首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histamine-stimulated accumulation of [3H]inositol monophosphate ([3H]IP1) in lithium-treated slices of rat cerebral cortex was inhibited by gamma-aminobutyric acid (GABA) (IC50 0.30 +/- 0.03 mM). The maximum level of inhibition was 69 +/- 2%. GABA alone caused a small stimulation of basal accumulation of [3H]IP1. The inhibitory action of GABA on the response to histamine was mimicked by the GABAB agonist (-)-baclofen, IC50 0.69 +/- 0.04 microM, which was 430-fold more potent as an inhibitor than the (+)-isomer. (-)-Baclofen also inhibited histamine-induced formation of [3H]inositol bisphosphate ([3H]IP2) and [3H] inositol trisphosphate ([3H]IP3). Inhibition curves for GABA and for (-)-and and (+)-baclofen had Hill coefficients greater than unity. (-)-Baclofen, at concentrations that caused inhibition of histamine-induced [3H]IP1 accumulation, did not alter the basal level of [3H]IP1 or the incorporation of [3H]inositol into total inositol phospholipids. Isoguvacine, a GABAA agonist, had no effect on either the histamine-stimulated or basal accumulation of [3H]IP1. GABA had no effect on carbachol-stimulated [3H]IP1 formation.  相似文献   

2.
Histamine (0.5 mM) stimulated the cyclic AMP content of cell suspensions containing greater than 80% parietal cells. Epidermal growth factor (EGF) inhibited this stimulatory effect of histamine, but had no effect on basal cyclic AMP content. The half-maximally effective concentration of EGF for inhibition of histamine-stimulated cyclic AMP was 3.9 nM. The equivalent measurement for the inhibition of histamine-stimulated aminopyrine accumulation was 3.0 nM. Aminopyrine accumulation was measured because it provides an index of the secretory activity of the cell. The cyclic AMP phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) prevented the inhibitory effect of EGF on cyclic AMP content. This effect of IBMX was not caused by its ability to raise cellular cyclic AMP content in the presence of histamine. Prevention by IBMX of the inhibitory action of EGF on histamine-stimulated aminopyrine accumulation had been shown previously [Shaw, Hatt, Anderson & Hanson (1987) Biochem. J. 244, 699-704]. EGF stimulated prostaglandin E2 (PGE2) production in the cell fraction containing greater than 80% parietal cells, with the half-maximally effective concentration being 7.5 nM. EGF was ineffective in stimulating PGE2 production if the cell fraction was depleted of parietal cells (12%), or if 0.5 mM-histamine was added to the enriched parietal-cell fraction. In conclusion, EGF may inhibit histamine-stimulated acid secretion by decreasing the cyclic AMP content of parietal cells. This effect could be mediated by an increase in cyclic AMP phosphodiesterase activity, but it is unlikely to involve an effect of EGF on parietal-cell prostaglandin production.  相似文献   

3.
The effect of phospholipid methylation on both [3H]diazepam and [3H]GABA ( [3H]gamma-aminobutyric acid) binding to crude synaptic plasma membrane from rat cerebellum has been studied. S-Adenosylmethionine (SAM) stimulates [3H]methyl group incorporation into membrane phospholipids and enhances [3H]diazepam binding by increasing the apparent Bmax. Conversely, inhibition of [3H]methyl group transfer from [3H]SAM to phospholipids by preincubation with SAM at 0 degrees C or with SAH abolishes the increase of binding. After preincubation with SAM, analysis of the GABA binding reveals the presence of binding sites with high affinity, a property absent in control membranes preincubated without SAM. Among the neurotransmitter bindings tested, only those of GABA and benzodiazepine in the cerebellum and beta-adrenergic ligands in the cerebral cortex are enhanced upon stimulation of phospholipid methyltransferase activity. [3H]Dihydromorphine, [3H]dihydro-alpha-ergokryptine and [3H]spiroperidol bindings are not affected by SAM. The present data suggest an involvement of phospholipid methylation in regulation of both [3H]GABA and [3H]-diazepam binding.  相似文献   

