首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cohesin complex is essential for mitosis and meiosis. The specific meiotic roles of individual cohesin proteins are incompletely understood. We report in vivo functions of the only meiosis‐specific STAG component of cohesin, STAG3. Newly generated STAG3‐deficient mice of both sexes are sterile with meiotic arrest. In these mice, meiotic chromosome architecture is severely disrupted as no bona fide axial elements (AE) form and homologous chromosomes do not synapse. Axial element protein SYCP3 forms dot‐like structures, many partially overlapping with centromeres. Asynapsis marker HORMAD1 is diffusely distributed throughout the chromatin, and SYCP1, which normally marks synapsed axes, is largely absent. Centromeric and telomeric sister chromatid cohesion are impaired. Centromere and telomere clustering occurs in the absence of STAG3, and telomere structure is not severely affected. Other cohesin proteins are present, localize throughout the STAG3‐devoid chromatin, and form complexes with cohesin SMC1β. No other deficiency in a single meiosis‐specific cohesin causes a phenotype as drastic as STAG3 deficiency. STAG3 emerges as the key STAG cohesin involved in major functions of meiotic cohesin.  相似文献   

2.
Partitioning of the genome in meiosis occurs through two highly specialized cell divisions, named meiosis I and meiosis II. Step‐wise cohesin removal is required for chromosome segregation in meiosis I, and sister chromatid segregation in meiosis II. In meiosis I, mono‐oriented sister kinetochores appear as fused together when examined by high‐resolution confocal microscopy, whereas they are clearly separated in meiosis II, when attachments are bipolar. It has been proposed that bipolar tension applied by the spindle is responsible for the physical separation of sister kinetochores, removal of cohesin protection, and chromatid separation in meiosis II. We show here that this is not the case, and initial separation of sister kinetochores occurs already in anaphase I independently of bipolar spindle forces applied on sister kinetochores, in mouse oocytes. This kinetochore individualization depends on separase cleavage activity. Crucially, without kinetochore individualization in meiosis I, bivalents when present in meiosis II oocytes separate into chromosomes and not sister chromatids. This shows that whether centromeric cohesin is removed or not is determined by the kinetochore structure prior to meiosis II.  相似文献   

3.
BACKGROUND: Sister chromatid cohesion depends on a complex called cohesin, which contains at least four subunits: Smc1, Smc3, Scc1 and Scc3. Cohesion is established during DNA replication, is partially dismantled in many, but not all, organisms during prophase, and is finally destroyed at the metaphase-to-anaphase transition. A quite separate protein called Spo76 is required for sister chromatid cohesion during meiosis in the ascomycete Sordaria. Spo76-like proteins are highly conserved amongst eukaryotes and a homologue in Aspergillus nidulans, called BimD, is required for the completion of mitosis. The isolation of the cohesin subunit Smc3 as a suppressor of BimD mutations suggests that Spo76/BimD might function in the same process as cohesin. RESULTS: We show here that the yeast homologue of Spo76, called Pds5, is essential for establishing sister chromatid cohesion and maintaining it during metaphase. We also show that Pds5 co-localizes with cohesin on chromosomes, that the chromosomal association of Pds5 and cohesin is interdependent, that Scc1 recruits Pds5 to chromosomes in G1 and that its cleavage causes dissociation of Pds5 from chromosomes at the metaphase-to-anaphase transition. CONCLUSIONS: Our data show that Pds5 functions as part of the same process as cohesin. Sequence similarities and secondary structure predictions indicate that Pds5 consists of tandemly repeated HEAT repeats, and might therefore function as a protein-protein interaction scaffold, possibly in the cohesin-DNA complex assembly.  相似文献   

4.
Sister chromatid cohesion depends on cohesin [1-3]. Cohesin associates with chromatin dynamically throughout interphase [4]. During DNA replication, cohesin establishes cohesion [5], and this process coincides with the generation of a cohesin subpopulation that is more stably bound to chromatin [4]. In mitosis, cohesin is removed from chromosomes, enabling sister chromatid separation [6]. How cohesin associates with chromatin and establishes cohesion is poorly understood. By searching for proteins that are associated with chromatin-bound cohesin, we have identified sororin, a protein that was known to be required for cohesion [7]. To obtain further insight into sororin's function, we have addressed when during the cell cycle sororin is required for cohesion. We show that sororin is dispensable for the association of cohesin with chromatin but that sororin is essential for proper cohesion during G2 phase. Like cohesin, sororin is also needed for efficient repair of DNA double-strand breaks in G2. Finally, sororin is required for the presence of normal amounts of the stably chromatin-bound cohesin population in G2. Our data indicate that sororin interacts with chromatin-bound cohesin and functions during the establishment or maintenance of cohesion in S or G2 phase, respectively.  相似文献   

