil P concentrations considered optimal for mycorrhizal host growth and sufficient for nonmycorrhizal host growth. At 0.02 mg P l-1, vesicular-arbuscular mycorrhizal fungal (VAMF) colonization of roots increased as soil pH increased from 4.3 to 5.0. However, VAMF colonization of roots did not respond to further increases in pH. At pH 6.0, growth of mycorrhizal Leucaena observed at 0.02 mg P was comparable with that observed at 0.8 mg P l-1. Increasing P concentration from 0.02 to 0.8 mg P 1-1 increased target soil pH from 4.3 to 4.7 and reduced the concentration of available soil Mn from 15.1 to 1.9 mg 1-1. Thus, the normal plant growth observed at the higher P concentration at pH<5 was mainly due to the alleviation of Mn toxicity as a result of its precipitation by excess P. VAMF colonization levels observed at pH 5.0–6.0 were similar, but maximal plant growth occurred at pH 6.0, suggesting that the optimal pH for mycorrhizal formation was substantially lower than for VAMF effectiveness. The poor growth of Leucaena at the lower P concentration in the unlimed soil was largely due to high concentrations of Mn2+ and H+ ions.Contribution from the Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3910  相似文献   

16.
Soils of the Appalachian region of the United States are acidic and deficient in P. North Carolina phosphate rock (PR), a highly substituted fluoroapatite, should be quite reactive in these soils, allowing it to serve both as a source of P and a potential ameliorant of soil acidity. An experiment was conducted to evaluate the influence of PR dissolution on soil chemical properties and wheat (Triticum aestivum cv. Hart) seedling root elongation. Ten treatments including nine rates of PR (0, 12.5, 25, 50, 100, 200, 400, 800, and 1600 mg P kg-1) and a CaCO3 (1000 mg kg-1) control were mixed with two acidic soils, moistened to a level corresponding to 33 kPa moisture tension and incubated for 30 days. Pregerminated wheat seedlings were grown for three days in the PR treated soils and the CaCO3 control. Root length was significantly (P<0.05) increased both by PR treatments and CaCO3, indicating that PR dissolution was ameliorating soil acidity. The PR treatments increased soil pH, exchangeable Ca, and soil solution Ca while lowering exchangeable Al and 0.01 M CaCl2 extractable soil Al. Root growth in PR treatments was best described by an exponential equation (P<0.01) containing 0.01 M CaCl2 extractable Al. The PR dissolution did not reduce total soil solution Al, but did release Al complexing anions into soil solution, which along with increased pH, shifted Al speciation from toxic to nontoxic forms. These results suggest that North Carolina PR should contribute to amelioration of soil acidity in acidic, low CEC soils of the Appalachian region.  相似文献   

17.
Laboratory experiments were conducted to assess the effects of aluminum, calcium and low pH on egg hatching and nymphal survival of the mayfly Cloeon triangulifer. Percent successful hatch (living nymphs breaking free of the chorion) decreased and percent partial hatch (nymphs dying attached to the chorion) increased with increasing acidity (pH 7.5–3.0). Most hatches occurring below pH 5.0 were partial hatches. Decreased time of exposure to acidic waters increased percent successful hatch and decreased percent partial hatch. Time to first hatch was not affected by pH. Eggs were incubated in acidic waters (pH 4.0 and 5.5) with additions of calcium (10 and 100 mg l–1) and aluminum (100 and 500 g l–1). Aluminum decreased percent successful hatch and increased percent partial hatch and calcium increased both percent successful hatch and percent partial hatch. Time to first hatch was increased by both aluminum and calcium. The 96 h LC50 for small nymphs was pH 4.75. Addition of aluminum (100 and 500 µg l–1) to acidic waters (pH 4.0 and 5.0) reduced nymphal mortality by 8–22%. Toxic effects of low pH on egg hatching and early nymphs may contribute to the absence of mayflies from acidified habitats.Contribution No. 1469 of the Maine Agricultural Experiment Station, University of Maine, Orono, Maine 04469 USA.Contribution No. 1469 of the Maine Agricultural Experiment Station, University of Maine, Orono, Maine 04469 USA.  相似文献   

