首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Intercalated and inner medullary collecting duct (IMCD) cells of the kidney mediate the transport of H+ by a plasma membrane H+-ATPase. The rate of H+ transport in these cells is regulated by exocytic insertion of H+-ATPase-laden vesicles into the apical membrane. We have shown that the exocytic insertion of proton pumps (H+-ATPase) into the apical membrane of rat IMCD cells, in culture, involves SNARE proteins (syntaxin (synt), SNAP-23, and VAMP). The membrane fusion complex observed in IMCD cells with the induction of proton pump exocytosis not only included these SNAREs but also the H+-ATPase. Based on these observations, we suggested that the targeting of these vesicles to the apical membrane is mediated by an interaction between the H+-ATPase and a specific t-SNARE. To evaluate this hypothesis, we utilized a "pull-down" assay in which we identified, by Western analysis, the proteins in a rat kidney medullary homogenate that complexed with glutathione S-transferase (GST) fusion syntaxin isoforms attached to Sepharose 4B-glutathione beads. The syntaxin isoforms employed were 1A, 1B, 2, 4, 5, and also 1A that was truncated to exclude the H3 SNARE binding domain (synt-1ADeltaH3). All full-length syntaxin isoforms formed complexes with SNAP-23 and VAMP. Neither GST nor synt-1ADeltaH3 formed complexes with these SNAREs. H+-ATPase (subunits E, a, and c) bound to syntaxin-1A and to a lesser extent to synt-1B but not to synt-1ADeltaH3 or synt-2, -4, and -5. In cultured IMCD cells transfected to express syntaxin truncated for the membrane binding domain (synt-DeltaC), expression of synt-1ADeltaC, but not synt-4DeltaC, inhibited H+-ATPase exocytosis. In conclusion, because all full-length syntaxins examined bound VAMP-2 and SNAP-23, but only non-H3-truncated syntaxin-1 bound H+-ATPase, and synt-1ADeltaC expression by intact IMCD cells inhibited H+-ATPase exocytosis, it is likely that the H+-ATPase binds directly to the H3 domain of syntaxin-1 and not through VAMP-2 or SNAP-23. Interaction between the syntaxin-1A and H+-ATPase is important in the targeted exocytosis of the proton pump to the apical membrane of intercalated cells.  相似文献   

4.
Cellular ATP level in Saccharomyces cerevisiae was measured during culture growth of strain US50-18C overproducing all major PDR pumps and its isogenic mutants variously deleted in these pumps. It was found to be inversely proportional to the intensity of cell metabolism during different growth phases and to the activity of PDR pumps, which are thus among major ATP consumers in the cells. The ATP level was increased when membrane integrity was affected by 0.5% butanol, and further increased by compound 23.1, a semisynthetic phenol lipid derivative that acts as inhibitor of Pdr5p and Snq2p pumps. The magnitude of increase in cell ATP caused by inhibition of Pdr5p pump by compound 23.1 and the Pdr5p pump inhibitor FK506 used for comparison reflects the activity and hence the energy demand of the pump. The rise in cell ATP caused by different PDR pump inhibitors can be thus used as an indicator of pump activity and the potency of the inhibitor.  相似文献   

5.
A single-gene nuclear mutant has been selected from the yeast Schizosaccharomyces pombe for growth resistance to Dio-9, a plasma membrane H+-ATPase inhibitor. From this mutant, called pma1, an ATPase activity has been purified. It contains a Mr = 100,000 major polypeptide which is phosphorylated by [gamma-32P] ATP. Proton pumping is not impaired since the isolated mutant ATPase is able, in reconstituted proteoliposomes, to quench the fluorescence of the delta pH probe 9-amino-6-chloro-2-methoxy acridine. The isolated mutant ATPase is sensitive to Dio-9 as well as to seven other plasma membrane H+-ATPase inhibitors. The mutant H+-ATPase activity tested in vitro is, however, insensitive to vanadate. Its Km for MgATP is modified and its ATPase specific activity is decreased. The pma1 mutation decreases the rate of extracellular acidification induced by glucose when cells are incubated at pH 4.5 under nongrowing conditions. During growth, the intracellular mutant pH is more acid than the wild type one. The derepression by ammonia starvation of methionine transport is decreased in the mutant. The growth rate of pma1 mutants is reduced in minimal medium compared to rich medium, especially when combined to an auxotrophic mutation. It is concluded that the H+-ATPase activity from yeast plasma membranes controls the intracellular pH as well as the derepression of amino acid, purine, and pyrimidine uptakes. The pma1 mutation modifies several transport properties of the cells including those responsible for the uptake of Dio-9 and other inhibitors (Ulaszewski, S., Coddington, A., and Goffeau, A. (1986) Curr. Genet. 10, 359-364).  相似文献   

