首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To analyze acclimation of Euterpe edulis seedlings to changes in light availability, we transferred three-year-old seedlings cultivated for six months under natural shade understory [≈ 1.3 mol(photon) m?2 d?1] to a forest gap [≈ 25.0 mol(photon) m?2 d?1]. After the transfer, changes in chlorophyll fluorescence and leaf gas-exchange parameters, as well as in the light-response curves of photosynthesis and photosynthetic induction parameters, were analyzed during the following 110 days. Simultaneously measured photosynthetic characteristics in the shaded seedlings grown in understory served as the control. Despite the fact that the understory seedlings were under suboptimal conditions to achieve their light-saturated net photosynthetic rate (P Nmax), light-response curves and photosynthetic induction parameters indicated that the species had the low respiration rate and a fast opening of stomata in response to the intermittent occurrence of sunflecks, which exerted a feed-forward stimulation on P Nmax. Sudden exposure to high light induced photoinhibition during the first week after the transfer of seedlings to gap, as it was shown by the abrupt decline of the maximal quantum yield of PSII photochemistry (Fv/Fm). The photoinhibition showed the time-dependent dynamics, as the Fv/Fm of the seedlings transferred to the forest gap recovered completely after 110 days. Furthermore, the net photosynthetic rate increased 3.5-fold in relation to priorexposure values. In summary, these data indicated that more than 21 days was required for the shade-acclimated seedlings to recover from photoinhibition and to relax induction photosynthetic limitations following the sudden exposure to high light. Moreover, the species responded very quickly to light availability; it highlights the importance of sunflecks to understory seedlings.  相似文献   

2.
Detached leaf is in the state of increasing water deficit; it is a good experimental model for looking into the hardening effect of adaptation of eight-day-old maize (Zea mays L.) seedlings to short-term drought (five days without watering). The light stage of photosynthesis and photosynthetic CO2/H2O exchange in detached leaves were studied. Specific surface density of leaf tissue (SSDL), the content of chlorophylls a and b, proline, MDA as well as photosynthetic parameters: quantum yield of photosystem II fluorescence, assimilation of CO2, and transpiration at room temperature and light saturation (density of PAR quantum flux of 2000 μmol/(m2 s)) at normal and half atmospheric CO2 concentration were determined. The leaves of seedlings exposed to short-term drought differed from control material by a greater SSDL and higher content of proline. The hardening effect of the stress agent on the dark stage of photosynthesis was detected; it was expressed in the maintenance of the higher photosynthetic CO2 assimilation against control material due to the elevation of stomatal conductance for CO2 diffusing into the leaf. Judging from the lack of differences in the MDA content, short-term drought did not injure photosynthetic membranes. In detached leaves of experimental maize seedlings, photosynthesis was maintained on a higher level than in control material.  相似文献   

3.
Wise RR  Ort DR 《Plant physiology》1989,90(2):657-664
The response of in situ photophosphorylation in attached cucumber (Cucumis sativus L. cv Ashley) leaves to chilling under strong illumination was investigated. A single-beam kinetic spectrophotometer fitted with a clamp-on, whole leaf cuvette was used to measure the flash-induced electrochromic absorbance change at 518 minus 540 nanometers (ΔA518−540) in attached leaves. The relaxation kinetics of the electric field-indicating ΔA518−540 measures the rate of depolarization of the thylakoid membrane. Since this depolarization process is normally dominated by proton efflux through the coupling factor during ATP synthesis, this technique can be used, in conjuction with careful controls, as a monitor of in situ ATP formation competence. Whole, attached leaves were chilled at 5°C and 1000 microeinsteins per square meter per second for up to 6 hours then rewarmed in the dark at room temperature for 30 minutes and 100% relative humidity. Leaf water potential, chlorophyll content, and the effective optical pathlength for the absorption measurements were not affected by the treatment. Light- and CO2-saturated leaf disc oxygen evolution and the quantum efficiency of photosynthesis were inhibited by approximately 50% after 3 hours of light chilling and by approximately 75% after 6 hours. Despite the large inhibition to net photosynthesis, the measurements of ΔA518−540 relaxation kinetics showed photophosphorylation to be largely unaffected by the chilling and light exposure. The amplitude of the ΔA518-540 measures the degree of energization of the photosynthetic membranes and was reduced significantly by chilling in the light. The cause of the decreased energization was traced to impaired turnover of photosystem II. Our measurements showed that the chilling of whole leaves in the light caused neither an uncoupling of photophosphorylation from photosynthetic electron transport nor any irreversible inhibition of the chloroplast coupling factor in situ. The sizeable inhibition in net photosynthesis observed after chilling in the light cannot, therefore, be attributed to any direct effect on photophosphorylation competence.  相似文献   