4.
Histamine stimulated [3H]methyl group incorporation into phospholipids in crude synaptic membranes of rat whole brain (without cerebellum) in modified Krebs-Ringer solution containing the methyl donor S-adenosyl-[methyl-3H]methionine. The transient increase of [3H]methyl incorporation into lipids peaked within 45 s after addition of histamine (5 or 10 microM) and decreased the basal level in 60 s. Histamine-stimulated [3H]methyl incorporation was increased linearly in a protein concentration-dependent manner. The stimulation was temperature and histamine concentration dependent. TLC analysis of a chloroform/methanol extract indicated that radioactive phospholipids (phosphatidylcholine, phosphatidyl-N,N-dimethylethanolamine, and phosphatidyl-N-monomethylethanolamine) accounted for 60-65% of the total radioactivity recovered. The synaptosomal fraction had the highest specific activity of all the subfractions of crude synaptic membranes (P2). Histamine-induced [3H]methyl incorporation was inhibited by addition of cimetidine (0.01-10 microM) or famotidine (0.01-1.0 microM) in a concentration-dependent manner but not by mepyramine (0.1-10 microM) or diphenhydramine (0.1-10 microM). The stimulation of [3H]methyl incorporation was also observed by addition of impromidine (0.01-10 microM) or dimaprit (1.0 microM-1.0 mM) in a concentration-dependent manner but not by 2-pyridylethylamine (1.0 microM-1.0 mM). These results indicate that phospholipid methylation is induced by histamine acting on H2 receptors in rat brain synaptosomes.  相似文献   

5.
Histamine stimulates cyclic AMP accumulation in astrocyte-enriched and neuronal primary cultures from rat brain in the presence of the phosphodiesterase inhibitor isobutylmethylxanthine. The response in the astrocyte cultures (Emax = 304 +/- 44% over basal, EC50 = 43 +/- 5 microM) was much higher than in neuronal cultures (Emax = 24 +/- 2%, EC50 = 14 +/- 7 microM). The histamine effect in astrocytes was competitively inhibited by the H2 antagonists cimetidine (Ki = 1.1 +/- 0.2 microM) and ranitidine (Ki = 46 +/- 10 nM) but was insensitive to the H1 antagonist mepyramine (1 microM). The two selective H2 agonists impromidine and dimaprit behaved as partial agonists and showed relative potencies (139 and 0.5, respectively) consistent with an interaction with H2 receptors. The more selective H1 agonist 2-thiazolylethylamine (0.01-1 mM) did not potentiate the response to impromidine (10 microM). Thus, in contrast to what is generally observed in intact cell preparations from brain, the histamine-induced cyclic AMP accumulation in astroglial cells is mediated solely by H2 receptors. The small effect shown in neuronal cultures also appears to be mediated by H2 receptors.  相似文献   

6.
To assess further the mechanism by which prostacyclin inhibits acid secretion, the actions of two stable prostacyclin analogues on parietal cell function and cyclic AMP formation were tested using enzymatically dispersed cells from canine fundic mucosa. Accumulation of 14C-aminopyrine (AP) was used as an index of parietal cell response to stimulation. The 16-phenoxy derivative of PGI2 inhibited accumulation of AP stimulated by histamine (10 μM), with 50% inhibition (ID50) at 10 nM. 6β-PGI1 also inhibited the action of histamine (ID50 0.5μM) but failed to block stimulation by carbachol or the dibutyryl derivative of cyclic AMP (dbcAMP). In similiar concentrations to those producing inhibition of histamine-stimulated AP accumulation, the 16-phenoxy analogue and 6β-PGI1 inhibited histamine-stimulated cyclic AMP generation by parietal cells. At 100 fold higher concentrations, 6β-PGI1 stimulated cyclic AMP formation, presumably in non-parietal cells. Even in high concentrations the 16-phenoxy analogue failed to increase cyclic AMP formation by mucosal cells. These data indicate that the stable prostacyclin analogues are potent, direct inhibitors of histamine-stimulated parietal cell function and that it is the inhibition, rather than the stimulation, of cyclic AMP formation that is linked to the antisecretory actions of these prostanoid compounds.  相似文献   

7.
Cardiac membranes pretreated with S-Adenosyl-L-[methyl-3H] methionine([3H] SAM) purified on TLC silica gel 60 F254 plates exhibited a marked decrease in cyclic AMP and cyclic GMP phosphodiesterase activity. However, this inhibition did not appear when membranes were incubated with either [14C] SAM or unlabelled SAM. We showed that, during the TLC purification of [3H] SAM, which involved an acidic elution step, minute amounts of the fluorescent indicator F254 (Zn sulfur) were eluted. The contaminating Zn++ ions strongly inhibited cyclic nucleotide phosphodiesterase activity and phospholipid methylation with I50 values in the micromolar range.  相似文献   

