首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complete amino acid sequence of a high mobility group (HMG) nonhistone chromosomal protein of the ciliated protozoan Tetrahymena pyriformis (GL strain) was determined. This protein was extracted with 0.5 M HClO4 together with histone H1 (molar ratio 1:1) from the whole histone extract, then purified by gel filtration and reverse-phase HPLC. The HMG protein showed a single electrophoretic band on SDS gel electrophoresis. The amino acid sequence was determined by Edman degradation of intact protein, BrCN fragments, and their staphylococcal protease and tryptic peptides. Thus the total sequence, consisting of 99 amino acid residues and having a molecular weight of 11,626, was completely determined. Phosphorus analysis of the tryptic peptides, containing serine or threonine, showed that this HMG protein was phosphorylated at two positions, each 6-7%, and contained 0.15 mol phosphate/mol protein. This Tetrahymena HMG is rather similar to the central part of vertebrate HMG 1 in terms of the amino acid sequence and the hydropathy profile.  相似文献   

2.
Over 99% of thyroxine (T4), the major form of thyroid hormone in plasma, is bound to the plasma glycoprotein thyroxine-binding globulin (TBG). The carbohydrate composition of TBG (14.6% by weight) consists of mannose, galactose, N-acetylglucosamine, and N-acetylneuraminic acid in the molar ratios of 11:9:16:10 per mol of glycoprotein. No fucose or N-acetylgalactosamine were detected. Amino acid analyses were performed. Glycopeptides, prepared by exhaustive pronase treatment of the glycoprotein, were separated by gel filtration and ion exchange chromatography. All glycopeptides contained the four sugars present in the native glycoprotein. One-fourth of the glycopeptide fraction was resolved into a discrete component, glycopeptide I. The remaining glycopeptides were a mixture termed glycopeptides II and III. Glycopeptides II and III were resolved into two discrete carbohydrate units, termed oligosaccharides A and B, by alkaline-borohydride treatment and DEAE-cellulose chromatography. We propose that TBG contains four oligosaccharide chains as calculated from the molecular weights of the glycopeptides and from compositional data assuming 1 asparagine residue/glycopeptide. The carbohydrate structures of the glycopeptides and relative affinities of TBG, glycopeptides and oligosaccharides for hepatocyte plasma membrane binding are presented in the accompanying paper (Zinn, A.B., Marshall, J.S., and Carlson, D.M. (1978) J. Biol. Chem. 253, 6768-6773.  相似文献   

3.
Isolation and properties of human kappa-casein   总被引:1,自引:0,他引:1  
Human kappa-casein was isolated from human whole casein by gel filtration with Sephadex G-200 and hydroxylapatite chromatography in the presence of sodium dodecyl sulfate (SDS). The kappa-casein was calcium-insensitive and did stabilize human beta-casein and bovine alpha s1-casein against precipitation by calcium ions. Formation of micelles from human beta- and kappa-caseins, and calcium ions was confirmed by electron microscopic observation. On SDS-polyacrylamide gel electrophoresis (SDS-PAGE), a single band was obtained. The formation of para-kappa-caseins by chymosin was confirmed by SDS-PAGE. Two para-kappa-caseins with apparent molecular weights of 13,000 and 11,000 appeared. The molecular weight of intact human kappa-casein was estimated to be approximately 33,000. The human kappa-casein contained about 40% carbohydrate (15% galactose, 3% fucose, 15% hexosamines, and 5% sialic acid) and 0.10% (1 mol/mol) phosphorus. Its amino acid composition was similar to that of bovine kappa-casein except for serine, glutamic acid, and lysine contents.  相似文献   

4.
Glycogen phosphorylase from macroplasmodia of Physarum polycephalum was purified 76-fold to homogeneity. The native enzyme migrated as a single protein band on analytical disc gel electrophoresis coinciding with phosphorylase activity. After reduction in the presence of sodium dodecylsulfate one protein band was detectable which corresponded to an Mr of 93 000. The molecular weight of the native enzyme determined by gel sieving or gradient-polyacrylamide gel electrophoresis was 172000 and 186000, respectively. The enzyme contained about 1 mol pyridoxal 5'-phosphate and less than 0.1 mol covalently bound phosphate per mol subunit. The amino acid composition of the enzyme was determined. In the direction of phosphorolysis the kinetic data were determined by initial velocity studies, assuming a rapid equilibrium random mechanism. Glucose 1-phosphate and GDP-glucose were competitive inhibitors toward phosphate and noncompetitive to glycogen. 5'-AMP, a weak activator of the enzyme, counteracted the glucose-1-phosphate inhibition completely. Physarum phosphorylase was compared with phosphorylases from other sources on the basis of chemical and kinetic properties. No evidence for the presence of phosphorylated forms has yet been found.  相似文献   

