首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Tyrosine aminotransferase purified from epimastigotes of Trypanosoma cruzi displays an additional activity of alanine aminotransferase, absent in all other tyrosine aminotransferases characterized so far. Since the parasite's genome contains a high number of copies of the tyrosine aminotransferase gene, we could not rule out the possibility that two very similar proteins, with changed specificity due to a few amino acid substitutions, might be responsible for the two activities. We have now expressed in Escherichia coli a recombinant tyrosine aminotransferase as a fusion protein with glutathione S-trans-ferase. The purified fusion protein, intact or after thrombin cleavage, displays tyrosine aminotransferase and alanine aminotransferase activities with apparent K m values similar to those for the natural enzyme, thus proving that they belong to the same protein.  相似文献   

2.
Three activities of tyrosine aminotransferase (TAT; EC 2.6.1.5), the enzyme which catalyzes the first step of the tyrosine pathway leading to the formation of rosmarinic acid (alpha-O-caffeoyl-3,4-dihydroxyphenyllactic acid), have been extensively purified from cell suspension cultures of Anchusa officinalis L. and subsequently characterized. TAT-1, TAT-2, and TAT-3 differ slightly in native molecular weights (180,000-220,000) and are composed of subunits (4 X 43,000 for TAT-1 and 4 X 56,000 for TAT-2). All three enzymes show a pronounced preference for L-tyrosine over other aromatic amino acids, but TAT-2 and TAT-3 can also effectively utilize L-aspartate or L-glutamate as a substrate. For amino acceptor cosubstrates, either oxaloacetate or alpha-ketoglutarate can be utilized equally well by TAT-1, while the former is the most effective alpha-keto acid for TAT-2 and the latter is the best for TAT-3. All the TAT activities display high pH optima (8.8-9.6), and are inhibited by the tyrosine metabolite 3,4-dihydroxyphenyllactate. TAT-2 and TAT-3 are also inhibited by rosmarinic acid.  相似文献   

3.
Cloning and characterization of rac-like cDNAs from Arabidopsis thaliana   总被引:12,自引:0,他引:12  
Winge  Per  Brembu  Tore  Bones  Atle M. 《Plant molecular biology》1997,35(4):483-495
The Rho family of GTPases are in higher eukaryotes divided into 3 major subfamilies; the Rho, Rac and Cdc42 proteins. In plants, however, the Rho family is restricted to one large family of Rac-like proteins. From work with mammalian phagocytes the Rac proteins are known to activate a multicomponent NADPH-dependent oxidase which results in accumulation of H2O2, a process termed oxidative burst. In plants a similar oxidative burst is observed and plays an important role in its defence against pathogen infections, suggesting a similar role for the plant Rac-like proteins. The Rho family of GTPases proteins are also involved in control of cell morphology, and are also thought to mediate signals from cell membrane receptors.In a broad search for members of the Ras superfamily in plants, several new small GTP-binding proteins were found. We report here the identification and molecular cloning of 5 rac-like cDNAs from Arabidopsis thaliana, Arac1–5. The Rac-like proteins deduced from the cDNA sequences all share 80–95% homology, but show considerably more diversity on the nucleotide level, indicating that this is an ancient gene family. Four of the rac genes were found to be expressed in all tissues examined, but one gene, Arac2, was expressed exclusively in the root, hypocotyl and stem. Our results show that the rac gene family in A. thaliana consists of at least 10 different genes.  相似文献   

4.
The metabolic function of the predicted Arabidopsis tyrosine aminotransferase (TAT) encoded by the At5g53970 gene was studied using two independent knock-out mutants. Gas chromatography-mass spectrometry based metabolic profiling revealed a specific increase in tyrosine levels, supporting the proposed function of At5g53970 as a tyrosine-specific aminotransferase not involved in tyrosine biosynthesis, but rather in utilization of tyrosine for other metabolic pathways. The TAT activity of the At5g53970-encoded protein was verified by complementation of the Escherichia coli tyrosine auxotrophic mutant DL39, and in vitro activity of recombinantly expressed and purified At5g53970 was found to be specific for tyrosine. To investigate the physiological role of At5g53970, the consequences of reduction in tyrosine utilization on metabolic pathways having tyrosine as a substrate were analysed. We found that tocopherols were substantially reduced in the mutants and we conclude that At5g53970 encodes a TAT important for the synthesis of tocopherols in Arabidopsis.  相似文献   