8.
[3H]Methyl group incorporation and histamine secretion in rat mast cells induced by anti-IgE and con A were strongly inhibited by trans-4-guanidinomethylcyclohexanecarboxylic acid 4-tert-butylphenyl ester (GMCHA-OPhBut), a strong and specific inhibitor for pH 7 tryptase (Muramatsu et al. (1988) Biol. Chem. Hoppe-Seyler 369, 617-625) which is present in rat mast cells. The IC50s for these events were of the order of 10(-6) M. Addition of GMCHA-OPhBut after the maximal increase in [3H]methyl group incorporation in rat mast cells activated by con A and anti-IgE induced rapid reduction of the methylated phospholipid, and the later histamine release was strongly suppressed. Mast cells were prepared with Mg2+-free Tyrode-HEPES solution, and challenged with anti-IgE with or without Mg2+. With Mg2+, [3H]methyl group incorporation was enhanced, and histamine was secreted time-dependently. Without Mg2+, [3H]methyl group incorporation fell to one-third, whereas histamine secretion was not affected. These results were incompatible with the above results. From these results it was strongly suggested that a trypsin-like protease, probably pH 7 tryptase, is involved not only in the early events, such as activation of phosphatidylethanolamine methyltransferase I and/or II, but also in the late events such as histamine release, and phospholipid methylation is not associated with histamine secretion.  相似文献   

9.
Cyclic AMP accumulation in brain slices incubated with adenosine or the adenosine analogue 2-chloroadenosine was examined in different areas of rat cerebral cortex following a unilateral injection of FeCl2 solution into the sensorimotor cortex to induce chronic epileptic activity. In the epileptic cortex, cyclic AMP accumulation in cortical slices was elicited three- to 11-fold by adenosine. The elicitation by adenosine of cyclic AMP accumulation was markedly inhibited by the adenosine antagonist 8-phenyltheophylline. In anterior cortical areas of rats in which the appearance of electrographic isolated spikes was dominant either ipsilateral or contralateral to the injection site 8 days or more after the injection, the adenosine-elicited accumulation of cyclic AMP was greater on the side of dominant spike activity than on the other. In anterior cortical areas of rats showing nearly equal spike activity on the two sides 19 days or more after the injection, the cyclic AMP accumulation was greater on the side ipsilateral to the injection site than on the other. In anterior and posterior cortical areas of rats showing spike-and-wave complexes and isolated spikes 1 month or more after the injection, the cyclic AMP accumulation was greater on the ipsilateral side than on the other. Similar regional differences in the adenosine-elicited accumulation of cyclic AMP were detected in the presence of the adenosine uptake inhibitor dipyridamole or the phosphodiesterase inhibitor DL-4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Ro 20-1724). The cyclic AMP accumulation was elicited five- to 17-fold by 2-chloroadenosine, in which case the elicitation was markedly inhibited by 8-phenyltheophylline. Regional differences in the 2-chloroadenosine-elicited accumulation of cyclic AMP were similar to those with adenosine and were detected in the presence of Ro 20-1724 or adenosine deaminase. The regional differences which correlated with the electrographic discharge patterns were due mainly to persistent changes in cyclic AMP accumulation on the primary epileptic side. These results suggest that alterations in adenosine-sensitive cyclic AMP generation in the cortex are associated with the neurochemical process leading to chronic iron-induced epilepsy.  相似文献   

10.
Bridging of IgE receptors on rat mast cell plasma membranes induces phospholipid methylation and a monophasic increase in cyclic AMP. The stimulation of phospholipid methylation in the plasma membrane appears to be intrinsic to the processes leading to Ca2+ influx and histamine release. Evidence was obtained that IgE receptors are closely associated with methyltransferases and adenylate cyclase in the plasma membranes. The activation of one enzyme is regulated by the other. An increase in the cyclic AMP level before receptor bridging suppressed phospholipid methylation. On the other hand, inhibition of phospholipid methylation may affect the initial rise in cyclic AMP. Our experiments also indicated that bridging the receptor activates a membrane-associated proteolytic enzyme. Inasmuch as the inhibition of the enzyme activation results in the suppression of both phospholipid methylation and initial rise in cyclic AMP induced by receptor bridging, the proteolytic enzyme may be involved in the activation of methyltransferases and adenylate cyclase.  相似文献   