5.
High-molecular-weight (high-Mr) kininogen was purified from horse plasma by chromatography on columns of DEAE-Sephadex A-50, CM-Sephadex C-50, p-chlorobenzylamine-Sepharose and Sephadex G-150. The yield was about 150 mg from 81 of fresh plasma. The purified material gave a single band on sodium dodecylsulfate/polyacrylamide gel electrophoresis and a single precipitin line on immunodiffusion and immunoelectrophoresis. The molecular weight of horse high-Mr kininogen was estimated to be 78000 by dodecylsulfate gel electrophoresis using the Ferguson plot. Its polypeptide content was determined to be 86% by amino acid analysis and there was a total of 581 amino acid residues/molecule of protein. The kininogen contained a total of 13.9% carbohydrates, consisting of hexoses (7.8%), glucosamine (1.9%), galactosamine (0.6%) and sialic acid (3.6%). On incubation of horse high-Mr kininogen with bovine and horse plasma kallikreins, several fragments which contained extremely high levels of histidine, were liberated, in addition to kinin. After the liberation of kinin and histidine-rich fragments, a protein free of kinin and its fragments was isolated. This protein consisted of two polypeptide chains, heavy chain and light chain, which are bridged by disulfide bonds. The molecular weight and amino acid composition of the heavy chain and the light chain from horse high-Mr kininogen were very similar to those of the heavy and light chains from bovine high-Mr kininogen, respectively. From these results, it was revealed that horse high-Mr kininogen is quite similar to bovine high-Mr kininogen in terms of their physicochemical and chemical properties, although they are immunologically distinguishable.  相似文献   

6.
A cadmium and zinc-binding protein similar to metallothionein has been isolated from Tetrahymena pyriformis exposed to cadmium chloride. This protein contained 32.4% half-cystine, 23.7% acidic amino acids and 10.1% lysine. The amino acid composition was similar to that of copper-thionein of yeast. The metal-binding protein of Tetrahymena pyriformis contained 3.7 g atom cadmium, 0.7 g atom zinc, and O.l g atom copper per mol, and shpwed the spectral characteristics of cadmium-thionein, i.e., a broad shoulder at 250 nm and low residual absorption at 280 nm. The molecular weight of this protein was determined to be 11,000 by gel filtration in 6 M guanidine hydrochloride, although it moved like a protein with a molecular weight of 30,000 on ordinary gel filtration.  相似文献   

7.
We previously presented evidence that aspirin (acetylsalicylic acid) inhibits prostaglandin synthetase by acetylating and active site of the enzyme. In the current work, we have labeled the enzyme from an aceton-pentane powder of sheep vesicular gland using [acetyl-3H]aspirin and purified the [3H]acetyl-protein to near homogeneity. The final preparation contains protein of a single molecular weight (85 000) and an amino-terminal sequence of Asp-Ala-Gly-Arg-Ala. The [3H]acetyl-protein contained 0.5 mol of acetyl residues per mol of protein based on amino acid composition but only a single sequence was found.  相似文献   

8.
Three electrophoretically distinct superoxide dismutases (EC 1.15.1.1) were observed in the crude extracts from Pseudomonas ovalis. One of these was isolated as an iron-containing superoxide dismutase. It contained 1.4 gatoms of Fe per mol of enzyme, and had a specific activity of 3900 units per mg of protein. A crystallized enzyme contained 1.1 gatoms of Fe per mol of enzyme, and had a specific activity of 3100 units per mg of protein. The results of sedimentation equilibrium and gel filtration indicated a molecular weight of 40,000. S020,W was estimated as 3.18 by sedimentation velocity study. Sodium dodecyl sulfate gel electrophoresis indicated that the enzyme was composed of two subunits, and had a molecular weight of 19,500. Analysis for sulfhydryl groups showed that there were four such groups per mol of enzyme. The spectrum of visible and ultraviolet region, the amino acid composition, the CD spectrum of the enzyme, and the effect of certain compounds on the enzyme, were studied and compared with iron-containing superoxide dismutases isolated from other organisms.  相似文献   

