首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inhibition of gluconeogenesis and glycogenolysis by 2,5-anhydro-D-mannitol   总被引:1,自引:0,他引:1  
2,5-Anhydro-D-mannitol (100 to 200 mg/kg) decreased blood glucose by 17 to 58% in fasting mice, rats, streptozotocin-diabetic mice, and genetically diabetic db/db mice. Serum lactate in rats was elevated 56% by 2,5-anhydro-D-mannitol, but this could be prevented by dichloroacetate (200 mg/kg) or thiamin (200 mg/kg). In hepatocytes from fasted rats, 1 mM 2,5-anhydro-D-mannitol inhibited gluconeogenesis from a mixture of alanine, lactate, and pyruvate. It also inhibited glucose production and stimulated lactate formation from glycerol or dihydroxyacetone. Glycogenolysis in hepatocytes from fed rats was markedly inhibited by 1 mM 2,5-anhydro-D-mannitol both in the presence or absence of 1 microM glucagon. 2,5-Anhydro-D-mannitol can be phosphorylated by fructokinase or hexokinase to the 1-phosphate and then by phosphofructokinase to the 1,6-bisphosphate. Rat liver glycogen phosphorylase was inhibited by 2,5-anhydro-D-mannitol 1-phosphate (apparent Ki = 0.66 +/- 0.09 mM) but was little affected by 2,5-anhydro-D-mannitol 1,6-bisphosphate. Rat liver phosphoglucomutase was inhibited by 2,5-anhydro-D-mannitol 1-phosphate (apparent Ki = 2.8 +/- 0.2 mM), whereas 2,5-anhydro-D-mannitol 1,6-bisphosphate served as an alternative activator (apparent K alpha = 7.0 +/- 0.5 microM). Rabbit liver pyruvate kinase was activated by 2,5-anhydro-D-mannitol 1,6-bisphosphate (apparent K alpha = 9.5 +/- 0.9 microM), whereas rabbit liver fructose 1,6-bisphosphatase was inhibited by 2,5-anhydro-D-mannitol 1,6-bisphosphate (apparent Ki = 3.6 +/- 0.3 microM). The phosphate esters of 2,5-anhydro-D-mannitol would, therefore, be expected to inhibit glycogenolysis and gluconeogenesis and stimulate glycolysis in liver.  相似文献   

2.
1. Gluconeogenesis was studied in isolated avian hepatocytes. The highest rate of glucose production obtained was from lactate, followed by dihydroxyacetone, glyceraldehyde, and fructose. Alanine was converted to glucose at only about 4% the rate of lactate. 2. Addition of 10 mM sorbitol, xylitol, or ethanol to the hepatocytes increased glucose production from pyruvate 25-40%, while glycerol addition increased it only 9%. 3. Addition of beta-hydroxybutyrate had no effect on glucose production from lactate or pyruvate. 4. Addition of octanoate had no effect on glucose production from pyruvate, but depressed it from lactate at 5 mM. 5. Differences in the formation of glucose from various substrates suggest some basic differences in the mode of glucose production between the chick and the rat and guinea-pig.  相似文献   

3.
Glucose output from perfused livers of 48 h-starved rats was stimulated by phenylephrine (2 microM) when lactate, pyruvate, alanine, glycerol, sorbitol, dihydroxyacetone or fructose were used as gluconeogenic precursors. Phenylephrine-induced increases in glucose output were immediately preceded by a transient efflux of Ca2+ and a sustained increase in oxygen uptake. Phenylephrine decreased the perfusate [lactate]/[pyruvate] ratio when sorbitol or glycerol was present, but increased the ratio when alanine, dihydroxyacetone or fructose was present. Phenylephrine induced a rapid increase in the perfusate [beta-hydroxybutyrate]/[acetoacetate] ratio and increased total ketone-body output by 40-50% with all substrates. The oxidation of [1-14C]octanoate or 2-oxo[1-14C]glutarate to 14CO2 was increased by up to 200% by phenylephrine. All responses to phenylephrine infusion were diminished after depletion of the hepatic alpha-agonist-sensitive pool of Ca2+ and returned toward maximal responses after Ca2+ re-addition. Phenylephrine-induced increases in glucose output from lactate, sorbitol and glycerol were inhibited by the transaminase inhibitor amino-oxyacetate by 95%, 75% and 66% respectively. Data presented suggest that the mobilization of an intracellular pool of Ca2+ is involved in the activation of gluconeogenesis by alpha-adrenergic agonists in perfused rat liver. alpha-Adrenergic activation of gluconeogenesis is apparently accompanied by increases in fatty acid oxidation and tricarboxylic acid-cycle flux. An enhanced transfer of reducing equivalents from the cytoplasmic to the mitochondrial compartment may also be involved in the stimulation of glucose output from the relatively reduced substrates glycerol and sorbitol and may arise principally from an increased flux through the malate-aspartate shuttle.  相似文献   