11.
Histamine (1-100 microM) induced a concentration-dependent increase in intracellular cyclic AMP in monolayer cultures of human, canine and foetal-bovine articular chondrocytes. The dose-response curve for histamine in each culture was progressively displaced to the right with increasing concentrations of cimetidine, an H2-receptor antagonist. The histamine-induced cyclic AMP elevation in human articular chondrocytes was also significantly decreased by ranitidine, another H2 antagonist, but not by the H1 antagonists mepyramine and chlorpheniramine. These findings indicate that histamine activates chondrocyte adenylate cyclase through an H2 receptor. The cyclic AMP response of human chondrocytes to histamine was many times greater than that measured for synovial fibroblasts under similar conditions. Such findings suggest that mast-cell-chondrocyte interactions in vivo may contribute to changed chondrocyte metabolism in joint disease.  相似文献   

12.
The disulphide bond-reducing agent 1,4-dithiothreitol (1 mM) produced a marked potentiation of histamine-stimulated accumulation of [3H]inositol phosphates in lithium-treated slices of guinea-pig cerebellum and cerebral cortex. This was seen as a parallel shift of the concentration-response curve for histamine to lower agonist concentrations, with no significant effect on the maximal response or Hill coefficient. Dithiothreitol similarly potentiated the augmentation of adenosine-stimulated cyclic AMP accumulation elicited by histamine in guinea-pig cerebral cortex. Studies with partial agonists suggested that this potentiating effect was associated with an increase in agonist efficacy rather than a change in agonist binding affinity. Thus, dithiothreitol increased the maximal accumulation of [3H]inositol phosphates produced by both 2-pyridylethylamine and 2-methylhistamine, which appeared to act as partial agonists in guinea-pig cerebral cortex. Dithiothreitol similarly increased the maximal extent of the augmentation of adenosine-stimulated accumulation of cyclic AMP produced by 2-methylhistamine. The site of action of dithiothreitol is not known; however, a comparison of the effect of dithiothreitol on muscarinic and histamine H1-receptor-mediated phosphoinositide responses in guinea-pig cerebral cortex suggests that it is before the stage at which the receptor-effector pathways are shared by these two receptor systems.  相似文献   

13.
The effect of adenosine on phosphoinositide hydrolysis was examined in 1321N1 human astrocytoma cells. Adenosine, L-N6-phenylisopropyladenosine (L-PIA), and 5'-(N-ethylcarboxamido)adenosine (NECA) inhibited histamine-stimulated accumulation of inositol phosphates in a concentration-dependent manner. The potency order of adenosine analogues for inhibition of inositol phosphate accumulation was L-PIA greater than adenosine greater than NECA, a finding indicating that A1-class adenosine receptors are involved in the inhibition. The reduction in inositol phosphate accumulation by L-PIA was blocked by an adenosine receptor antagonist, 8-phenyltheophylline. Stimulation of A1-class adenosine receptors inhibited isoproterenol-stimulated cyclic AMP accumulation as well as histamine-induced inositol phosphate accumulation. Both inhibitory effects were blocked by pretreatment of the cells with pertussis toxin [islet-activating protein (IAP)]. L-PIA also inhibited guanosine 5'-(gamma-thio)triphosphate (GTP gamma S)-stimulated accumulation of inositol phosphates in membrane preparations, and 8-phenyl-theophylline antagonized the inhibition. L-PIA could not inhibit GTP gamma S-induced accumulation of inositol phosphates in IAP-treated membranes. Gi/Go, purified from rabbit brain, inhibited GTP gamma S-stimulated accumulation of inositol phosphates in a concentration-dependent manner in membrane preparations. These results suggest that stimulation of A1-class adenosine receptors interacts with the IAP-sensitive G protein(s), resulting in the inhibitions of phospholipase C as well as adenylate cyclase in human astrocytoma cells.  相似文献   