5.
Cohesion between sister chromatids in mitotic and meiotic cells is promoted by a ring‐shaped protein structure, the cohesin complex. The cohesin core complex is composed of four subunits, including two structural maintenance of chromosome (SMC) proteins, one α‐kleisin protein, and one SA protein. Meiotic cells express both mitotic and meiosis‐specific cohesin core subunits, generating cohesin complexes with different subunit composition and possibly separate meiotic functions. Here, we have analyzed the in vivo function of STAG3, a vertebrate meiosis‐specific SA protein. Mice with a hypomorphic allele of Stag3, which display a severely reduced level of STAG3, are viable but infertile. We show that meiocytes in homozygous mutant Stag3 mice display chromosome axis compaction, aberrant synapsis, impaired recombination and developmental arrest. We find that the three different α‐kleisins present in meiotic cells show different dosage‐dependent requirements for STAG3 and that STAG3‐REC8 cohesin complexes have a critical role in supporting meiotic chromosome structure and functions.  相似文献   

6.
During meiosis I, kinetochores of sister chromatids are juxtaposed or fused and mono-orient, while homologous chromosomes that are paired by chiasmata (bivalents) have to biorient. In the absence of chiasmata, biorientation of sister chromatids (univalents), which carries a risk of aneuploidy, has been occasionally detected in several species, including humans. We show in fission yeast that biorientation of fused sister kinetochores predominates during early prometaphase I. Without chiasmata, this undesirable biorientation of univalents persists and eventually evades the spindle assembly checkpoint, provoking abnormal anaphase. When univalents are connected by chiasmata or by an artificial tether, this erroneous attachment is converted to monopolar attachment and stabilized. This stabilization is apparently achieved by a chromosome configuration that brings kinetochores to the outer edge of the bivalent, while bringing Aurora B, a destabilizer of kinetochore-microtubule attachment, inward. Our results elucidate how chiasmata favor biorientation of bivalents over that of univalents at meiosis I.  相似文献   

7.
REC8 is a key component of the meiotic cohesin complex. During meiosis, cohesin is required for the establishment and maintenance of sister-chromatid cohesion, for the formation of the synaptonemal complex, and for recombination between homologous chromosomes. We show that REC8 has an essential role in mammalian meiosis, in that Rec8 null mice of both sexes have germ cell failure and are sterile. In the absence of REC8, early chromosome pairing events appear normal, but synapsis occurs in a novel fashion: between sister chromatids. This implies that a major role for REC8 in mammalian meiosis is to limit synapsis to between homologous chromosomes. In all other eukaryotic species studied to date, REC8 phenotypes have been restricted to meiosis. Unexpectedly, Rec8 null mice are born in sub-Mendelian frequencies and fail to thrive. These findings illuminate hitherto unknown REC8 functions in chromosome dynamics during mammalian meiosis and possibly in somatic development.  相似文献   

8.
Slk19p is necessary to prevent separation of sister chromatids in meiosis I   总被引:4,自引:0,他引:4  
BACKGROUND: A fundamental difference between meiotic and mitotic chromosome segregation is that in meiosis I, sister chromatids remain joined, moving as a unit to one pole of the spindle rather than separating as they do in mitosis. It has long been known that the sustained linkage of sister chromatids through meiotic anaphase I is accomplished by association of the chromatids at the centromere region. The localization of the cohesin Rec8p to the centromeres is essential for maintenance of sister chromatid cohesion through meiosis I, but the molecular basis for the regulation of Rec8p and sister kinetochores in meiosis remains a mystery. RESULTS: We show that the SLK19 gene product from Saccharomyces cerevisiae is essential for proper chromosome segregation during meiosis I. When slk19 mutants were induced to sporulate they completed events characteristic of meiotic prophase I, but at the first meiotic division they segregated their sister chromatids to opposite poles at high frequencies. The vast majority of these cells did not perform a second meiotic division and proceeded to form dyads (asci containing two spores). Slk19p was found to localize to centromere regions of chromosomes during meiotic prophase where it remained until anaphase I. In the absence of Slk19p, Rec8p was not maintained at the centromere region through anaphase I as it is in wild-type cells. Finally, we demonstrate that Slk19p appears to function downstream of the meiosis-specific protein Spo13p in control of sister chromatid behavior during meiosis I. CONCLUSIONS: Our results suggest that Slk19p is essential at the centromere of meiotic chromosomes to prevent the premature separation of sister chromatids at meiosis I.  相似文献   