4.
In hepatocytes isolated from fasted normal rats and incubated without albumin or gelatin, norepinephrine stimulated gluconeogenesis from fructose or dihydroxyacetone only in the absence of added calcium and from sorbitol or glycerol only in the presence of added calcium. The effects of calcium, norepinephrine, or calcium in combination with norepinephrine on the concentration of intermediary metabolites were therefore studied in hepatocytes metabolizing fructose or sorbitol as the representative oxidized or reduced substrate, respectively. With fructose as the substrate, addition of calcium increased the concentrations of lactate, pyruvate, glyceraldehyde 3-phosphate, and β-hydroxybutyrate, but decreased the concentrations of phosphoenolpyruvate, 2-phosphoglycerate, 3-phosphoglycerate, glucose 6-phosphate, malate, citrate, and α-oxoglutarate. With sorbitol as the substrate, calcium increased the concentrations of pyruvate, malate, β-hydroxybutyrate, and glucose. With either substrate, calcium caused a decrease in the lactate/ pyruvate ratio and an increase in the β-hydroxybutyrate/acetoacetate ratio, indicating the stimulation of transfer of reducing equivalents from cytosol to mitochondria. With sorbitol as the substrate, and with calcium present, norepinephrine promoted further electron transfer from cytosolic to mitochondrial NAD. Enhanced cytosolic calcium concentrations, when cells are exposed to catecholamines in the presence of medium calcium, stimulate the mitochondrial α-glycerophosphate dehydrogenase and thus the transfer of electrons between cell compartments.  相似文献   

5.
Glucagon and dibutyryl cyclic AMP inhibited glucose utilization and lowered fructose 2,6-bisphosphate levels of hepatocytes prepared from fed chickens. Partially purified preparations of chicken liver 6-phosphofructo-1-kinase and fructose 1,6-bisphosphatase were activated and inhibited by fructose 2,6-bisphosphate, respectively. The sensitivities of these enzymes and the changes observed in fructose 2,6-bisphosphate levels are consistent with an important role for this allosteric effector in hormonal regulation of carbohydrate metabolism in chicken liver. In contrast, oleate inhibition of glucose utilization by chicken hepatocytes occurred without change in fructose, 2,6-bisphosphate levels. Likewise, pyruvate inhibition of lactate gluconeogenesis in chicken hepatocytes cannot be explained by changes in fructose 2,6-bisphosphate levels. Exogenous glucose caused a marked increase in fructose 2,6-bisphosphate content of hepatocytes from fasted but not fed birds. Both glucagon and lactate prevented this glucose effect. Fasted chicken hepatocytes responded to lower glucose concentrations than fasted rat hepatocytes, perhaps reflecting the species difference in hexokinase isozymes.  相似文献   

6.
The activity of enzymes implicated in the metabolic pathway of fructose to glucose conversion was shown in rat liver and intestine. In rats on normal diet, the specific activity of glucose-6-phosphatase, fructokinase, fructose-1,6-diphosphatase and triokinase was low in the intestine confirming that sugar conversion is not operative in this organ. In rats on a fructose diet, all the specific enzymatic activities tested were increased except for the hepatic triokinase and triose phosphate isomerase and for the intestinal triose phosphate isomerase. The intestine acquires the possibility to transform fructose to glucose by modifying the activities of enzymes implicated in the same metabolic pathway as that intervening in the liver.  相似文献   

