首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Predators can impact their prey via consumptive effects that occur through direct killing, and via non-consumptive effects that arise when the behaviour and phenotypes of prey shift in response to the risk of predation. Although predators'' consumptive effects can have cascading population-level effects on species at lower trophic levels there is less evidence that predators'' non-consumptive effects propagate through ecosystems. Here we provide evidence that suppression of abundance and activity of a mesopredator (the feral cat) by an apex predator (the dingo) has positive effects on both abundance and foraging efficiency of a desert rodent. Then by manipulating predators'' access to food patches we further the idea that apex predators provide small prey with refuge from predation by showing that rodents increased their habitat breadth and use of ‘risky′ food patches where an apex predator was common but mesopredators rare. Our study suggests that apex predators'' suppressive effects on mesopredators extend to alleviate both mesopredators'' consumptive and non-consumptive effects on prey.  相似文献   

2.
SUMMARY 1. We analysed the vulnerability of a number of cladoceran species ( Bosmina longirostris , B. fatalis , Diaphanosoma brachyurum , Ceriodaphnia reticulata , Daphnia ambigua and D. pulex ) to predation by Mesocyclops leuckarti in the laboratory.
2. The prey species represented a wide range of body size, morphology, and swimming behaviour. To compare vulnerability, we measured the efficiency of capture and ingestion of each prey species by Mesocyclops . We also measured the rate at which prey were damaged in attacks by Mesocyclops .
3. Mesocyclops preyed effectively on Diaphanosoma and small juvenile Ceriodaphnia but not on Bosmina or Daphnia . Observations suggested that various defence mechanisms, including protruding structures and swimming behaviour and speed, are important in determining prey vulnerability.
4. The body size of Daphnia and Ceriodaphnia seems to be important, because larger animals were better able to escape Mesocyclops attacks. Attacks by Mesocyclops often caused fatal damage, however, even to large Daphnia .  相似文献   

3.
Predators can influence prey abundance and traits by direct consumption, as well as by non-consumptive effects of visual, olfactory, or tactile cues. The strength of these non-consumptive effects (NCEs) can be influenced by a variety of factors, including predator foraging mode, temporal variation in predator cues, and the density of competing prey. Testing the relative importance of these factors for determining NCEs is critical to our understanding of predator-prey interactions in a variety of settings. We addressed this knowledge gap by conducting two mesocosm experiments in a tri-trophic intertidal oyster reef food web. More specifically, we tested how a predatory fish (hardhead catfish, Ariopsis felis) directly influenced their prey (mud crabs, Panopeus spp.) and indirectly affected basal resources (juvenile oysters, Crassostrea virginica), as well as whether these direct and indirect effects changed across a density gradient of competing prey. Per capita crab foraging rates were inversely influenced by crab density, but they were not affected by water-borne predator cues. As a result, direct consumptive effects on prey foraging rates were stronger than non-consumptive effects. In contrast, predator cue and crab density interactively influenced indirect predator effects on oyster mortality in two experiments, with trait-mediated and density-mediated effects of similar magnitude operating to enhance oyster abundance. Consistent differences between a variable predator cue environment and other predator cue treatments (no cue and constant cue) suggests that an understanding of the natural risk environment experienced by prey is critical to testing and interpreting trait-mediated indirect interactions. Further, the prey response to the risk environment may be highly dependent on prey density, particularly in prey populations with strong intra-specific interactions.  相似文献   

4.
1. Current formulations of functional responses assume that the prey is homogeneous and independent of intraspecific processes. Most prey populations consist of different coexisting size classes that often engage in asymmetrical intraspecific interactions, including cannibalism, which can lead to nonlinear interaction effects. This may be important as the size structure with the prey could alter the overall density-dependent predation rates. 2. In a field experiment with damselfly and dragonfly larvae, 16 treatments manipulated the density of a small prey stage, the presence of large conspecific prey and the presence of heterospecific predators. 3. Size structure in the prey (i.e. when both prey stages were present) decreased the impact of the predator on overall prey mortality by 25-48% at mid and high prey densities, possibly due to density-dependent size-structured cannibalism in the prey. The predation rates on small prey stages were determined by the interaction of large prey and predators. Predation rates increased with prey density in the absence of large prey, but predation rates were constant across densities when large conspecifics were present. 4. The functional response for unstructured prey followed a Holling type III model, but the predation rate for size-structured prey was completely different and followed a complex pattern that could not be explained with any standard functional response. 5. Using additional laboratory experiments, a mortality model was developed and parameterized. It showed that the overall prey mortality of size-structured prey can be adequately predicted with a composite functional response model that modelled the individual functional responses of each prey stage separately and accounted for their cannibalistic interaction. 6. Thus, treating a prey population as a homogeneous entity will lead to erroneous predictions in most real-world food webs. However, if we account for the effects of size structure and the intraspecific interactions on functional responses by treating size classes as different functional groups, it is possible to reliably predict the dynamics of size-structured predator-prey systems.  相似文献   