9.
In the outer membrane of P. aeruginosa, a protein of apparent molecular weight 8,000 (protein I) is present as a major protein. Purification and chemical analysis of protein I were carried out. This protein was purified by essentially the same procedure as for the purification of the E. coli lipoprotein, which was developed by Inouye et al. (J. Bacteriol. (1976) 127, 555--563). The amino acid composition of protein I was determined. Protein I lacks proline, valine, isoleucine, phenylalanine, tryptophan, and half-cystine. Fatty acid analysis of the protein revealed that it contained 0.89 mol of fatty acids per mol of protein. Among the fatty acids hexadecanoic acid (C16:0) was predominant. In an in vivo labeling experiment, [2-3H]glycerol was incorporated into protein I. A protein with similar mobility to protein I on urea-SDS polyacrylamide gel electrophoresis was isolated from the purified peptidoglycan of P. aeruginosa by trypsin digestion. The amino acid composition of this protein was essentially the same as that of protein I. These results indicate that the outer membrane of P. aeruginosa contains a protein analogous to the E. coli lipoprotein, although considerable differences were observed in the amino acid composition and the fatty acid content.  相似文献   

10.
An adipose-specific protein has been purified from murine 3T3-L1 adipocytes to greater than 98% homogeneity. A purification procedure was developed utilizing a combination of gel filtration, cation exchange chromatography, and covalent chromatography on activated-thiol Sepharose 4B. The protein exists as a single polypeptide with a molecular weight of about 15,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The protein contains 2 mol of reduced sulfhydryl groups per mol of protein and an amino terminus blocked to sequencing. Automated Edman degradation of trypsin and CNBr-derived peptides has verified that the purified protein is that predicted by the mRNA (Bernlohr, D. A., Angus, C. W., Lane, M. D., Bolanowski, M. A., and Kelly, T. J. Jr. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 5468-5472). Based on sequence analysis, the 15-kDa adipocyte protein is considered to be a member of a family of tissue-specific, cytosolic lipid-binding proteins. Utilizing a liposome assay, the purified protein binds both oleic acid and retinoic acid saturably with approximately 1 mol of ligand bound per mol of protein. Dissociation constants determined from Scatchard analysis were 3 and 50 microM, respectively. This report represents the first demonstration of a member of this family of structurally related proteins that is capable of binding both fatty acid and retinoic acid. Hence, we propose the name adipocyte lipid-binding protein, or ALBP.  相似文献   

11.
An analysis was made of the protein composition of a fraction of postsynaptic densities (PSDs) prepared from rat brain. Protein makes up 90% of the material in the PSD fraction. Two major polypeptide fractions are present, based on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The major polypeptide fraction has a molecular weight of 53,000, makes up about 45% of the PSD protein, and comigrates on gels with a major polypeptide of the synaptic plasma membrane. The other polypeptide band has a molecular weight of 97,000, accounts for 17% of the PSD protein, and is not a prominent constituent of other fractions. Six other polypeptides of higher molecular weight (100,000–180,000) are consistently present in small amounts (3–9% each). The PSD fraction contains slightly greater amounts of polar amino acids and proline than the synaptic plasma membrane fraction, but no amino acid is usually prominent. The PSD apparently consists of a structural matrix formed primarily by a single polypeptide or class of polypeptides of 53,000 molecular weight. Small amounts of other specialized proteins are contained within this matrix.  相似文献   