4.
Information on the photosynthetic process and its limitations is essential in order to predict both the capacity of species to adapt to conditions associated with climate change and the likely changes in plant communities. Considering that high‐mountain species are especially sensitive, three species representative of subalpine forests of the Central Catalan Pyrenees: mountain pine (Pinus uncinata Mill.), birch (Betula pendula Roth) and rhododendron (Rhododendron ferrugineum L.) were studied under conditions associated with climate change, such as low precipitation, elevated atmospheric [CO2] and high solar irradiation incident at Earth's surface, in order to detect any photosynthetic limitations. Short‐term high [CO2] increased photosynthesis rates (A) and water use efficiency (WUE), especially in birch and mountain pine, whereas stomatal conductance (gs) was not altered in either species. Birch showed photosynthesis limitation through stomatal closure related to low rainfall, which induced photoinhibition and early foliar senescence. Rhododendron was especially affected by high irradiance, showing early photosynthetic saturation in low light, highest chlorophyll content, lowest gas exchange rates and least photoprotection. Mountain pine had the highest A, photosynthetic capacity (Amax) and light‐saturated rates of net CO2 assimilation (Asat), which were maintained under reduced precipitation. Furthermore, maximum quantum yield (Fv/Fm), thermal energy dissipation, PRI and SIPI radiometric index, and ascorbate content indicated improved photoprotection with respect to the other two species. However, maximum velocity of carboxylation of RuBisco (Vcmax) indicated that N availability would be the main photosynthetic limitation in this species.  相似文献   

5.
三种温带树种叶片呼吸的时间动态及其影响因子   总被引:1,自引:0,他引:1  
王兆国  王传宽 《生态学报》2013,33(5):1456-1464
为认知叶片呼吸(RL)的季节变化格局及其影响因子,以东北东部山区3个主要树种(红松Pinus koraiensis、樟子松P.sylvestris var.mongolica和白桦Betula platyphylla)为对象,采用红外气体分析法在2011年生长季(常绿树4月至10月;落叶树6月至9月)测定了自然条件下叶片气体交换及其相关生理特征的季节变化,探索了RL与空气温度(Tair)和相关叶片特征之间的关系.结果表明:红松和樟子松基于叶面积的RL(RL-area)表现为生长季初期和末期较大,而白桦RL-area则随生长季进程而逐渐减小.在生长季中,RL-area与叶片总光合之比的时间动态明显.红松、樟子松RL-area与Tair关系显著,而白桦RL-area与Tair关系不显著;但3种树种基于叶质量的RL(RL-mass)与Tair均呈显著的指数函数关系.叶片特征(包括可溶性糖、淀粉、氮、比叶面积等参数)也有明显的季节变化.影响RL的叶片特征参数因树种而异,其中可溶性糖浓度对3种树种的RL均有显著影响.可见,RL的季节变化格局受树木的生长节律、温度和叶片特征的联合控制.  相似文献   