6.
The plasma membrane H+-ATPase is a proton pump belonging to the P-type ATPase superfamily and is important for nutrient acquisition in plants. The H+-ATPase is controlled by an autoinhibitory C-terminal regulatory domain and is activated by 14-3-3 proteins which bind to this part of the enzyme. Alanine-scanning mutagenesis through 87 consecutive amino acid residues was used to evaluate the role of the C-terminus in autoinhibition of the plasma membrane H+-ATPase AHA2 from Arabidopsis thaliana. Mutant enzymes were expressed in a strain of Saccharomyces cerevisiae with a defective endogenous H+-ATPase. The enzymes were characterized by their ability to promote growth in acidic conditions and to promote H+ extrusion from intact cells, both of which are measures of plasma membrane H+-ATPase activity, and were also characterized with respect to kinetic properties such as affinity for H+ and ATP. Residues that when altered lead to increased pump activity group together in two regions of the C-terminus. One region stretches from K863 to L885 and includes two residues (Q879 and R880) that are conserved between plant and fungal H+-ATPases. The other region, incorporating S904 to L919, is situated in an extension of the C-terminus unique to plant H+-ATPases. Alteration of residues in both regions led to increased binding of yeast 14-3-3 protein to the plasma membrane of transformed cells. Taken together, our data suggest that modification of residues in two regions of the C-terminal regulatory domain exposes a latent binding site for activatory 14-3-3 proteins.  相似文献   

7.
G E Dean  P J Nelson  G Rudnick 《Biochemistry》1986,25(17):4918-4925
The ATP-dependent H+ pump from adrenal chromaffin granules is, like the platelet-dense granule H+ pump, essentially insensitive to the mitochondrial ATPase inhibitors sodium azide, efrapeptin, and oligomycin and also insensitive to vanadate and ouabain, agents that inhibit the Na+,K+-ATPase. The chromaffin granule H+ pump is, however, sensitive to low concentrations of NEM (N-ethylmaleimide) and Nbd-Cl (7-chloro-4-nitro-2,1,3-benzoxadiazole). These transport ATPases may thus belong to a new class of ATP-dependent ion pumps distinct from F1F0-and phosphoenzyme-type ATPases. Comparisons of ATP hydrolysis with ATP-dependent serotonin transport suggest that approximately 80% of the ATPase activity in purified chromaffin granule membranes is coupled to H+ pumping. Most of the remaining ATPase activity is due to contaminating mitochondrial ATPase and Na+,K+-ATPase. When extracted with cholate and octyl glucoside, the H+ pump is solubilized in a monodisperse form that retains NEM-sensitive ATPase activity. When reconstituted into proteoliposomes with crude brain phospholipid, the extracted enzyme recovers ATP-dependent H+ pumping, which shows the same inhibitor sensitivity and nucleotide dependence as the native pump. These data demonstrate that the predominant ATP hydrolase of chromaffin granule membrane is also responsible for ATP-driven amine transport and granule acidification in both native and reconstituted membranes.  相似文献   

8.
9.
The number and activity of ouabain-sensitive Na/K ATPase pumps expressed by many cell types in vitro, including human retinal pigment epithelial cells (RPE), have been shown to decline with increasing culture density. Cell proliferation also declined as cultures became dense so it was unclear if pump number was modulated by cell proliferation or culture confluency. By exposing RPE cultures to various feeding regimens, using culture medium containing or lacking serum, it was possible to produce RPE cultures with a range of culture densities and growth rates. These were analyzed for proliferative activity by quantifying [3H]thymidine incorporation and for Na/K ATPase pump number by measuring specific [3H]ouabain binding. The results suggest that pump number is modulated by culture density and, further, that the density-dependent regulation of pump number requires serum. Although density-dependent modulation of culture growth is also serum requiring, cell proliferation and pump number did not appear to be related; cultures of similar density which differed significantly in growth rate had similar numbers of pumps. The view that elevated numbers of pumps were not necessarily found in proliferating cells was further supported by qualitative examination of radioautographs of cells dually labeled with [3H]thymidine and [3H]ouabain. Cycling cells which had [3H]thymidine-labeled nuclei did not have notably higher labeling with [3H]ouabain. However, [3H]ouabain labeling, as an indicator of pump site number and distribution, did vary among cells in an RPE population and also within individual cells. This latter observation suggests that unpolarized RPE cells in sparse cultures may have regionally different requirements for ionic regulation.  相似文献   