12.
The complete nucleotide sequence of the glucoamylase gene GLU1 from the yeast Saccharomycopsis fibuligera has been determined. The GLU1 DNA hybridized to a polyadenylated RNA of 2.1 kilobases. A single open reading frame codes for a 519-amino-acid protein which contains four potential N-glycosylation sites. The putative precursor begins with a hydrophobic segment that presumably acts as a signal sequence for secretion. Glucoamylase was purified from a culture fluid of the yeast Saccharomyces cerevisiae which had been transformed with a plasmid carrying GLU1. The molecular weight of the protein was 57,000 by both gel filtration and acrylamide gel electrophoresis. The protein was glycosylated with asparagine-linked glycosides whose molecular weight was 2,000. The amino-terminal sequence of the protein began from the 28th amino acid residue from the first methionine of the putative precursor. The amino acid composition of the purified protein matched the predicted amino acid composition. These results confirmed that GLU1 encodes glucoamylase. A comparison of the amino acid sequence of glucoamylases from several fungi and yeast shows five highly conserved regions. One homology region is absent from the yeast enzyme and so may not be essential to glucoamylase function.  相似文献   

13.
Fatty acid synthetase was purified 13-fold from lactating rabbit mammary glands by a procedure which involved chromatography on DEAE-cellulose, ammonium sulphate precipitation and gel filtration on Sepharose 4B. The preparation was completed within two days and over 100 mg of enzyme was isolated from 100--150 g of mammary tissue, which represented a yield of over 40%. The preparation was homogeneous by the criteria of polyacrylamide gel electrophoresis and ultracentrifugal analysis. The sedimentation constant, S20,w was 13.3 S, the absorption coefficient, A280nm1%, measured refractometrically was 10.0 +/- 0.1, and the amino acid composition was determined. The subunit molecular weight determined by gel electrophoresis in the presence of sodium dodecyl sulphate was 252,000 +/- 6,000, and the molecular weight of the native enzyme measured by sedimentation equilibrium was 515,000. These experiments indicate that at the concentrations which exist in mammary tissue (2--4 mg/ml) fatty acid synthetase is a dimer. The purified enzyme did however show a tendency to dissociate to a monomeric 9-9S species on storage for several days or following exposure to a low ionic strength buffer at pH 8.3. There was only a small quantity of alkali labile phosphate (0.2 molecules per subunit) bound covalently to the purified enzyme. Acetyl-CoA carboxylase was purified 300-fold in a 50% yield within 24 h by ammonium sulphate and polyethylene glycol precipitations [Hardie, D.G. and Cohen, P. (1978) FEBS Lett. 91, 1--7]. The preparation was in a state approaching homogeneity as judged by polyacrylamide gel electrophoresis, gel filtration on Sepharose 4B and ultracentrifugal analysis. The sedimentation constant, S20,w, was 50.5 S, the absorption index, A280nm1%, was 14.5 +/- 0.7, and the amino acid composition was determined. The subunit molecular weight of acetyl-CoA carboxylase determined by gel electrophoresis in the presence of sodium dodecyl sulphate was identical to that of fatty acid synthetase (252,000) as shown by electrophoresis of a mixture of the two proteins. The preparations also contained two minor components of molecular weight 235,000 and 225,000, which appear to be derived from the major species of mol. wt 252,000. A large emount of phosphate (3.2 molecules per subunit) was found to be bound covalently to the purified enzyme. The properties of fatty acid synthetase and acetyl-CoA carboxylase are compared to those obtained by other workers.  相似文献   

14.
Inhibitor-1 is a protein which inhibits phosphorylase phosphatase only when it has been phosphorylated by cyclic-AMP-dependent protein kinase [Huang, F. L. and Glinsmann, W. H. (1976) Eur. J. Biochem. 70, 419--426]. Inhibitor-1 was purified by a heat treatment at 90 degrees C, precipitation with ammonium sulphate, chromatography on DEAE-cellulose, gel filtration on Sephadex G-100, and finally rechromatography of the phosphorylated protein on DEAE-cellulose, The protein was purified 4000-fold and 1.5 mg per 1000 g muscle was obtained in seven days corresponding to an overall yield of 15-20%. The purified protein was in a state approaching homogeneity as judged by the criteria of polyacrylamide-gel electrophoresis and ultracentrifugal analysis. The concentration of inhibitor-1 in vivo was calculated to be 1.5 micron, which is at least as high as the concentration of phosphorylase phosphatase. The amino acid composition of inhibitor-1 showed several unusual features. Glutamic acid and proline accounted for nearly one third of the residues, tyrosine, tryptophan and cysteine were absent, and the content of aromatic amino acids was very low. The molecular weight measured by sedimentation equilibrium centrifugation was 19200 and by amino acid analysis was 20800. These values were lower than the mol. wt 26000 determined empirically by gel electrophoresis in the presence of sodium dodecyl sulphate, and much lower than the apparent molecular weight of 60000 estimated by gel filtration on Sephadex G-100. The gel filtration behaviour, stability to heating at 100 degrees C and amino acid composition suggest that inhibitor-1 may possess little ordered structure. The phosphorylated from of inhibitor-1 contained close to one molecule of covalently bound phosphate per mole of protein, which is consistent with the previous finding of a unique decapeptide sequence at the site of phosphorylation, Ile-Arg-Arg-Arg-Arg-Pro-Thr(P)-Pro-Ala-Thr- [Cohen, P., Rylatt, D. B. and Nimmo, G. A. (1977) FEBS Lett. 76, 182-186].the phosphorylated form of inhibitor-1 inhibited phosphorylase phosphatase activity (0.02U) by 50% at a concentration of only 7.0 nM in the standard assay, but the phosphorylated decapeptide was 1000-2000 times less effective as an inhibitor.  相似文献   