5.
Serine biosynthesis in plants proceeds by two pathways; a photorespiratory pathway which is associated with photorespiration and a pathway from phosphoglycerate. A cDNA encoding plastidic phosphoserine aminotransferase (PSAT) which catalyzes the formation of phosphoserine from phosphohydroxypyruvate has been isolated from Arabidopsis thaliana . Genomic DNA blot analysis indicated that this enzyme is most probably encoded by a single gene and is mapped on the lower arm of chromosome 4. The deduced protein contains an N-terminal extension exhibiting the general features of a plastidic transit peptide, which was confirmed by subcellular organelle localization using GFP (green flourescence protein). Northern analysis indicated preferential expression of PSAT in roots of light-grown plants, supporting the idea that the phosphorylated pathway may play an important role in supplying the serine requirement of plants in non-green tissues. In situ hybridization analysis of PSAT revealed that the gene is generally expressed in all types of cells with a significantly higher amount in the meristem tissue of root tips.  相似文献   

6.
A new pathway for triacylglycerol biosynthesis involving a phospholipid:diacylglycerol acyltransferase (PDAT) was recently described (Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S, [2000] Proc Natl Acad Sci USA 97: 6487-6492). The LRO1 gene that encodes the PDAT was identified in yeast (Saccharomyces cerevisiae) and shown to have homology with animal lecithin:cholesterol acyltransferase. A search of the Arabidopsis genome database identified the protein encoded by the At5g13640 gene as the closest homolog to the yeast PDAT (28% amino acid identity). The cDNA of At5g13640 (AtPDAT gene) was overexpressed in Arabidopsis behind the cauliflower mosaic virus promoter. Microsomal preparations of roots and leaves from overexpressers had PDAT activities that correlated with expression levels of the gene, thus demonstrating that this gene encoded PDAT (AtPDAT). The AtPDAT utilized different phospholipids as acyl donor and accepted acyl groups ranging from C10 to C22. The rate of activity was highly dependent on acyl composition with highest activities for acyl groups containing several double bonds, epoxy, or hydroxy groups. The enzyme utilized both sn-positions of phosphatidylcholine but had a 3-fold preference for the sn-2 position. The fatty acid and lipid composition as well as the amounts of lipids per fresh weight in Arabidopsis plants overexpressing AtPDAT were not significantly different from the wild type. Microsomal preparations of roots from a T-DNA insertion mutant in the AtPDAT gene had barely detectable capacity to transfer acyl groups from phospholipids to added diacylglycerols. However, these microsomes were still able to carry out triacylglycerol synthesis by a diacylglycerol:diacylglycerol acyltransferase reaction at the same rate as microsomal preparations from wild type.  相似文献   

7.
8.
9.
Cloning and characterization of a cold-and ABA-inducible Arabidopsis gene   总被引:40,自引:0,他引:40  
We have identified by differential screening a novel Arabidopsis thaliana gene, called kin1, which is induced at +44 °C. The nucleotide sequences of both the genomic clone and the corresponding cDNA were determined. The deduced 6.5 kDa polypeptide has an unusual amino acid composition being rich in alanine, glycine and lysine. The gene belongs to a family of at least two genes. Northern blot analysis revealed that the level of kin1 mRNA is increased 20-fold in cold-treated plants. In addition to being expressed in cold, kin1 mRNAlso induced by water stress and the plant hormone abscisic acid (ABA) which has been suggested to be a common mediator for osmotic stress responses and cold acclimation in plants. Sequence comparisons showed that the kin1 gene product has similarities to fish antifreeze proteins (AFPs).  相似文献   