10.
Intracellular pH homeostasis is a prerequisite for biological processes and requires the action of proton pumps. The vacuolar H(+)-ATPase (V-ATPase) is involved in regulating pH in endomembrane compartments of all eukaryotic cells. In plants, there is an additional endomembrane proton pump, H(+)-pyrophosphatase (H(+)-PPase). However, the relative roles of the two types of pumps in endomembrane acidification and energization of secondary active transport are unclear. Here, we show that a strong T-DNA insertion allele of VHA-A, the single copy gene encoding the catalytic subunit of the Arabidopsis V-ATPase, causes complete male and partial female gametophytic lethality. Severe changes in the morphology of Golgi stacks and Golgi-derived vesicles in male gametophytes are the first visible symptoms of cell degeneration leading to a failure to develop mature pollen. Similar effects on Golgi morphology were observed in pollen tubes when growth was blocked by Concanamycin A, a specific V-ATPase inhibitor. Taken together, our results suggests that V-ATPase function is essential for Golgi organization and development of the male gametophyte.  相似文献   

11.
12.
The study is devoted to the registration of local H+ gradients on the inner membrane of mitochondria under conditions of H+ pump functioning were recorded. By using a covalently linked pH probe (fluorescein isothiocyanate), a local increase in the activity of hydrogen ions on the outer face of the inner mitochondrial membrane in the presence of the respiration substrate at increased permeability of the membrane for K+ was registered. It was also found that the buffer capacity of medium affects the respiration rate of completely uncoupled mitochondria; a change in respiration rate strictly correlates with changes in local H+ gradients on the mitochondrial membrane. It was concluded that local gradients of H+ activity can control the rate of functioning of H+ pumps. It was shown that, under certain conditions, the system of H+ pumps incorporated into succinate oxidase of mitochondria functions as a nonliner system.  相似文献   

13.
Escherichia coli batch cultures were grown under aerobic and anaerobic conditions on glucose with the substrate addition at pH 7.0. The cultures accumulated acetate in the medium at concentrations sufficient to inhibit the growth. This inhibitory effect of acetate was mediated apparently via its action on the intracellular pH. The inhibition of E. coli growth by acetate increased when the redox proton pump was switched off in the course of transition from aerobiosis to anaerobiosis and when the regulation of K+ fluxes was disordered in the presence of valinomycin. H+-ATPase was not essentially involved in maintaining the high rate of E. coli growth in the presence of acetate under aerobic conditions. If the activity of H+-ATPase was inhibited under anaerobic conditions at pH 7.0, the growth ceased after the dissipation of ionic gradients on the membrane. When CCCP was added under aerobic conditions, the growth did not stop at once if the medium had a pH of 7.6, but ceased immediately at pHout 7.0 in the glucose-salt medium.  相似文献   

14.
The effect of the potent anticancer drug cisplatin, cis-diamminedichloroplatinum (II) (CDDP), on H+ -ATPase and Na+/H+ exchanger in rat renal brush-border membrane was examined. To measure H+ transport by vacuolar H+ -ATPase in renal brush-border membrane vesicles, we employed a detergent-dilution procedure, which can reorientate the catalytic domain of H+ -ATPase from an inward-facing configuration to outward-facing one. ATP-driven H+ pump activity decreased markedly in brush-border membrane prepared from rats two days after CDDP administration (5 mg/kg, i.p.). In addition, N-ethylmaleimide and bafilomycin A1 (inhibitors of vacuolar H+ -ATPase)-sensitive ATPase activity also decreased in these rats. The decrease in ATP-driven H+ pump activity was observed even at day 7 after the administration of CDDP. Suppression of ATP-driven H+ pump activity was also observed when brush-border membrane vesicles prepared from normal rats were pretreated with CDDP in vitro. In contrast with H+ -ATPase, the activity of Na+/H+ exchanger, which was determined by measuring acridine orange fluorescence quenching, was not affected by the administration of CDDP. These results provide new insights into CDDP-induced renal tubular dysfunctions, especially such as proximal tubular acidosis and proteinuria.  相似文献   