7.
In hepatocytes isolated from fasted rats, vasopressin and angiotensin II stimulate the rate of gluconeogenesis from lactate or pyruvate in a Ca2+-dependent manner similar to that previously reported for norepinephrine. Actions of the peptide hormones on gluconeogenesis from glycerol or sorbitol, reduced substrates that require oxidation before they enter the gluconeogenic pathway at triosephosphate, also resemble those of norepinephrine. Stimulation of glucose production from these substrates is observed only in the presence of extracellular Ca2+. Actions of the peptide hormones on gluconeogenesis from dihydroxyacetone or fructose, the oxidized counterparts of glycerol and sorbitol, respectively, do not resemble those of norepinephrine. While norepinephrine enhances rates of glucose production from dihydroxyacetone or fructose in the absence of extracellular Ca2+, vasopressin and angiotensin II are ineffective either in the absence or presence of extracellular Ca2+. When the oxidation-reduction state in hepatocytes metabolizing dihydroxyacetone is altered by adding an equimolar concentration of ethanol (to provide cytosolic reducing equivalents), the results are similar to those obtained when cells are incubated with the reduced counterpart of dihydroxyacetone, glycerol, i.e., the peptide hormones cause an apparent increase in the rate of glucose production in a Ca2+-dependent manner. If, on the other hand, hepatocytes are incubated with glycerol or sorbitol and an equimolar concentration of pyruvate (to provide a cytosolic hydrogen acceptor), the peptide hormones, unlike norepinephrine, are ineffective in stimulating gluconeogenesis in the absence of extracellular Ca2+. These results indicate that whereas many of the actions of vasopressin and angiotensin II are similar to those of alpha 1-adrenergic agents, there are major differences in the manner in which the hormones act at various sites to regulate gluconeogenesis.  相似文献   

8.
3- Aminopicolinate , a hyperglycemic agent that activates purified phosphoenolpyruvate carboxykinase in the presence of Fe2+, inhibits glucose synthesis from lactate, pyruvate, asparagine, monomethyl succinate, or glutamine but does not affect that from fructose, dihydroxyacetone, sorbitol, or glycerol in hepatocytes isolated from rats fasted for 24 h. Lactate production from monomethyl succinate by hepatocytes is also inhibited by 3- aminopicolinate . This compound elevates the concentrations of pyruvate, malate, and aspartate but decreases that of phosphoenolpyruvate in hepatocytes incubated with lactate plus pyruvate. In rats, the ability of 3- aminopicolinate to elevate blood glucose concentration is unimpaired by renalectomy . The drug does not significantly affect glycemia in functionally hepatectomized rats but accelerates blood lactate and pyruvate accumulation to higher maximum concentrations even when kidney function is also ablated. It is concluded that 3- aminopicolinate inhibits phosphoenolpyruvate carboxykinase in hepatocytes, that the reported stimulation of renal glutaminase and glutamine gluconeogenesis by this compound does not contribute significantly to its hyperglycemic property, and that the drug increases gluconeogenic substrate supply from peripheral tissues.  相似文献   

9.
The influence of the hypoglycemic agent glipizide (0-100 microM) on the rate of gluconeogenesis from lactate, as well as on the levels of fructose 2,6-bisphosphate, has been investigated in hepatocytes isolated from genetically obese (fa/fa) Zucker rats and from their corresponding lean (Fa/-) littermates. As compared to lean rat hepatocytes, liver cells isolated from obese animals showed a lower rate of basal gluconeogenesis (0.9 +/- 0.2 vs 5.4 +/- 0.5 micromol of lactate converted to glucose/g cell x 30 min, n=4) and higher levels of fructose 2,6-bisphosphate (11.5 +/- 1.0 vs 5.9 +/- 0.4 nmol/g cell, n=8-9). In lean rat hepatocytes, the presence of glipizide in the incubation medium caused a dose-dependent inhibition of the rate of lactate conversion to glucose (maximal inhibition=46%; EC50 value=26 microM), and simultaneously raised the cellular content of fructose-2,6-bisphosphate (maximal increment=40%; EC50 value=10 microM). In contrast, in hepatocytes isolated from obese rats, the inhibition of gluconeogenesis and the increment in fructose-2,6-bisphosphate levels elicited by glipizide were significantly reduced (maximal effects of 22 and 13%, respectively). Similarly, the activation of glycogen phosphorylase and the increase in hexose 6-phosphate levels in response to glipizide were less marked in obese rat hepatocytes than in liver cells isolated from lean animals. These results demonstrate that the efficacy of sulfonylureas as inhibitors of hepatic gluconeogenesis is reduced in the genetically obese (fa/fa) Zucker rat.  相似文献   