6.
Abstract. Seedlings of Betula pendula were grown in a controlled environment chamber at quantum flux densities of 50, 250 and 600 μmol m−2 s−1. The relationship between the flux densities of absorbed CC2 and quanta was determined for shoots of whole seedlings. Rates of both light-saturated and in situ (measured under the growing conditions) net photosynthesis were determined and the pholosynthetic quantum yields under light-limiting conditions were calculated. Anatomical leaf characteristics, chlorophyll contents and sizes and densities of the photosynthetic units (chlorophyll/P700) were determined. Chloroplasts were isolated and their rates of 2,6-dichlorophenol indophenol photoreduction were measured together with their pool sizes of the electron transport carriers plastoquinone and cylochrome ƒ.
Although acclimated to different quantum flux densities, the three birch populations showed the same quantum yield of net photosynthesis. This was approximately 0.028 in normal air (21.2 kPa oxygen) and about 0.040 when photorespiration was largely inhibited in 2.0 kPa oxygen. In addition, the in situ net photosynthesis rates were limited by the absorbed quantum flux density for low, intermediate and high light grown seedlings. It was concluded that birch acclimated to the three light regimes at different levels of organization (metabolic and anatomical). Thus, the quanta which were absorbed in situ could be transferred into chemical equivalents at an optimal and constant efficiency. The use of different reference bases for expressing rates of net photosynthesis are also discussed.  相似文献   

7.
We grew seedlings of two co-occurring high elevation tree species in controlled light and nitrogen (N) environments to examine the effect on foliar N and P concentrations and the resulting correlation with photosynthesis and growth. Foliar N concentrations in both heart-leaf paper birch (Betula cordifolia) and balsam fir (Abies balsamea) seedlings were greater in low light treatments than in high light treatments. P concentrations, however, were lower in birch and fir foliage grown in low light than in high light. N-availability had no effect on foliar N in birch but tended to increase N concentration in fir needles at all but 100% ambient light. N-availability had no effect on P concentration in fir seedlings, but high N decreased foliar P in birch. There was a positive relationship between foliar N-concentration (mg g–1) and mass-based maximum photosynthetic rate (Asat) in birch seedlings and a corresponding growth response to increased N-availability (suggesting N-limitation). Fir photosynthesis exhibited a positive correlation up to 22 mg g–1 – N and a negative correlation above that point, suggesting that high N concentrations may be detrimental to photosynthesis in the fir seedlings. There was no significant effect of N-treatment on growth.  相似文献   

8.
To understand how light quality influences plant photosynthesis, we investigated chloroplastic ultrastructure, chlorophyll fluorescence and photosynthetic parameters, Rubisco and chlorophyll content and photosynthesis-related genes expression in cucumber seedlings exposed to different light qualities: white, red, blue, yellow and green lights with the same photosynthetic photon flux density of 100 μmol m?2 s?1. The results revealed that plant growth, CO2 assimilation rate and chlorophyll content were significantly reduced in the seedlings grown under red, blue, yellow and green lights as compared with those grown under white light, but each monochromatic light played its special role in regulating plant morphogenesis and photosynthesis. Seedling leaves were thickened and slightly curled; Rubisco biosynthesis, expression of the rca, rbcS and rbcL, the maximal photochemical efficiency of PSII (Fv/Fm) and quantum yield of PSII electron transport (ФPSII) were all increased in seedlings grown under blue light as compared with those grown under white light. Furthermore, the photosynthetic rate of seedlings grown under blue light was significantly increased, and leaf number and chlorophyll content of seedlings grown under red light were increased as compared with those exposed to other monochromatic lights. On the contrary, the seedlings grown under yellow and green lights were dwarf with the new leaves etiolated. Moreover, photosynthesis, Rubisco biosynthesis and relative gene expression were greatly decreased in seedlings grown under yellow and green light, but chloroplast structural features were less influenced. Interestingly, the Fv/Fm, ФPSII value and chlorophyll content of the seedlings grown under green light were much higher than those grown under yellow light.  相似文献   