5.
Previous work shows that predation by small mammals is a dominant cause of mortality of low-density gypsy moths in North America and that declines in small mammal density result in increases in gypsy moth density. Here we examined whether predation by small mammals is density dependent by way of a type III functional response, and how predation is influenced by alternative prey. First we showed that the preference of predators for gypsy moth pupae was low compared to other experimental prey items, such as mealworm pupae and sunflower seeds. Predation on gypsy moth pupae was characterized by a type II functional response with percent predation highest at the lowest prey densities, whereas the functional response to sunflower seeds was characterized by a type III functional response in which predation increased with increasing prey density. These results suggest that predation by small mammals is unlikely to stabilize low-density gypsy moth populations.  相似文献   

6.
1. In previous work we established that increasing temperature led to a destabilization of the population dynamics of the invertebrate carnivore Mesostoma ehrenbergii and its prey Daphnia pulex , which ultimately resulted in the local extinction of Daphnia at higher temperatures. Two mechanisms are proposed to explain the population-level phenomena: (1) quantitative changes in carnivore vital rates with increasing temperature led to stronger functional and numerical response and (2) qualitative changes in the dynamic allocation of energy to reproduction by the predator with increasing temperature introduces inverse density dependence in the predator's response.
2. The growth of individual M. ehrenbergii was monitored under various food conditions to determine the effect of two temperatures (18 and 24 °C) and five food levels on rates of growth, prey consumption and reproduction and on reproductive allocation patterns.
3. The first mechanism was supported by both higher consumption rates (stronger functional response) and faster growth rates with earlier age at maturity and shorter generation time (stronger numerical response).
4. Evidence for mechanism two was also provided by an alteration of the reproductive allocation pattern with temperature. Viviparous (subitaneous) eggs were more likely to be produced by this carnivore at low food levels at 24 °C, while at 18 °C, high food levels were required before individuals made this switch. This shift actually introduces inverse density dependence in the predator's numerical response which is highly destabilizing.
5. Based on the results of this study, the differential effect of M. ehrenbergii on the dynamics and structure of its D. pulex prey populations can be attributed to changes in both physiological rates and reproductive allocation patterns with temperature.  相似文献   

7.
Trait-mediated interactions: influence of prey size, density and experience   总被引:1,自引:0,他引:1  
1. The role of non-consumptive predator effects in structuring ecological communities has become an important area of study for ecologists. Numerous studies have shown that adaptive changes in prey in response to a predator can improve survival in subsequent encounters with that predator. 2. Prey-mediated changes in the shapes of predators' functional response surfaces determine the qualitative predictions of theoretical models. However, few studies have quantified the effects of adaptive prey responses on the shape of predator functional responses. 3. This study explores how prey density, size and previous predator experience interact to change the functional response curves of different-sized predators. 4. We use a response surface design to determine how previous exposure to small or large odonate predators affected the short-term survival of squirrel tree frog (Hyla squirella) tadpoles across a range of sizes and densities (i.e. the shape of odonate functional response curves). 5. Predator-induced tadpoles in a given size class did not differ in shape, although induction changed tadpole behaviour significantly. Induced tadpoles survived better in lethal encounters with either predator than did similar-sized predator-naive tadpoles. 6. Induction by either predator resulted in increased survival with both predators at a given size. However, different mechanisms led to increased survival for induced tadpoles. Attack rate for the small predators, whereas handling time increased for the large predators.  相似文献   

8.
1. Neomysis mercedis predation rates on Daphnia magna were determined under laboratory conditions. There were generally no consistent differences between the number of Daphnia ingested at 10 and 14°C. 2. At each temperature, the number of prey consumed increased with mysid size and decreased with Daphnia size. 3. For small prey the relationship between ingestion rate and prey density represented a Type II functional response. However, for larger prey there was no significant relationship between density of prey and consumption by mysids. 4. The pattern of size-selective predation by Neomysis was studied to test the optimal foraging hypothesis. For prey populations with mixed size classes, the smallest size of prey was consumed most frequently but intermediate size prey provided the greatest biomass. These observations are contrary to our predictions based on calculations of profitability of different sizes of prey.  相似文献   