10.
The purpose of this study was to further examine the hypothesis that variations in hepatic fructose-metabolizing enzymes between males and females might account for the differences in the severity of copper (Cu) deficiency observed in fructose-fed male rats. Weanling rats of both sexes were fed high-fructose diets either adequate or deficient in copper for 45 days. Cu deficiency decreased sorbitol dehydrogenase activity and dihydroxyacetone phosphate levels and increased glyceraldehyde levels in both sexes. Gender effects were expressed by higher activities of glycerol 3-phosphate dehydrogenase and aldehyde dehydrogenase in male than in female rats and higher levels of dihydroxyacetone phosphate and fructose 1,6-diphosphate (F1,6DP) in female than in male rats. The interactions between dietary Cu and gender were as follows: alcohol dehydrogenase activities were higher in female rats and were further increased by Cu deficiency in both sexes; aldehyde dehydrogenase activities were decreased by Cu deficiency only in male rats; sorbitol levels were higher in male rats and were further increased by Cu deficiency in male rats; fructose 1-phosphate (F1P) levels were increased by Cu deficiency in both sexes, but to a greater extent in male rats; glyceraldehyde 3-phosphate levels were higher in female rats, but were decreased by Cu deficiency in female and increased in male rats. Though most of the examined hepatic fructose-metabolizing enzymes and metabolites showed great differences between rats fed diets either adequate or deficient in Cu, it is the activity of fructokinase and aldolase-B, and the concentrations of their common metabolites, F1P and notably F1,6DP, that could be in part responsible for differences in the severity of pathologies associated with Cu deficiency observed between female and male rats.  相似文献   

11.
Rajasekar P  Anuradha CV 《Life sciences》2007,80(13):1176-1183
High fructose feeding (60 g/100 g diet) in rodents induces alterations in both glucose and lipid metabolism. The present study was aimed to evaluate whether intraperitoneal carnitine (CA), a transporter of fatty acyl-CoA into the mitochondria, could attenuate derangements in carbohydrate metabolizing enzymes and glucose overproduction in high fructose-diet fed rats. Male Wistar rats of body weight 150-160 g were divided into 4 groups of 6 rats each. Groups 1 and 4 animals received control diet while the groups 2 and 3 rats received high fructose-diet. Groups 3 and 4 animals were treated with CA (300 mg/Kg body weight/day, i.p.) for 30 days. At the end of the experimental period, levels of carnitine, glucose, insulin, lactate, pyruvate, glycerol, triglycerides and free fatty acids in plasma were determined. The activities of carbohydrate metabolizing enzymes and glycogen content in liver and muscle were assayed. Hepatocytes isolated from liver were studied for the gluconeogenic activity in the presence of substrates such as pyruvate, lactate, glycerol, fructose and alanine. Fructose-diet fed animals showed alterations in glucose metabolizing enzymes, increased circulating levels of gluconeogenic substrates and depletion of glycogen in liver and muscle. There was increased glucose output from hepatocytes of animals fed fructose-diet alone with all the gluconeogenic substrates. The abnormalities associated with fructose feeding such as increased gluconeogenesis, reduced glycogen content and other parameters were brought back to near normal levels by CA. Hepatocytes from these animals showed significant inhibition of glucose production from pyruvate (74.3%), lactate (65.4%), glycerol (69.6%), fructose (56.2%) and alanine (63.6%) as compared to CA untreated fructose-fed animals. The benefits observed could be attributed to the effect of CA on fatty acyl-CoA transport.  相似文献   