9.
The effects of NaCl stress on the growth and photosynthetic characters of Ulmus pumila L. seedlings were investigated under sand culture condition. With increasing NaCl concentration, main stem height, branch number, leaf number, and leaf area declined, while Na+ content and the Na+/K+ ratio in both expanded and expanding leaves increased. Na+ content was significantly higher in expanded leaves than in those just expanding. Chlorophyll (Chl) a and Chl b contents declined as NaCl concentration increased. The net photosynthetic rate, intercellular CO2 concentration, stomatal conductance, and transpiration rate also declined, but stomatal limitation value increased as NaCl concentration increased. Both the maximal quantum yield of PSII photochemistry and the effective quantum yield of PSII photochemistry declined as NaCl concentration rose. These results suggest that the accumulation of Na+ in already expanded leaves might reduce damage to the expanding leaves and help U. pumila endure high salinity. The reduced photosynthesis in response to salt stress was mainly caused by stomatal limitation.  相似文献   

10.
A model which predicts total photosynthetic electron flow from a linear regression of the relationship between corrected steady-state quantum yield and nonphotochemical quenching (E Weis, JA Berry [1987] Biochem Biophys Acta 894: 198-208) was formulated for N-limited cells of the green alga Selenastrum minutum. Unlike other models based on net CO2 fixation, our model is based on total photosynthetic electron flow measured as gross O2 evolution. This allowed for the prediction of total photosynthetic electron flow from water to both CO2 fixation and NO3/NO2 reduction. The linear regression equation predicting electron flow is of the form: J = I · Qq[0.4777-0.3282 QNP] (where J = gross photosynthetic electron flow, I = incident PAR, Qq = photochemical quenching, QNP = nonphotochemical quenching). During steady-state photosynthesis, over a range of irradiance, the model predicted a photosynthetic light saturation curve which was well correlated with that observed. Although developed under steady-state conditions, the model was tested during nonsteady-state photosynthesis induced by transient nitrogen assimilation. The model predicted transient rates of gross O2 evolution which were in excellent agreement with the rates observed under a variety of conditions regardless of whether CO2 or NO3/NO2 served as the physiological electron acceptor. The fluorescence transients resulting from ammonium and nitrate assimilation are discussed with respect to metabolic demands for reductant and ATP.  相似文献   

11.
We studied the impact of ozone enrichment and late frost, singly and interactively, on four birch (Betula pendula Roth) families selected from a naturally regenerated birch stand in southeastern Finland. Seedlings were exposed to 1.5× ambient ozone over one and a half growing seasons using free-air ozone enrichment system. Simulated springtime frost was implemented at the beginning of the second study year, 4 weeks after the bud burst. Plants were measured for timing of bud burst, visible ozone injuries, chlorophyll fluorescence, net photosynthesis and concentrations of photosynthetic pigments, as well as for growth and carbon allocation. Frost treatment caused a rapid 60% decline in net photosynthesis. The recovery of net photosynthesis from acute frost treatment was not complete during the subsequent 3 weeks, which led to significant growth reductions, decreased shoot/root ratio and accumulation of excess nitrogen in the leaves. Photosynthetic responses to ozone were very variable and family-specific. Concentrations of photosynthetic pigments were sensitive to both stress factors, while the maximum quantum yield of PSII was unaffected. Ozone exacerbated the effect of frost only on diameter increment. However, ozone and frost affected different seedling characters, e.g., ozone reduced pigments and frost collapsed net photosynthesis, and these effect combined appear to damage birch seedlings more than a single stress situation.  相似文献   

12.
Pine (Pinus sylvestris L.) seedlings grown under controlled conditions were subjected to water deficit (external water potentials ranging from–0.15 to–1.5 MPa) by adding polyethylene glycol 6000 (PEG) to the nutrient solution. Following this treatment, the dry weights of plant shoots and roots, as well as the ratio of variable to maximum chlorophyll fluorescence (Fv/Fm), nonphotochemical quenching (NPQ) of chlorophyll excitations, photosynthetic CO2/H2O exchange, dark respiration of needles, and water potential of mesophyll apoplast in the substomatal cavity of pine needles, were measured. The imposed water deficit was followed by the inhibition of seedling growth, suppression of photosynthesis and transpiration, and by the decreased content of photosynthetic pigments. It is shown for the first time that the closure of stomata in the needles of water-stressed pine seedlings falls into the physiological reaction norm and is caused by the reduction of water potential in the mesophyll apoplast of the substomatal cavity.  相似文献   