9.
1. We examined the effect of different periods of prior starvation(from 30 min to 16 h) on the prey capture behaviour, and functional and numerical responses of the predatory rotifer Asplanchna sieboldi using the rotifer Brachionus calyciflorus as prey.
2. Feeding activity (i.e. encounter, attack, capture and ingestion) by Asplanchna increased significantly with increasing prey densities from 2 to 16 mL−−1 and with increasing prior starvation periods from 0.5 to 8 h.
3.  Asplanchna sieboldi showed a type II functional response at all the prior starvation periods tested. The asymptotic prey density was highest after 8 h of starvation.
4. The instantaneous population growth rate of A. sieboldi ranged from 0.089 ± 0.044 (when starved for 8 h in every 24 h and at a prey density of 2 individuals mL−−1 for the other 16 h) to 1.015 ± 0.142 in the control (no starvation and at a prey density of 16 individuals mL−−1). The effect of starvation time on the numerical response was evident only at the higher prey density.  相似文献   

10.
1. We have studied the numerical and functional responses of campanulate morphs of Asplanchna intermedia fed five species of rotifer ( Brachionus rubens , B. patulus , B. calyciflorus , Hexarthra mira and Filinia longiseta ). The vulnerability of the prey varied with their morphology and mode of swimming.
2. To test the numerical and functional responses, prey species differing in their morphology and mode of swimming were provided. Responses were also tested with mixtures of evasive and non-evasive prey provided in three different ratios.
3. A. intermedia showed a type II functional response to all the prey species provided.
4. The population growth rate of A. intermedia on the various prey species provided ranged from a minimum of –0.24 to a maximum of 0.68. There was a significant correlation between the capturability of a prey species and the population growth rate of the predator feeding on it. The capturability of a prey species also has a significant influence on the maximal predator density but not on the time taken to reach it.
5. Observations from a field study undertaken over a 10-month period to study the prey preferences of A. intermedia in nature were corroborated by the laboratory findings.  相似文献   

11.
1. We have studied the numerical and functional responses of campanulate morphs of Asplanchna intermedia fed five species of rotifer ( Brachionus rubens , B. patulus , B. calyciflorus , Hexarthra mira and Filinia longiseta ). The vulnerability of the prey varied with their morphology and mode of swimming.
2. To test the numerical and functional responses, prey species differing in their morphology and mode of swimming were provided. Responses were also tested with mixtures of evasive and non-evasive prey provided in three different ratios.
3. A. intermedia showed a type II functional response to all the prey species provided.
4. The population growth rate of A. intermedia on the various prey species provided ranged from a minimum of –0.24 to a maximum of 0.68. There was a significant correlation between the capturability of a prey species and the population growth rate of the predator feeding on it. The capturability of a prey species also has a significant influence on the maximal predator density but not on the time taken to reach it.
5. Observations from a field study undertaken over a 10-month period to study the prey preferences of A. intermedia in nature were corroborated by the laboratory findings.  相似文献   

12.
Simple models are used to explore how adaptive changes in prey vulnerability alter the population response of their predator to increased mortality. If the mortality is an imposed harvest, the change in prey vulnerability also influences the relationship between harvest effort and yield of the predator. The models assume that different prey phenotypes share a single resource, but have different vulnerabilities to the predator. Decreased vulnerability is assumed to decrease resource consumption rate. Adaptive change may occur by phenotypic changes in the traits of a single species or by shifts in the abundances of a pair of coexisting species or morphs. The response of the predator population is influenced by the shape of the predator's functional response, the shape of resource density dependence, and the shape of the tradeoff between vulnerability and food intake in the prey. Given a linear predator functional response, adaptive prey defense tends to produce a decelerating decline in predator population size with increased mortality. Prey defense may also greatly increase the range of mortality rates that allow predator persistence. If the predator has a type-2 response with a significant handling time, adaptive prey defense may have a greater variety of effects on the predator's response to mortality, sometimes producing alternative attractors, population cycles, or increased mean predator density. Situations in which there is disruptive selection on prey defense often imply a bimodal change in yield as a function of harvesting effort, with a minimum at intermediate effort. These results argue against using single-species models of density dependent growth to manage predatory species, and illustrate the importance of incorporating anti-predator behavior into models in applied population ecology.  相似文献   