9.
Chromosome segregation depends on sister chromatid cohesion which is established by cohesin during DNA replication. Cohesive cohesin complexes become acetylated to prevent their precocious release by WAPL before cells have reached mitosis. To obtain insight into how DNA replication, cohesion establishment and cohesin acetylation are coordinated, we analysed the interaction partners of 55 human proteins implicated in these processes by mass spectrometry. This proteomic screen revealed that on chromatin the cohesin acetyltransferase ESCO2 associates with the MCM2‐7 subcomplex of the replicative Cdc45‐MCM‐GINS helicase. The analysis of ESCO2 mutants defective in MCM binding indicates that these interactions are required for proper recruitment of ESCO2 to chromatin, cohesin acetylation during DNA replication, and centromeric cohesion. We propose that MCM binding enables ESCO2 to travel with replisomes to acetylate cohesive cohesin complexes in the vicinity of replication forks so that these complexes can be protected from precocious release by WAPL. Our results also indicate that ESCO1 and ESCO2 have distinct functions in maintaining cohesion between chromosome arms and centromeres, respectively.  相似文献   

10.
We have used nonessential circular minichromosomes to monitor sister chromatid exchange during yeast meiosis. Genetic analysis shows that a 64-kb circular minichromosome undergoes sister chromatid exchange during 40% of meioses. This frequency is not reduced by the presence of a homologous linear minichromosome. Furthermore, sister chromatid exchange can be stimulated by the presence of a 12-kb ARG4 DNA fragment, which contains initiation sites for meiotic gene conversion. Using physical analysis, we have directly identified a product of sister chromatid exchange: a head-to-tail dimer form of a circular minichromosome. This dimer form is absent in a rad50S mutant strain, which is deficient in processing of the ends of meiosis-specific double-stranded breaks into single-stranded DNA tails. Our studies suggest that meiotic sister chromatid exchange is stimulated by the same mechanism as meiotic homolog exchange.  相似文献   

11.
Budding yeast PDS5 is an essential gene in mitosis and is required for chromosome condensation and sister chromatid cohesion. Here we report that PDS also is required in meiosis. Pds5p localizes on chromosomes at all stages during meiotic cycle, except anaphase I. PDS5 plays an important role at first meiotic prophase. Failure in function of PDS5 causes premature separation of chromosomes. The loading of Pds5p onto chromosome requires the function of REC8, but the association of Rec8p with chromosome is independent of PDS5. Mutant analysis and live cell imaging indicate that PDS5 play a role in meiosis II as well.  相似文献   

12.
《Developmental cell》2021,56(22):3100-3114.e4
  1. Download : Download high-res image (169KB)
  2. Download : Download full-size image
  相似文献   

13.
14.
《Current biology : CB》2022,32(13):2884-2896.e6
  1. Download : Download high-res image (198KB)
  2. Download : Download full-size image
  相似文献   

15.
The establishment of sister chromatid cohesion during S phase and its dissolution at the metaphase-anaphase transition are essential for the faithful segregation of chromosomes in mitosis [1-4]. Recent studies in yeast genetics and Xenopus biochemistry have identified a large protein complex, cohesin, that plays a key role in sister chromatid cohesion [5-10]. The cohesin complex consists of a heterodimeric pair of SMC (structural maintenance of chromosomes) subunits and at least two non-SMC subunits. This structural organization is reminiscent of that of condensin, another major SMC protein complex that drives chromosome condensation in eukaryotic cells [11]. Condensin has been shown to reconfigure and compact DNA in vitro by utilizing the energy of ATP hydrolysis [12]. Very little is known, however, about how cohesin works at a mechanistic level. Here we report the first set of biochemical activities associated with an intact cohesin complex purified from HeLa cell extracts. The cohesin complex binds directly to double-stranded DNA and induces the formation of large protein-DNA aggregates. In the presence of topoisomerase II, cohesin stimulates intermolecular catenation of circular DNA molecules. This activity is in striking contrast to intramolecular knotting directed by condensin [13]. Cohesin also increases the probability of intermolecular ligation of linear DNA molecules in the presence of DNA ligase. Our results are consistent with a model in which cohesin functions as an intermolecular DNA crosslinker and is part of the molecular "glue" that holds sister chromatids together [14].  相似文献   

16.
The reduction of chromosome number during meiosis is achieved by two successive rounds of chromosome segregation, called meiosis I and meiosis II. While meiosis II is similar to mitosis in that sister kinetochores are bi-oriented and segregate to opposite poles, recombined homologous chromosomes segregate during the first meiotic division. Formation of chiasmata, mono-orientation of sister kinetochores and protection of centromeric cohesion are three major features of meiosis I chromosomes which ensure the reductional nature of chromosome segregation. Here we show that sister chromatids frequently segregate to opposite poles during meiosis I in fission yeast cells that lack both chiasmata and the protector of centromeric cohesion Sgo1. Our data are consistent with the notion that sister kinetochores are frequently bi-oriented in the absence of chiasmata and that Sgo1 prevents equational segregation of sister chromatids during achiasmate meiosis I.Key words: meiosis, chromosome segregation, recombination, kinetochore, Sgo1, fission yeast  相似文献   