14.
This study evaluated the effect of inhibitors of transmethylation on histamine release from rat mast cells and rat basophilic leukemia cells. IgE-mediated histamine release from rat basophilic leukemia cells (RBL-2H3 cells) was inhibited by 3-deazaadenosine (DZA) in the presence of L-homocysteine thiolactone (Hcy) or the combination of adenosine, erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA), and Hcy in a dose-dependent fashion. There were no significant changes in the cellular cAMP levels by these inhibitors. Histamine release induced by anti-IgE or dextran from normal rat mast cells was also blocked by DZA plus Hcy in a dose-dependent manner. DZA at 10(-3) M in the presence of 10(-4) M Hcy or the combination of 10(-3) M adenosine, 10(-4) M EHNA, and 10(-3) M Hcy inhibited lipid (perhaps phospholipid) methylation into RBL-2H3 cells without affecting choline incorporation. In the presence of 10(-3) M DZA plus 10(-4) M Hcy there was a 170-fold increase in [35S]AdoHcy with the concomitant appearance of 3-deaza-AdoHcy when the cells were incubated with [35S]methionine, thus indicating that these drugs inhibited methylation reaction(s) through the intracellular accumulation of AdoHcy and 3-deaza-AdoHcy. In contrast, histamine release from rat mast cells induced by the calcium ionophore A23187, compound 48/80, polymyxin B, or ATP was not inhibited by these compounds. These results suggest that IgE- or dextran-mediated histamine release involves methylation reactions(s), whereas the other secretagogues bypass this early step.  相似文献   

15.
Demonstration of histamine H2 receptors on human melanoma cells   总被引:1,自引:0,他引:1  
Histamine induced a concentration-dependent increase in intracellular cyclic-AMP of the two human melanoma cell lines SK23 and DX3.LT5.1; maximal stimulation was obtained with 17.8 microM histamine which consistently produced greater than 50-fold increases in the cyclic AMP content of both cell lines. The dose-response curve for histamine in each culture was progressively displaced to the right with increasing concentrations of the histamine H2 receptor antagonist cimetidine. Ranitidine, another H2 receptor antagonist also prevented the histamine-induced cyclic AMP elevation, but the H1 receptor antagonists mepyramine and tripelennamine had no significant effect. These findings indicate that human melanoma cells express histamine H2 receptors, stimulation of which activates adenylate cyclase with a subsequent rise in intracellular cyclic AMP. Mast cell:melanoma interactions mediated by histamine in vivo might therefore be expected to modify some aspects of melanoma cell behaviour.  相似文献   

16.
Histamine H2 receptors on foetal-bovine articular chondrocytes.   总被引:2,自引:0,他引:2       下载免费PDF全文
The dose-response curve of histamine-induced cyclic AMP elevation in monolayer cultures of primary foetal-bovine articular chondrocytes was displaced to the right by cimetidine. In addition, H2 but not H1 antagonists prevented the histamine-induced cyclic AMP elevation, suggesting histamine activates chondrocyte adenylate cyclase through an H2 receptor.  相似文献   

17.
Histamine dose-dependently stimulated cyclic AMP production in human gastric carcinoma cell line MKN-45, and this effect was inhibited by cimetidine but not by pyrilamine. Moreover, not only histamine but also cimetidine displaced the specific binding of [3H]tiotidine to these cells, whereas pyrilamine had no effect. On the other hand, pretreatment of MKN-45 cells with retinoic acid (RA) significantly enhanced histamine-induced increase of cyclic AMP production, although the cyclic AMP response to either forskolin or NaF was not affected. Finally, RA treatment increased the number of histamine receptor without altering its affinity. Thus, it appears that histamine H2-receptors are present on MKN-45 cells, and that RA treatment enhances the action of histamine on these cells by increasing the number of H2-receptors.  相似文献   