10.
Wu HJ  Yang Y  Wang S  Qiao JQ  Xia YF  Wang Y  Wang WD  Gao SF  Liu J  Xue PQ  Gao XW 《The FEBS journal》2011,278(8):1345-1357
In the present study, we report the identification of a new gene from the Bacillus subtilis B3 strain (aatB3), which comprises 1308 bp encoding a 436 amino acid protein with a monomer molecular weight of 49.1 kDa. Phylogenetic analyses suggested that this enzyme is a member of the Ib subgroup of aspartate aminotransferases (AATs; EC 2.6.1.1), although it also has conserved active residues and thermostability characteristic of Ia-type AATs. The Asp232, Lys270 and Arg403 residues of AATB3 play a key role in transamination. The enzyme showed maximal activity at pH 8.0 and 45 °C, had relatively high activity over an alkaline pH range (pH 7.0-9.0) and was stable up to 50 °C. AATB3 catalyzed the transamination of five amino acids, with L-aspartate being the optimal substrate. The K(m) values were determined to be 6.7 mM for L-aspartate, 0.3 mM for α-ketoglutarate, 8.0 mM for L-glutamate and 0.6 mM for oxaloacetate. A 32-residue N-terminal amino acid sequence of this enzyme has 53% identity with that of Bacillus circulans AAT, although it is absent in all other AATs from different organisms. Further studies on AATB3 may confirm that it is potentially beneficial in basic research as well as various industrial applications.  相似文献   

11.
12.
Structure and sequence of the human gene for tyrosine aminotransferase (TAT) was determined by analysis of cDNA and genomic clones. The gene extends over 10.9 kbl and consists of 12 exons giving rise to a 2,754 nucleotide long mRNA (excluding the poly(A)tail). The human TAT gene is predicted to code for a 454 amino acid protein of molecular weight 50,399 dalton. The overall sequence identity within the coding region of the human and the previously characterized rat TAT genes is 87% at the nucleotide and 92% at the protein level. A minor human TAT mRNA results from the use of an alternative polyadenylation signal in the 3' exon which is present but not used at the corresponding position in the rat TAT gene. The non-coding region of the 3' exon contains a complete Alu element which is absent in the rat TAT gene but present in apes and old world monkeys. Two functional glucocorticoid response elements (GREs) reside 2.5 kb upstream of the rat TAT gene. The DNA sequence of the corresponding region of the human TAT gene shows the distal GRE mutated and the proximal GRE replaced by Alu elements.  相似文献   

13.
14.
Yi K  Guo C  Chen D  Zhao B  Yang B  Ren H 《Plant physiology》2005,138(2):1071-1082
The actin cytoskeleton is required for many cellular processes in plant cells. The nucleation process is the rate-limiting step for actin assembly. Formins belong to a new class of conserved actin nucleator, which includes at least 2 formin homology domains, FH1 and FH2, which direct the assembly of unbranched actin filaments. The function of plant formins is quite poorly understood. Here, we provide the first biochemical study of the function of conserved domains of a formin-like protein (AtFH8) from Arabidopsis (Arabidopsis thaliana). The purified recombinant AtFH8(FH1FH2) domain has the ability to nucleate actin filaments in vitro at the barbed end and caps the barbed end of actin filaments, decreasing the rate of subunit addition and dissociation. In addition, purified AtFH8(FH1FH2) binds actin filaments and severs them into short fragments. The proline-rich domain (FH1) of the AtFH8 binds directly to profilin and is necessary for nucleation when actin monomers are profilin bound. However, profilin inhibits the nucleation mediated by AtFH8(FH1FH2) to some extent, but increases the rate of actin filament elongation in the presence of AtFH8(FH1FH2). Moreover, overexpression of the full-length AtFH8 in Arabidopsis causes a prominent change in root hair cell development and its actin organization, indicating the involvement of AtFH8 in polarized cell growth through the actin cytoskeleton.  相似文献   

15.
16.
Cloning and characterization of Arabidopsis thaliana pyridoxal kinase   总被引:1,自引:0,他引:1  
Lum HK  Kwok F  Lo SC 《Planta》2002,215(5):870-879
Pyridoxal kinase (PK; EC 2.7.1.35), a key enzyme in vitamin B(6) metabolism, was cloned from Arabidopsis thaliana (L.) Heynh. and characterized. The amino acid sequence of the A. thaliana PK was found to be similar to the mammalian enzyme, with a homology of more than 40%. Characterization studies showed that the kinase is a dimeric molecule consisting of two identical subunits, each subunit having a molecular mass of approximately 35 kDa. The enzyme exhibited maximal activity at pH 6.0. Similar to the mammalian enzyme, the enzyme from A. thaliana preferred Zn(2+) instead of the commonly used Mg(2+) as the divalent cation for catalysis. Under optimal conditions, the V(max) of the enzyme was 604 nmol pyridoxal 5'-phosphate (PLP) mg(-1) min(-1), and the K(m) values for pyridoxal and ATP were 688 micro M and 98 micro M, respectively. Examination of levels of enzyme expression showed that leaves, stems, roots and flowers can generate PLP independently at similar levels. Furthermore, expression of the PK gene in A. thaliana seeds was found to start 60 h after imbibition. Results from the present study suggest that plant tissues depend on PK for the production of PLP.  相似文献   