15.
An acidic protein fraction with an apparent molecular weight of 34 000 has been isolated from the Cetavlon-treated, mucin-free supernatant of the armadillo submandibular gland 0.01 M NaCl extract. This purified material, which was obtained in a yield of 0.45%/g wet gland, contains 24 mol % acidic amino acids and 4 mol % basic amino acids. Hexosamines, sialic acid, and neutral sugars represent 7% of the dry sample weight. In polyacrylamide gel and cellulose acetate electrophoresis, a single protein band was observed. The acidic protein fraction is highly reactive with the Lowry phenol reagent, giving a protein value 83% higher than that obtained by summation of its anhydrous amino acids, and is explained by the occurrence of peptide linkages peculiar to this material. The presence of other basophilic components besides mucus glycoproteins within the salivary gland of the armadillo may have physiological significance.  相似文献   

16.
A proteolipid was isolated from the chloroform–methanol (2:1, by vol.) extract of defatted soybean meals by a modified Folch method. The proteolipid gave a yield of 0.05% of the defatted meals, and the ratio of protein and lipid was neary 3:4. The complex gave a single band containing both protein and lipid on polyacrylamide gel electrophoresis. TLC analysis of the lipid moiety showed that the major components were glycolipids and phospholipids. The protein moiety contained more hydrophobic amino acids and less acidic amino acids in comparison with the amino acid composition of soybean globulin. The protein moiety contained two kinds of protein component (I and II) which have molecular weights of 13,000 (I) and 15,000 (II) on SDS-urea polyacrylamide gel electrophoresis, and N-terminal amino acids of alanine (I) and glutamic acid (II). The apoprotein is a new protein and different from the whey proteins or globulins of soybean.  相似文献   

17.
11-cis-Retinal-binding protein from bovine retina has been purified to apparent homogeneity by gel filtration ion exchange, and hydroxylapatite chromatography. The molecular weight determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 33,000. A value of 36,000 was obtained by gel filtration. With 11-cis-retinal bound to the protein a bleachable spectral peak with maximum absorption at 425 nm was observed. When isolated without addition of exogenous retinal the purified binding protein displayed absorbance maxima at 340 and 425 nm, indicating the occurrence of two ligands in addition to the typical protein absorbance. The endogenous ligands responsible for these maxima were tentatively identified as 11-cis-retinol and 11-cis-retinal, respectively. The binding protein did not cross-react with antibodies prepared against bovine opsin, and its amino acid composition was distinct from that of opsin. The amount of retinal-binding protein extracted was approximately 1 nmol/retina or 1 mol of binding protein/20 mol of opsin. Its specificity and relative abundance suggest that the 11-cis-retinal-binding protein may play a major role in the visual cycle.  相似文献   