12.
1. Guinea-pig hepatocytes were prepared by collagenase digestion of the perfused liver. 2. The highest rates of gluconeogenesis were obtained from fructose, followed by pyruvate, xylitol and lactate, glycerol and propionate in that order. Maximum rates of gluconeogenesis were attained at 6-10mm substrate. 3. An initial 15-min lag period occurred during gluconeogenesis from lactate. This lag was abolished by preincubating the cells or by preincubation plus the addition of NH(4)Cl or lysine. 4. The lactate/pyruvate and 3-hydroxybutyrate/acetoacetate ratios were increased during the lag and adjusted to values favouring rapid gluconeogenesis from lactate after 15min. 5. The data suggest that the low glucose synthesis during the lag resulted from a limitation of the glutamate-aspartate shuttle and from the unusual redox state of the NAD(+) couple prevailing during this period. 6. At 0.1mm, amino-oxyacetate, a transaminase inhibitor, decreased gluconeogenesis from lactate by 80%, but had a negligible effect on glucose production from pyruvate. Gluconeogenesis from lactate was also inhibited (20%) by 10mm-dl-3-hydroxybutyrate.  相似文献   

13.
Aminopyrine oxidation was studied in isolated hepatocytes prepared from 24-h-starved mice (i) after induction of the NADPH-generating malic enzyme and glucose-6-phosphate dehydrogenase, but not the mixed function oxygenases by fructose, (ii) after induction of both mixed function oxygenases and NADPH-generating malic enzyme and glucose-6-phosphate dehydrogenase by phenobarbital and (iii) without any pretreatment. Phenobarbital pretreatment, as expected, increased the rate of aminopyrine oxidation of isolated hepatocytes. However, fructose pretreatment also enhanced the rate of N-demethylation of aminopyrine by more than 100% supporting the view that the availability of NADPH is rate limiting in drug oxidation under certain conditions. The role of malic enzyme and glucose-6-phosphate dehydrogenase in the NADPH supply for aminopyrine oxidation was investigated by the addition of two groups of gluconeogenic precursors: lactate or alanine and glycerol or fructose with the simultaneous measurement of glucose synthesis and aminopyrine N-demethylation. There was a clear correlation between the increased rate of aminopyrine oxidation and the decreases of glucose production caused by aminopyrine. Gluconeogenesis in the presence of 1 mM aminopyrine was decreased by 70-80% when alanine or lactate were used as precursors, it was decreased by only 35-40% when glucose production was started from glycerol or fructose; in an accordance with the facts that NADPH generation and gluconeogenesis starting from alanine or lactate share two common intermediates--malate and glucose-6 phosphate--, while there is only one common intermediate--glucose-6 phosphate--if fructose or glycerol are used. Similar results were obtained with the addition of the structurally dissimilar hexobarbital. It is concluded that besides malic enzyme, glucose-6-phosphate dehydrogenase also takes part in NADPH supply for drug oxidation in glycogen-depleted hepatocytes.  相似文献   

14.
Addition of sorbitol or xylitol to perfused chicken liver caused a biphasic increase in the rate of glucose production. The second increase correlated with a decrease in the lactate to pyruvate ratio. Increased glucose production in response to the addition of glycerol was not biphasic. Aminooxyacetate inhibited both the inherent second increase in glucose production and stimulatory effects of alanine and pyruvate. The stimulatory effects of norepinephrine and glucagon on gluconeogenesis from sorbitol decreased in the presence of methylene blue. Only the stimulatory effect of norepinephrine was inhibited by aminooxyacetate.  相似文献   