13.
SUMMARY 1. The effects of the carnivorous plant Utricularia ( bladderwort) on its microcrustacean and macroinvertebrate prey were studied under seminatural and natural conditions. The results suggest that Utricularia is a strong interactor in littoral communities that influences its prey populations by direct predation and indirect facilitation.
2. In an 8-week enclosure experiment, effects on prey density were compared in three treatments with (1) U. vulgaris with intact trapbladders, (2) U. vulgaris without bladders and (3) no Utricularia present.
3. Utricularia predation caused a decrease in prey density over time, whereas presence of Utricularia without bladders increased prey density. In the controls without Utricularia , prey density was relatively constant over time.
4. Field samples were collected to quantify predation rates of three Utricularia species on two natural prey populations. Daily consumption rates on prey peaked from mid-July to mid-August for all Utricularia species, but were low in June and September. This pattern was explained mainly by a high number of trapbladders at this time, but also by a slight increase in the number of prey caught per bladder. Per capita prey mortality rates caused by Utricularia were substantial and ranged between 0.14 and 0.43 day−1 for copepods, 0.1–0.27 day−1 for ostracods and 0.04–0.2 day−1 for chydorid cladocerans.
5. Predation and facilitation effects were observed for total prey and separately for epiphytic and benthic prey. Planktonic microcrustaceans showed no response to Utricularia presence.  相似文献   

14.
We tested the relative and combined effects of prey density and patch size on the functional response (number of attacks per unit time and duration of attacks) of a predatory reef fish (Cheilodactylus nigripes (Richardson)) to their invertebrate prey. Fish attacked prey at a greater rate and for longer time in large than small patches of prey, but large patches had naturally greater densities of prey. We isolated the effects of patch size and prey density by reducing the density of prey in larger patches to equal that of small patches; thereby controlling for prey density. We found that the intensity at which fish attacked prey (combination of attack rate and duration) was primarily a response to prey density rather than the size of patch they occupied. However, there was evidence that fish spent more time foraging in larger than smaller patches independent of prey density; presumably because of the greater total number of prey available. These experimental observations suggest that fish can distinguish between different notions of prey abundance in ways that enhance their rate of consumption. Although fish may feed in a density dependent manner, a critical issue is whether their rate of consumption outstrips the rate of increase in prey abundance to cause density dependent mortality of prey.  相似文献   

15.
Predators influence prey populations both by consuming individual prey, and by inducing changes in prey behaviour that limit reproduction and survival. Because prey trade-off predation risk for forageing gains, the magnitude of predators' non-consumptive effects should depend on resource availability. Studies of non-consumptive effects generally adopt either of two strategies: (i) maintaining a static ration of the prey's resources; and (ii) using resource populations that vary dynamically in response to prey behaviour. Contrasting these experimental designs using meta-analysis, we evaluated whether resource dynamics influence the magnitude of non-consumptive effects on prey growth, survival, fecundity, population density, forageing rate and habitat use. Predators had a more negative effect on prey demography in dynamic- vs. static-resource experiments. Our results highlight the importance of resource dynamics in mediating the magnitude of non-consumptive effects of predators on prey, and illustrate the often-unintended impacts of experimental design on estimates of effect size in ecological interactions.  相似文献   

16.
SUMMARY 1. We investigated the effect of temperature on chemical signalling in a predator–prey model system (planktivorous fish and Daphnia galeata ). Life-history changes in Daphnia in response to chemical cues (kairomones) derived from fish have become a paradigm for chemically induced anti-predator defences.
2. As temperature can affect both predator and prey, we carried out two experiments to disentangle these effects. In order to test for temperature effects on the predator, we kept prey at a single temperature and exposed them to kairomones from fish exposed to two different temperatures. Daphnia exhibited a higher intrinsic rate of population increase ( r ) when exposed to fish kairomones produced at high rather than low temperature. Assuming a positive correlation between r (because of an earlier maturation and/or increased clutch sizes) and kairomone concentration, our results suggest that kairomone production increases with rising temperature.
3. In the second experiment, to study the influence of temperature on the prey, Daphnia were kept at two different temperatures and exposed to fish kairomones produced at one constant temperature. We found no interaction between the effects of fish kairomone and temperature on Daphnia life history, suggesting that temperature does not directly alter life-history responses to fish kairomones.
4. Our results suggest that temperature influences Daphnia life history through its effects on fish kairomone concentration, but that temperature does not affect the strength of the response of Daphnia to the presence of fish.  相似文献   