13.
To study the effects of different periods of ozone (O3) fumigation on photosynthesis in leaves of the Monarch birch (Betula maximowicziana), we undertook free air O3 fumigation to Monarch birch seedlings at a concentration of 60 nmol mol?1 during daytime. Plants were exposed to O3 at early, late or both periods in the growing season. The light-saturated net photosynthetic rate (A sat) in July and August was reduced by O3 exposure through a reduction in the maximum rate of carboxylation (V c,max). In early September, on the other hand, despite a reduction in V c,max, A sat was not reduced by O3 due to a counteracting increase in the stomatal conductance. Through the experiment, there was no difference in sensitivity to O3 between maturing and matured leaves. We analyzed the relationship between A sat, V c,max and accumulated stomatal O3 flux (AFst). Whereas V c,max decreased with increasing AFst, the correlation between A sat and AFst was weak because the response of stomatal conductance to O3 was affected by season. We conclude photosynthetic response of Monarch birch to O3 exposure changes with season. This is due to the inconstant stomatal response to O3 but not due to the respose of biochemical assimilation capacity in chloroplasts.  相似文献   

14.
Previous studies about the effects of experimental warming on tree species have focused primarily on response of morphology and physiology in leaf and biomass allocation in the growing season, and a few studies considered the importance of roots. Based on the available evidence, it is unclear whether photosynthesis rate is enhanced by night warming in late autumn an issue that deserves further investigation. Thus, we exposed two coniferous species, Picea asperata and Abies faxoniana, to night warming continued throughout the year to investigate morphological and physiological responses of roots and leaves in the autumn. The results showed that night warming caused significant increases in net influxes of NH4+ and NO3 in P. asperata seedlings corresponding well with net H+ efflux and net influx of O2. Meanwhile, night warming had a positive effect on foliar gas exchange such as net photosynthesis rate, apparent quantum efficiency, dark respiration rate and maximum quantum efficiency of PS II, and nitrate reductase activity of roots. Additionally, root morphology such as total roots length, surface area, specific root area and specific root length was also stimulated by night warming. In contrast, night warming decreased concentrations of non-structural carbohydrate in leaves and roots of both species in autumn. The present study demonstrates that night warming would enhance late autumn leaf photosynthetic rate, and increase N uptake capacity of roots.  相似文献   

15.
Geographic patterns of intraspecific variations in traits related to photosynthesis and biomass were examined in two separate common garden experiments using seed collected from 26 Sitka alder (Alnus sinuata Rydb.) and 18 paper birch (Betula papyrifera Marsh.) populations from climatically diverse locations in British Columbia, Canada. Exchange rates of carbon dioxide and water vapour were measured on 2-year-old seedlings to determine the maximum net instantaneous photosynthetic rate, mesophyll conductance, stomatal conductance, and photosynthetic water use efficiency. Height, stem diameter, root and shoot dry mass and fall frost hardiness data were also obtained. Mean population maximum photosynthetic rate ranged from 10.35 to 14.57 μmol CO2 m–2 s–1 in Sitka alder and from 14.76 to 17.55 μmol CO2 m–2 s–1 in paper birch. Based on canonical correlation analyses, populations from locations with colder winters and shorter (but not necessarily cooler) summers had higher maximum photosynthetic rates implying the existence of an inverse relationship between leaf longevity and photosynthetic capacity. Significant canonical variates based on climatic variables derived for the seed collection sites explained 58% and 41% of variation in the rate of photosynthesis in Sitka alder and paper birch, respectively. Since growing season length is reflected in date of frost hardiness development, an intrinsic relationship was found between photosynthetic capacity and the level of fall frost hardiness. The correlation was particularly strong for paper birch (r=–0.77) and less strong for Sitka alder (r=–0.60). Mean population biomass accumulation decreased with increased climate coldness. These patterns may be consequential for evaluation of the impact of climate change and extension of the growing season on plant communities. Received: 12 July 1999 / Accepted: 24 November 1999  相似文献   