17.
In this paper, we describe the cloning of the MS5 gene, a gene essential for male fertility in Arabidopsis . We previously defined the MS5 locus by characterizing an EMS-induced allele, ms5–1 . We identified a new allele of MS5 ( ms5–2 ) that was T-DNA-generated and used the T-DNA tag to clone the gene. Sequencing of mutant and wild-type alleles together with complementation of the ms5–1 mutant phenotype with a wild-type genomic clone confirmed the identity of the gene. Differences between the phenotypes of the two mutant alleles could be attributed to differences in mutant gene structure. The semi-dominant and dominant negative phenotypes of the ms5–2 mutant probably result from production of a truncated polypeptide. An unknown locus in Landsberg erecta can counteract the dominant negative phenotype of ms5–2 . Mutations in MS5 cause the formation of ‘polyads’– tetrads with more than four pools of chromosomes after male meiosis. Similarities between the MS5 sequence and that of a number of proteins were found; two that may be significant were with a synaptonemal complex protein and with a regulatory subunit of a cyclin-dependent kinase. The MS5 gene is a member of a small gene family highly conserved amongst plant species.  相似文献   

18.
19.
In order to study whether hormone-sensitive tyrosine aminotransferase exists in tissues other than liver, we have devised means to separate the liver-specific enzyme from other enzymes that transaminate tyrosine and to distinguish between the authentic enzyme and the principal "pseudotyrosine aminotransferases," which are the isoenzymes of aspartate aminotransferase. We accomplish this by suppressing proteolysis of the authentic enzyme using a buffer of pH 8.0 containing 0.1 M potassium chloride; enzyme extracted from liver in this buffer migrates as a single peak during chromatography on hydroxylapatite and represents the undegraded native form. A much smaller peak of tyrosine aminotransferase activity elutes at higher ionic strength and corresponds to a mixture of mitochondrial aspartate aminotransferase and partially degraded tyrosine aminotransferase. Cytosolic aspartate aminotransferase, in contrast, adsorbs weakly to the hydroxylapatite column and transaminates tyrosine very poorly although it readily utilizes monoiodotyrosine. The aspartate aminotransferase isoenzymes separate completely from tyrosine aminotransferase during chromatography on DEAE-Sepharose CL-6B. By combining these techniques with the use of specific antibodies, we show that brain, heart, and kidney do not contain tyrosine aminotransferase. Furthermore, we locate both isoenzymes of aspartate aminotransferase on polyacrylamide gels and show that both react histochemically as tyrosine aminotransferases when monoiodotyrosine is used as substrate. Use of these techniques, therefore, permits unambiguous identification of tyrosine aminotransferase and its separation from the background of nonspecific transamination.  相似文献   

20.
Purification of unmodified tyrosine aminotransferase from rat liver requires that the activity of cathepsin T be minimized, and that losses of enzyme due to dilution or oxidation by prevented. The enzyme was stabilized by pyridoxal 5'-phosphate, dithiothreitol, and potassium phosphate, but was destabilized by L-tyrosine or L-glutamate. A rapid, efficient method for purification of this enzyme included the following steps: twenty-fold induction with a high-casein diet plus dexamethasone phosphate administered in the drinking water; a heat step (65 degrees C) followed by precipitation from 0.20 M sucrose at pH 5.0; and small-scale chromatography on DEAE-cellulose, hydroxyapatite and CM-Sephadex C50 at pH 6.0. These steps yielded more than 10 mg of native enzyme from 35 rats, with a recovery of 68% of the initial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号