18.
Chemistry of axial filaments of Treponema zuezerae   总被引:10,自引:3,他引:7       下载免费PDF全文
Highly purified axial filaments have been prepared from the spirochete Treponema zuelzerae, which possess a fine structure similar to the "beaded" form of bacterial flagella. The preparations consist largely of protein but also contain small amounts of hexose (less than 1%). The buoyant density of these filaments is 1.29 g/cm(3). At pH 4.3, in the presence of 4 m urea and 10(-3)m ethylenediaminetetraacetic acid, filament protein migrates as a single band in acrylamide gel electrophoresis. Filaments dissociate to subunits in acid, alkali, urea, guanidine or with heating, indicating that these subunits are not covalently bonded in the organized structure. This is consistent with amino acid analysis which reveals that, like bacterial flagella, the filaments are completely lacking in half-cystine. Sedimentation equilibrium measurements on dissociated axial filaments in 6 m guanidine show that the subunits are homogeneous with respect to molecular weight. A weight-average molecular weight of 37,000 +/- 1,600 daltons is obtained from these measurements. The amino acid composition of axial filaments is similar to that of various types of flagellin molecules, but the filament protein is somewhat richer in tyrosine, phenylalanine, and proline than flagellin. Tryptic peptide maps of axial filaments are consistent with the amino acid composition calculated for a molecular weight of 37,000 daltons. No amino terminal end group could be detected by the dansyl chloride method, suggesting that this end group might be blocked in the axial filament protein. The results obtained show that the axial filaments of T. zuelzerae are similar chemically to bacterial flagella and suggest that they are composed of aggregates of a single species of protein subunit.  相似文献   

19.
Kim SW  Kim JA  Kim E  Ro YT  Song T  Kim YM 《Molecules and cells》2002,14(2):214-223
A blue protein was purified from the Methylobacillus sp. strain SK1 that is grown on methanol in the presence of copper ion. This protein was found to be a monomer with a molecular weight of 13,500. The Isoelectric point of the protein was estimated to be 8.8. The spectrum of the protein that was treated with ferricyanide showed a broad peak around 620 nm, but that of the dithionite-treated protein revealed no peaks. It contained 0.83 mol of EDTA-stable copper per mol protein. Under air, the protein accelerated the inactivation of methanol dehydrogenase (MDH). The protein was reducible by phenazine methosulfate or by active MDH that was prepared from cells that were grown in the absence of added copper, but not by methanol, dichlorophenol indophenol, or inactive MDH that was prepared from cells that were grown in the presence of added copper. It was also reducible by active MDH in the presence of methanol. The absorption peak at 340 nm of the active MDH disappeared after the enzyme was treated with ferricyanide, hydrogen peroxide, or the purified blue protein. The inactive MDH also showed no peak at 340 nm. The 340-nm peak was not recovered after incubation of the inactive MDH and blue protein-treated active MDH with dithionite or methanol. The inactive MDH and blue protein-treated active MDH co-migrated with the active MDH preparation on nondenaturing polyacrylamide gel, and contained two non-identical subunits with molecular weights that were identical to those of the active MDH. The N-terminal amino acid sequence of the protein was Ala-Gly-Cys-Ser-Val-Asp-Val-Glu-Ala-Asn-Asp-Ala-Met-Gln-Phe. An analysis of the amino acid composition revealed that the protein contained no tryptophan. It contained three cysteines per mol protein. The blue protein in Methylobacillus sp. strain SK1 was produced only in the cells that were grown in the copper-supplemented medium.  相似文献   

20.
Zn-binding protein in liver of the partially hepatectomized rat was purified by column chromatography on Sephadex G-75 and DEAE-cellulose. Homogeneity was judged by polyacrylamide-disc-gel electrophoresis. The molecular weight determined by gel-permeation chromatography in 6 M-guanidine hydrochloride was 6700. This value is in good agreement with the molecular weight calculated from the amino acid composition, which was 6073. Zn-binding protein was composed of 61 amino acid residues, and the distinctive features include an extremely high content of cysteine, which accounted for one-third of the total amino acid residues, and an absolute absence of aromatic amino acids as well as of histidine, leucine and arginine. The amino acid composition was similar to that of the metallothioneins previously isolated from rat liver and mouse liver. These observations suggest that the Zn-binding protein can be classified as a type of metallothionein. Zn-binding protein contained 8.2g-atoms of zinc per mol and traces of copper, but no cadmium. The molar ratio of thiol groups to zinc was calculated to be 2.5:1. Possible roles of this Zn-binding protein in the transport and storage of zinc in the liver are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号