15.
The interaction of 3'-O-(4-benzoyl)benzoyl-ATP (BzATP) with the renal (Na+ + K+)-ATPase, the sarcoplasmic reticulum Ca-transport ATPase, and the gastric (H+ + K+)-ATPase has been investigated in order to determine whether BzATP is a suitable probe for the labeling and identification of a peptide from the ATP binding sites of these ion pumps. After ultraviolet irradiation BzATP inhibited the enzymatic hydrolysis of ATP by each of the ion pumps, and also was covalently incorporated into the 100 000 dalton polypeptides of each protein. The presence of excess ATP in the reaction solution did not prevent either the inactivation of ATPase activity or the labeling of the catalytic polypeptides by BzATP. Prior modification of the ATPases with fluorescein-5'-isothiocyanate (FITC), however, prevented much of the labeling of the 100 000 dalton polypeptides by BzATP. BzATP competitively inhibited the high-affinity binding of ATP to the ion pumps, but ATP did not block the high-affinity binding of BzATP by the enzymes. BzATP binds to the membrane-bound ATPases at a high-affinity site with a Kd of 0.8-1.2 microM and a Bmax of 2-3 nmol/mg, and also binds to at least one low-affinity, high-capacity site on the membranes. HPLC separation of the soluble peptides from a tryptic digest of BzATP-labeled (Na+ + K+)-ATPase revealed the presence of several labeled peptides, none of which was protected by either ATP or FITC. Although BzATP can displace ATP from a high-affinity binding site on the ion pumps, it appears, therefore, that inactivation of enzymatic activity is the result of reactions between BzATP and the proteins at locations outside this site. Thus, it is concluded from these experiments that BzATP is not likely to be a useful probe for the ATP binding sites on the ion transport ATPases.  相似文献   

16.
Experiments from other laboratories conducted with Leishmania donovani promastigote cells had earlier indicated that the plasma membrane Mg2+-ATPase of the parasite is an extrusion pump for H+. Taking advantage of the pellicular microtubular structure of the plasma membrane of the organism, we report procedures for obtaining sealed ghost and sealed everted vesicle of defined polarity. Rapid influx of H+ into everted vesicles was found to be dependent on the simultaneous presence of ATP (1 mm) and Mg2+ (1 mm). Excellent correspondence between rate of H+ entry and the enzyme activity clearly demonstrated the Mg2+-ATPase to be a true H+ pump. H+ entry into everted vesicle was strongly inhibited by SCH28080 (IC50 = approximately 40 microm) and by omeprazole (IC50 = approximately 50 microm), both of which are characteristic inhibitors of mammalian gastric H+,K+-ATPase. H+ influx was completely insensitive to ouabain (250 microm), the typical inhibitor of Na+,K+-ATPase. Mg2+-ATPase activity could be partially stimulated with K+ (20 mm) that was inhibitable (>85%) with SCH28080 (50 microm). ATP-dependent rapid efflux of 86Rb+ from preloaded vesicles was completely inhibited by preincubation with omeprazole (150 microm) and by 5,5'-dithiobis-(2-nitrobenzoic acid) (1 mm), an inhibitor of the enzyme. Assuming Rb+ to be a true surrogate for K+, an ATP-dependent, electroneutral stoichiometric exchange of H+ and K+(1:1) was established. Rapid and 10-fold active accumulation of [U-(14)C]2-deoxyglucose in sealed ghosts could be observed when an artificial pH gradient (interior alkaline) was imposed. Rapid efflux of [U-(14)C]d-glucose from preloaded everted vesicles could also be initiated by activating the enzyme, with ATP. Taken together, the plasma membrane Mg2+-ATPase has been identified as an electroneutral H+/K+ antiporter with some properties reminiscent of the gastric H+,K+-ATPase. This enzyme is possibly involved in active accumulation of glucose via a H+-glucose symport system and in K+ accumulation.  相似文献   