16.
The effects of ambient and elevated ozone (O3) levels on photosynthesis, growth, pigment, biomass and element contents of Aleppo pine (Pinus halepensis Mill.) were studied for two growing seasons (1997, 1998). Two-year-old seedlings were exposed to elevated O3 in open-top chambers. The treatments were charcoal-filtered air and non-filtered air + 50 nl l–1 O3 (24 h per day, 7 days per week). In summer 1998, half of the seedlings were drought-stressed (leaf water potential down to approximately –2 MPa), while the other half were kept well-watered. At the beginning of the season (1998), current (c) and previous-year (c + 1) needles under O3 stress showed an increase in stomatal conductance and net photosynthesis. During the drought period, only stomatal conductance increased in both needle age-classes, whereas the net photosynthesis decreased. At the end of the measuring period, both parameters were reduced in the O3 treatment. Both O3 and drought decreased chlorophyll a and b concentrations, growth and biomass. A carry-over effect of O3 on pigments was also observed. Needle K content was increased in the O3 treatment. Drought protected Aleppo pine against O3 (less chlorotic mottle and less decrease of stem and branch biomass).  相似文献   

17.
The effects of various calcium ion antagonists and ion transport inhibitors on photosynthetic O2 evolution of corals, isolated zooxanthellae, sea anemone tentacles, and Chlorococcum oleofaciens were measured. Only the phenothiazine drugs were effective at inhibiting photosynthesis. Trifluoperazine, a calcium ion antagonist drug, inhibited at low concentrations, with 10−4 molar and 8 × 10−6 molar completely abolishing photosynthesis in the intact corals and isolated zooxanthellae, respectively. Net photosynthetic O2 evolution of C. oleofaciens was eliminated by concentrations of trifluoperazine as low as 2.8 × 10−5 molar.  相似文献   

18.
The purpose of this research was to determine the magnitude of photorespiration in field-grown cotton (Gossypium hirsutum L.) as a function of environmental and plant-related factors. Photorespiration rates were estimated as the difference between measured gross and net photosynthetic rates.

A linear increase in photorespiration was observed as air temperature increased from 22 to 40°C at saturating photon flux density. At 22°C, photorespiration was less than 15 per cent of net photosynthesis and very comparable to the dark respiration rate. At 40°C, photorespiration represented about 50 per cent of net photosynthesis. Gross photosynthesis had a temperature optimum of 32 to 34°C. Water stress, as indicated by ΨL, did not alter the ratio of gross photosynthesis to net photosynthesis when the confounding effects of leaf temperature differences were accounted for in the data analyses. A reduction in both gross and net photosynthesis was apparent as ΨL declined from −2.0 megapascals indicating direct effects of water stress on the photosynthetic process. Photorespiration expressed as a proportion of net photosynthesis increased as water stress intensified.

Cotton cultivars possessing a fruit load had significantly higher gross and net photosynthetic rates and lower photorespiration rates than did photoperiod-sensitive cotton strains without a fruit load. Within the fruiting types, which were genetically very similar, only minor differences were observed in the photorespiration:net photosynthesis ratios. However, in the photoperiod-sensitive strains, considerable genetic variability existed when photorespiration was expressed as a proportion of net photosynthesis. These results suggest that the kinetics of ribulose-1,5-bisphosphate carboxylase:oxygenase may be different and, thus, the possibility of genetically reducing photorespiration exists.