17.
The reduction of chromosome number during meiosis is achieved by two successive rounds of chromosome segregation, called meiosis I and meiosis II. While meiosis II is similar to mitosis in that sister kinetochores are bi-oriented and segregate to opposite poles, recombined homologous chromosomes segregate during the first meiotic division. Formation of chiasmata, mono-orientation of sister kinetochores and protection of centromeric cohesion are three major features of meiosis I chromosomes which ensure the reductional nature of chromosome segregation. Here we show that sister chromatids frequently segregate to opposite poles during meiosis I in fission yeast cells that lack both chiasmata and the protector of centromeric cohesion Sgo1. Our data are consistent with the notion that sister kinetochores are frequently bi-oriented in the absence of chiasmata and that Sgo1 prevents equational segregation of sister chromatids during achiasmate meiosis I.  相似文献   

18.
Shao T  Tang D  Wang K  Wang M  Che L  Qin B  Yu H  Li M  Gu M  Cheng Z 《Plant physiology》2011,156(3):1386-1396
The successful transmission of chromosomes during mitosis and meiosis relies on the establishment and subsequent release of cohesion between replicated chromatids. Cohesion is mediated by a four-subunit structural maintenance of chromosome complex, called cohesins. REC8 is a key component of this meiotic cohesion complex in most model organisms studied to date. Here, we isolated and dissected the functions of OsREC8, a rice (Oryza sativa) REC8 homolog, using two null Osrec8 mutants. We showed that OsREC8 encodes a protein that localized to meiotic chromosomes from approximately meiotic interphase to metaphase I. Homologous pairing and telomere bouquet formation were abnormal in Osrec8 meiocytes. Furthermore, fluorescent in situ hybridization experiments on Osrec8 meiocytes demonstrated that the mutation eliminated meiotic centromeric cohesion completely during prophase I and also led to the bipolar orientation of the kinetochores during the first meiotic division and accordingly resulted in premature separation of sister chromatid during meiosis I. Immunolocalization analyses revealed that the loading of PAIR2, PAIR3, OsMER3, and ZEP1 all depended on OsREC8. By contrast, the presence of the OsREC8 signal in pair2, pair3, Osmer3, and zep1 mutants indicated that the loading of OsREC8 did not rely on these four proteins. These results suggest that OsREC8 has several essential roles in the meiotic processes.  相似文献   

19.
Potts PR  Porteus MH  Yu H 《The EMBO journal》2006,25(14):3377-3388
The structural maintenance of chromosomes (SMC) family of proteins has been implicated in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR). The SMC1/3 cohesin complex is thought to promote HR by maintaining the close proximity of sister chromatids at DSBs. The SMC5/6 complex is also required for DNA repair, but the mechanism by which it accomplishes this is unclear. Here, we show that RNAi-mediated knockdown of the SMC5/6 complex components in human cells increases the efficiency of gene targeting due to a specific requirement for hSMC5/6 in sister chromatid HR. Knockdown of the hSMC5/6 complex decreases sister chromatid HR, but does not reduce nonhomologous end-joining (NHEJ) or intra-chromatid, homologue, or extrachromosomal HR. The hSMC5/6 complex is itself recruited to nuclease-induced DSBs and is required for the recruitment of cohesin to DSBs. Our results establish a mechanism by which the hSMC5/6 complex promotes DNA repair and suggest a novel strategy to improve the efficiency of gene targeting in mammalian somatic cells.  相似文献   

20.
The maintenance of sister chromatid cohesion from S phase to the onset of anaphase relies on a small but evolutionarily conserved protein called Sororin. Sororin is a phosphoprotein and its dynamic localization and function are regulated by protein kinases, such as Cdk1/cyclin B and Erk2. The association of Sororin with chromatin requires cohesin to be preloaded to chromatin and modification of Smc3 during DNA replication. Sororin antagonizes the function of Wapl in cohesin releasing from S to G2 phase and promotes cohesin release from sister chromatid arms in prophase via interaction with Plk1. This review focuses on progress of the identification and regulation of Sororin during cell cycle; role of post-translational modification on Sororin function; role of Sororin in the maintenance and resolution of sister chromatid cohesion; and finally discusses Sororin’s emerging role in cancer and the potential issues that need be addressed in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号