17.
18.
Hukmani P  Tripathy BC 《Plant physiology》1994,105(4):1295-1300
The inhibitor sensitivity of the endoplasmic reticulum (ER) and plasma membrane (PM) calcium pumps of red beet (Beta vulgaris L.) were studied by measuring the ATP-driven accumulation of 45Ca2+ into isolated membrane vesicles. Both transporters were strongly inhibited by 50 [mu]mol m-3 erythrosin B, but only by 50% in the presence of 100 mmol m-3 vanadate. A number of inhibitors considered to be specific for the sarcoplasmic reticulum (SR)/ER-type calcium pump in animal cells were used to further characterize the PM and ER Ca2+-ATPases in red beet and were compared with their effect on the transport and hydrolytic activities of the PM and tonoplast H+-ATPases. The hydroquinones 2,5-di(tert-butyl)-1,4-benzohydroquinone and 2,5-di(tert-amyl)-1,4-benzohydroquinone produced around 20 and 40% inhibition of activity, respectively, of the PM and ER calcium pumps and the PM H+-ATPase when present at concentrations of 30 mmol m-3. In contrast, the vacuolar proton pump displayed a much higher sensitivity to these two compounds. Nonylphenol appeared to have a general inhibitory effect on all four membrane transport proteins and gave almost complete inhibition when present at a concentration of 100 mmol m-3. Thapsigargin and the structurally related compound trilobolide produced 50% inhibition of both the ER and PM calcium pumps at concentrations of 12.5 and 24 mmol m-3, respectively. The PM and tonoplast proton pumps were also sensitive to these compounds. The ER and PM calcium pumps were almost completely insensitive to cyclopiazonic acid (CPA) up to a concentration of 20 mmol m-3. When present at 100 mmol m-3 CPA caused 30% inhibition of the transport properties of all four ATPases. The high concentrations of all of the inhibitors of the SR/ER Ca-ATPase required to inhibit the red beet ER calcium pump, together with the similar effects on the PM calcium pump and the PM and tonoplast proton pumps, suggests that these hydrophobic compounds have a general nonselective action in red beet, possibly through disruption of membrane lipid-protein interactions.  相似文献   

19.
The reduction in (Ca2+ + Mg2+)-ATPase activity in the cystic fibrosis red blood cells can be attributed to a reduction in the number of active Ca2+ pumps per red blood cell and an altered interaction of calcium ions with the pump. Despite this, the normal free intracellular [Ca2+] is preserved due to a lower rate of passive calcium entry.  相似文献   

20.
Leishmania donovani requires actively transporting proton efflux pumps to survive the acidic environment of macrophage phagolysosomal vacuoles and to maintain an electrogenic H(+) gradient for nutrient uptake. The L. donovani genome contains a differentially expressed pair of genes, LDH1A and LDH1B, with homology to yeast H(+)-ATPases that are 98% identical in sequence with amino acid differences concentrated at the COOH-terminus (15 of last 37 differ), a region implicated in regulation of yeast and plant proton pumps. Functional complementation of a Saccharomyces cerevisiae strain deficient in endogenous H(+)-ATPase activity, support of yeast growth at low pH, and ability to acidify media demonstrate that LDH1A and LDH1B encode proton pumps. LDH1A and LDH1B encode a COOH-terminal autoinhibitory domain as COOH-truncated peptides support increased rates of growth in yeast, enhanced media acidification, increased enzyme activity (V(max)) and decreased K(m). This regulatory domain mediates differing function properties; LDH1A, but not LDH1B, supports yeast growth at pH 3 and LDH1A shows a greater ability to acidify media. Deletion of the last eight amino acids from LDH1B permits growth at pH 3 and increases media acidification, swapping of the COOH-tails between LDH1A and LDH1B results in LDH1A (with LDH1B tail) unable to support yeast growth at pH 3 and LDH1B (with LDH1A tail) now able to support growth at pH 3. Replacement of the COOH-terminal eight amino acids of LDH1B with those from LDH1A also confers the ability to support growth at pH 3. The complementation system for the Leishmania proton pumps in yeast described here provides a means to dissect the functional properties of the two isoforms, a convenient supply of protein for structural analysis and a model amenable to screening proton pump inhibitors for potential anti-leishmanial therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号