18.
This study concerns the inhibitory effects of acid pH and nickel on growth, nutrient (NO3 - and NH4 +) uptake, carbon fixation, O2 evolution, electron transport chain and enzyme (nitrate reductase and ATPase) activities of acid tolerant and wild-type strains of Chlorella vulgaris. Though a general reduction in all these variables was noticed with decreasing pH, the tolerant strain was found to be metabolically more active than the wild-type. A reduced cation (NH4 +, Na+, K+ and Ca2+) uptake, coupled with a facilitated influx of anions (NH4 +, PO4 3- and HCO3 -), suggested the development of a positive membrane potential in acid tolerant Chlorella. Nevertheless, a tremendous increase in ATPase activity at decreasing pH revealed the involvement of superactive ATPase in exporting H+ ions and keeping the internal pH neutral. A difference in Na+ and K+ efflux of the two strains at decreasing pH suggests there is a difference in membrane permeability. The low toxicity of Ni in the acid tolerant strain may be due to the low Ni uptake brought about by a change in membrane potential as well as in permeability. Hence, the development of superactive ATPase and a change in both membrane potential and permeability not only offers protection against acidity, but also co-tolerance to metals.  相似文献   

19.
The effects of liming and Mg fertilization on growth, specific root length (root length per unit of root dry weight; SRL) and nutrient uptake of twelve sorghum genotypes (Sorghum bicolor (L.) Moench) were studied in two pot experiments. Liming increased the pH of the sandy loam from pH 4.3 (unlimed) to 4.7 (with 0.5 g Ca(OH)2 kg-1 soil) and to 6.1 (with 2.5 g Ca(OH)2 kg-1 soil). Liming increased the dry matter yield of the genotypes by factors of 1.2 to 6.0 (between pH 4.3 and 4.7) and by 1.1 to 2.4 (between pH 4.7 and 6.1). In absence of Mg at soil pH of 4.3 and 4.7, all genotypes suffered from Mg deficiency, as indicated by low Mg concentrations in the shoots (26–94 mmol Mg kg-1 DM) and visible Mg deficiency symptoms. At pH 4.7 several of the genotypes responded to Mg application and produced significantly more dry matter. At pH 4.3, however, none of the genotypes responded to Mg, even though the internal Mg concentrations were increased by applied Mg. The relative increase in dry matter yield between pH 4.3 and 4.7 was closely correlated to the relative change in specific root length in the same soil pH interval, especially when the soil was fertilized with Mg (r2=0.91**). The group of genotypes where SRL and dry matter yield were reduced by soil acidity was not the same as the group that responded positively to Mg application at pH 4.7.It is concluded that the growth of sorghum genotypes on acid soils is determined by two independent characteristics: the sensitivity of root development to soil acidity and the efficiency of the uptake and utilization of Mg. The first characteristic is predminant at high soil acidity whilst the latter is dominant at moderate soil acidity.  相似文献   

20.
Batch cultures of algae grown at low (0.1 %) and elevated (2.0 %) concentrations of CO2, as well as in original BBM (Bold Basal Medium) and BBM modified with phosphate, EDTA and a combination of both, were exposed to cadmium (Cd(NO3)2·4H2O, 3CdSO4·8H2O and CdCl2·H2O) for 24 h. Regardless of the salt applied, the concentration-dependent relationships of Cd toxicity were found to be biphasic, suggesting the different affinity of target sites to cadmium. Nominal values of EC50 obtained for algae grown in original BBM and at low CO2 were 18.0, 16.44 and 15.37 mg·dm−3 for cadmium nitrate, sulphate and chloride, respectively. However, it was estimated that 97 % of the free cadmium in the added salts were bound by components of original BBM such as EDTA, phosphates, chloride and sulphate. The effect of Cd-salts at concentrations corresponding to EC50 values on algae were tested in media with 10-fold reduced phosphates (BBM-P), BBM depleted of EDTA (BBM-EDTA) and of both phosphates and EDTA (BBM-P-EDTA). For algae grown at low CO2 and BBM-P, cadmium was about 25 % less toxic than those applied in original BBM. Cadmium greatly inhibited (about 85 % of the control) the growth of algae cultured in BBM-EDTA; this effect was only slightly dependent on the CO2 concentration. Deficits of both EDTA and P led to effects similar to those brought about by the absence of EDTA only. The toxicity of cadmium depends on CO2 concentration only when algae are grown in original BBM. The growth of algae under high CO2 conditions was reduced considerably less (about 80% of control) compared with low CO2 concentrations (about 50 % of control). A relationship was found between the toxicity of cadmium salts and final pH values only in variants of low-CO2 grown algae; with an increase of medium pH the toxicity decreased. The results suggest that both growth conditions and the binding ability of the medium markedly affect the toxicity of cadmium towards microalgae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号