17.
Heikki Hirvonen  Esa Ranta 《Oecologia》1996,106(3):407-415
We investigated foraging behaviour of larval dragonflies Aeshna juncea in order to examine the significance of prey density and body size in predator-prey dynamics. A. juncea were offered separately three size-classes of Daphnia magna at low and high densities. The data were collected with direct observations of the foraging individuals. We found that large A. juncea larvae could better enhance their intake of prey biomass as prey size and prey density increased than their smaller conspecifics. However, increasing feeding efficiency of both larval instars was constrained by declining attack success and search rate with increasing prey size and density. With small D. magna, in contrast to large A. juncea, small A. juncea increased their searching efficiency as prey density increased keeping D. magna mortality rate at a constant level. In a predator-prey relationship this indicates stabilizing potential and feeding thresholds set by both prey density and prey-predator size ratio. Attack success dropped with prey size and density, but did not change in the course of the foraging bout. For both A. juncea sizes prey handling times increased as more medium and large prey were eaten. The slope of the increase became steeper with increasing prey-predator size ratio. These observations indicate that components of the predator-prey relationship vary with prey density, contrary to the basic assumptions of functional response equations. Moreover, the results suggest that the effects of prey density change during the ontogeny of predators and prey.  相似文献   

18.
Rudolf VH  Armstrong J 《Oecologia》2008,157(4):675-686
Many organisms undergo ontogenetic niche shifts due to considerable changes in size during their development. These ontogenetic shifts can alter the trophic position of individuals, the type and strength of ecological interactions across species, and allow for cannibalism within species. In this study we ask if and how the interaction of a size refuge and cannibalism in the prey alters the dynamics of intraguild predation (IGP) systems. By manipulating the composition of large cannibalistic (Aeshna umbrosa) and predatory (Anax junius) dragonfly larvae in mesocosms we show that the interaction of cannibals and predators was non-linear and increased the survival of prey. The structure of the final resource community shared by prey and predator differed between small and large dragonfly treatments but not within size classes across species. In general, the small prey stage showed similar shifts in microhabitat use and refuge use when exposed to either conspecific cannibals or predators, while large cannibals showed no clear anti-predator response. However, further behavioral experiments revealed that specific behavioral components, such as distances between individuals or number of movements, differed when individuals were exposed to either cannibals or predators. This indicates that individuals discriminated between conspecific or heterospecific predators. Furthermore, in similar experiments large cannibals and predators showed different behaviors when exposed to conspecifics rather than to each other. These changes in behavior are consistent with the observed increase in prey survival. In general, the results indicate that cannibalism and ontogenetic niche shifts can result in behavior-mediated indirect interactions that reduce the impact of the predator on the mortality of its prey and alter the interactions of IGP systems. However, they also indicate that size is not the sole determinant and that we also need to account for the species identity when predicting the dynamics of communities.  相似文献   

19.
Aya Yamaguchi  Osamu Kishida 《Oikos》2016,125(2):271-277
Intrapopulation size variation strongly influences ecological interactions because individuals belonging to different size groups have distinct functions. Most demonstrations of the impacts of size variation in trophic systems have focused on size variation in predator species, and the consequences of size variation in prey species are less well understood. We investigated how prey size structure shapes intra‐ and interspecific interactions in experiments with a gape‐limited predator (larvae of the salamander Hynobius retardatus) and its heterospecific prey (frog tadpoles, Rana pirica). We found that large and small tadpole size groups each increased mortality in the other group by intensifying salamander predation; this type of indirect interactions is called apparent competition. The antagonistic impacts on the prey size groups were caused by different size‐specific mechanisms. By consuming small tadpoles, the salamanders grew large enough to consume large tadpoles. The activity of large tadpoles, by increasing the activity of the small tadpoles, may increase the number of encounters with the predator and thus small tadpole mortality. These results suggest that the magnitude of a predator's ecological role, such as whether a top–down trophic cascade is initiated, depends on size variation in its heterospecific prey.  相似文献   

20.
Since generalist predators feed on a variety of prey species they tend to persist in an ecosystem even if one particular prey species is absent. Predation by generalist predators is typically characterized by a sigmoidal functional response, so that predation pressure for a given prey species is small when the density of that prey is low. Many mathematical models have included a sigmoidal functional response into predator–prey equations and found the dynamics to be more stable than for a Holling type II functional response. However, almost none of these models considers alternative food sources for the generalist predator. In particular, in these models, the generalist predator goes extinct in the absence of the one focal prey. We model the dynamics of a generalist predator with a sigmoidal functional response on one dynamic prey and fixed alternative food source. We find that the system can exhibit up to six steady states, bistability, limit cycles and several global bifurcations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号