18.
—Five areas of guinea pig brain were examined to determine the properties of the receptor sites mediating increases in [3H]adenosine 3′,5′-monophosphate (cyclic AMP). Both epinephrine and histamine were effective in causing increases in cyclic AMP in slices derived from cerebral cortex, hippocampus or amygdala, but not in diencephalon or brainstem. Stimulation of slices of cerebral cortex by either epinephrine or histamine resulted in a small, but reproducible, decrease in specific radioactivity of the [3H]-cyclic AMP produced, as did stimulation of the hippocampus by epinephrine. The catecholamine receptor was an α-adrenergic receptor in all three areas where epinephrine was effective; α-adrenergic stimulation, but not β-adrenergic stimulation, increased levels of [3H]-cyclic AMP. Furthermore, α-, but not β-adrenergic blocking agents, prevented the epinephrine- induced increase of both [3H]- and total cyclic AMP in cerebral cortex and hippocampus. Only antihistaminic agents were capable of antagonizing the histamine-induced increase of both [3H]- and total cyclic AMP in these two brain areas. The catecholamine receptor in the amygdala also appeared to be an α-adrenergic receptor. The effects of histamine and epinephrine together were far greater than the sum of effects of either hormone alone in both cerebral cortex and hippocampus.  相似文献   

19.
The effects of dibutyryl cyclic AMP on glycoprotein biosynthesis, intracellular mobilization, and secretion in isolated rat hepatocytes are described. Dibutyryl cyclic AMP (2.5 mm) initially suppresses [3H]glucosamine or [3H]fucose incorporation into cellular macromolecular material; however, after 312 h, the incorporation of these radiolabeled carbohydrates into macromolecular material was stimulated relative to control cells. The stimulation in accumulation of cellular glycoprotein occurred in membrane-associated fractions, with most of this accumulation occurring in the Golgi elements. The glycoprotein produced in the presence of dibutyryl cyclic AMP was quantitatively precipitated by antibodies directed against rat serum, suggesting that the accumulated cellular material is normally destined for secretion from the cell. Dibutyryl cyclic AMP also produced a drastic inhibition of glycoprotein secretion which persisted during the cellular accumulation of glycosylated material. Exposure of the hepatocytes to colchicine (10 μm) produced a similar increase in accumulation of [3H]glucosamine-containing immunoprecipitable material in the cellular fraction and a similar inhibition in secretion. The initial dibutyryl cyclic AMP-mediated suppression of synthesis of intracellular glycosylated material occurred entirely in non-membrane-associated intracellular fractions. Also, the initial accumulation of [3H]glucosamine-containing immunoprecipitable material was not suppressed during the first 312 h after exposure to dibutyryl cyclic AMP, suggesting the initial suppression represents a metabolic process unrelated to secretion. The incorporation of [3H]leucine into macromolecular material was inhibited in both cellular and secreted fractions after exposure to dibutyryl cyclic AMP; however, the accumulation into the extracellular environment was inhibited to a greater extent. The patterns of [3H]glucosamine-containing lipid biosynthesis were unaffected by dibutyryl cyclic AMP.  相似文献   

20.
PGJ2 and delta 12PGJ2 (1 microM to 30 microM) inhibited the growth of human astrocytoma cells (1321N1) in a time-dependent manner within 48 hrs, determined by [3H]thymidine incorporation into acid-insoluble fraction or amounts of protein. The EC50 values for PGJ2 and delta 12PGJ2 were approximately 8 microM and 6 microM, respectively. [3H]Thymidine incorporation to acid insoluble fraction was inhibited by these PGs within 1 hr, indicating that these PGs rapidly affect cell functions. Although it has been reported that an increase in cyclic AMP inhibits cell growth, PGJ2 and delta 12PGJ2, but not PGE1, reduced isoproterenol (10 microM)-induced accumulation of cyclic AMP, suggesting that PGJ2 and delta 12PGJ2 may disturb adenylate cyclase system, which might be independent on cell growth. On the other hand, these PGs inhibited the incorporation of [3H]inositol into phospholipid fraction within 6 hrs. Furthermore, PGJ2 and delta 12PGJ2 inhibited carbachol- and/or histamine-induced accumulation of inositol phosphates with a similar dose-dependency to their inhibitions of cell growth. In membrane preparations, however, PGJ2 and delta 12PGJ2 failed to inhibit GTP gamma S (10 microM)- nor Ca2+ (1 mM)-induced accumulation of inositol phosphates. The site of PGJ2 or delta 12PGJ2 in inhibition of inositol phosphate accumulation would not be phospholipase C nor a putative GTP binding protein involved in activation of phospholipase C. The present results indicate that PGJ2 and delta 12PGJ2 inhibit cell growth in human astrocytoma cells and the inhibition of phosphoinositide turnover by these PGs might be involved in the inhibition of cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号