  相似文献   

19.
An earlier onset of photosynthesis in spring for boreal forest trees is predicted as the climate warms, yet the importance of soil vs air temperatures for spring recovery remains to be determined. Effects of various soil- and air-temperature conditions on spring recovery of photosynthesis in Scots pine (Pinus sylvestris) seedlings were assessed under controlled environmental conditions. Using winter-acclimated seedlings, photosynthetic responses were followed after transfer to different simulated spring conditions. Recovery rates for photosynthetic electron transport and net CO(2) uptake were slower in plants from cold or frozen soil compared with controls. In addition, a greater fraction of light absorbed was not used photochemically, but was dissipated thermally via xanthophyll cycle pigments. Intermittent frost events decreased photosynthetic capacity and increased thermal energy dissipation. Within a few days after frost events, photosynthetic capacity recovered to prefrost levels. After 18 d under spring conditions, no difference in the optimum quantum yield of photosynthesis was observed between seedlings that had been exposed to intermittent frost and control plants. These results show that, if air temperatures remain favourable and spells of subfreezing air temperatures are only of short duration, intermittent frost events delay but do not severely inhibit photosynthetic recovery in evergreen conifers during spring. Cold and/or frozen soils exert much stronger inhibitory effects on the recovery process, but they do not totally inhibit it.  相似文献   

20.
The response of foliar gas exchange to exogenously applied ethylene   总被引:3,自引:1,他引:2       下载免费PDF全文
The responsiveness to ethylene of net photosynthesis and stomatal conductance to water vapor in intact plants was investigated in 13 herbaceous species representing seven plant families. Exposures were conducted in an open, whole-plant exposure system providing controlled levels of irradiance, air temperature, CO2, relative humidity, and ethylene concentration. Net photosynthesis and stomatal conductance to water vapor in units of moles per square meter per second were measured on recently expanded leaves in control and ethylene-treated plants using a remotely operated single-leaf cuvette. The ethylene concentration was either 0 or 210 micromoles per cubic meter and was maintained for 4 hours. Species varied substantially in the response of their foliar gas exchange to ethylene. In 7 of the 13 species, net photosynthesis was inhibited statistically by 4 hours of ethylene exposure. As a function of the rate in control plants, the responses were most pronounced and statistically significant in Arachis hypogaea (−51.1%), Gossypium hirsutum (−31.7%), Glycine max (−24.8%), Cucurbita pepo (−20.4%), Phaseolus vulgaris (−18.4%), Setaria viridis (−17.5%), and Raphanus sativus (−4.4%). Whereas the responsiveness of net photosynthesis to ethylene among the 13 species showed no specific taxonomic associations, the responsiveness was positively correlated with the intrinsic rate of net photosynthesis. Stomatal conductance to water vapor after 4 hours of ethylene exposure declined statistically in 6 of the 13 species. As a function of control rates, the most marked and statistically significant responses of stomatal conductance were in Glycine max (−53.6%), Gossypium hirsutum (−51.2%), Arachis hypogaea (−42.7%), Phaseolus vulgaris (−38.6%), Raphanus sativus (−26.8%), and Solanum tuberosum (−23.4%). Although ethylene-induced changes in net photosynthesis and stomatal conductance were positively correlated, there were species-specific exceptions in which net photosynthesis declined after 4 hours of exposure without a concurrent change in stomatal conductance, stomatal conductance declined without a change in net photosynthesis, and the decline in stomatal conductance substantially exceeded the corresponding decline in net photosynthesis. Thus, the responsiveness to ethylene of net photosynthesis and stomatal conductance to water vapor were not consistently synchronous or equivalent among the 13 species. It is concluded that foliar gas exchange is responsive to exogenously applied ethylene in many plant species. The sensitivity of foliar gas exchange to ethylene may play a role in general plant response to environmental stress in which one of the physiological sites of action for endogenously produced stress ethylene in the leaf is the plant's photosynthetic capacity and/or stomatal conductance to water vapor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号