15.
Cultured adipocytes (3T3-L1) produce large amounts of 3C fragments; largely lactate, depending on medium glucose levels. Increased glycolysis has been observed also in vivo in different sites of rat white adipose tissue. We investigated whether fructose can substitute glucose as source of lactate, and, especially whether the glycerol released to the medium was of lipolytic or glycolytic origin. Fructose conversion to lactate and glycerol was lower than that of glucose. The fast exhaustion of medium glucose was unrelated to significant changes in lipid storage. Fructose inhibited to a higher degree than glucose the expression of lipogenic enzymes. When both hexoses were present, the effects of fructose on gene expression prevailed over those of glucose. Adipocytes expressed fructokinase, but not aldolase b. Substantive release of glycerol accompanied lactate when fructose was the substrate. The mass of cell triacylglycerol (and its lack of change) could not justify the comparatively higher amount of glycerol released. Consequently, most of this glycerol should be derived from the glycolytic pathway, since its lipolytic origin could not be (quantitatively) sustained. Proportionally (with respect to lactate plus glycerol), more glycerol was produced from fructose than from glucose, which suggests that part of fructose was catabolized by the alternate (hepatic) fructose pathway. Earlier described adipose glycerophophatase activity may help explain the glycolytic origin of most of the glycerol. However, no gene is known for this enzyme in mammals, which suggests that this function may be carried out by one of the known phosphatases in the tissue. Break up of glycerol-3P to yield glycerol, may be a limiting factor for the synthesis of triacylglycerols through control of glycerol-3P availability. A phosphatase pathway such as that described may have a potential regulatory function, and explain the production of glycerol by adipocytes in the absence of lipolytic stimulation.  相似文献   

16.
The hormonal control of [14C]glucose synthesis from [U-14C-A1dihydroxyacetone was studied in hepatocytes from fed and starved rats. In cells from fed rats, glucagon lowered the concentration of substrate giving half-half-maximal rates of incorporation while it had little or no effect on the maximal rate. Inhibitors of gluconeogenesis from pyruvate had no effect on the ability of the hormone to stimulate the synthesis of [14C]glucose from dihydroxyacetone. The concentrations of glucagon and epinephrine giving half-maximal stimulation from dihydroxacetone were 0.3 to 0.4 mM and 0.3 to 0.5 muM, respectively. The meaximal catecholamine stimulation was much less than the maximal stimulation by glucagon and was mediated largely by the alpha receptor. Insulin had no effect on the basal rate of [14C]clucose synthesis but inhibited the effect of submaximal concentration of glucagon or of any concentration of catecholamine. Glucagon had no effect on the uptake of dihydroxyacetone but suppressed its conversion to lactate and pyruvate. This suppression accounted for most of the increase in glucose synthesis. In cells from gasted rats, where lactate production is greatly reduced and the rate of glucose synthesis is elevated, glucagon did not stimulate gluconeogenesis from dihydroxyacetone. Findings with glycerol as substrate were similar to those with dihyroxyacetone. Ethanol also stimulated glucose production from dihydroxyacetone while reducing proportionately the production of lactate. Ethanol is known to generate reducing equivalents fro clyceraldehyde-3-phosphate dehydrogenase and presumably thereby inhibits carbon flux to lactate at this site. Its effect was additive with that of glucagon. Estimates of the steady state levels of intermediary metabolites and flux rates suggested that glucagon activated conversion of fructose diphosphate to fructose 6-phosphate and suppressed conversion of phosphoenolpyruvate to pyruvate. More direct evidence for an inhibition of pyruvate kinase was the observation that brief exposure of cells to glucagon caused up to 70% inhibition of the enzyme activity in homogenates of these cells. The inhibition was not seen when the enzyme was assayed with 20 muM fructose diphosphate. The effect of glucagon to lower fructose diphosphate levels in intact cells may promote the inhibition of pyruvate kinase. The inhibition of pyruvate kinase may reduce recycling in the pathway of gluconeogenesis from major physiological substrates and probably accounts fromsome but not all the stimulatory effect of glucagon.  相似文献   

17.
Summary The characterization of a recently established system for the short-term culture of rainbow trout (Oncorhynchus mykiss) liver cells in chemically defined medium has been extended to studies on the metabolic competence of the cells and the characterization of their response to hormones. Three areas of metabolism have been addressed: a) the utilization of the exogenously added substrates fructose, lactate, glucose, dihydroxyacetone, and glycerol for glucose and lactate formation; b) the effects of the pancreatic hormones insulin and glucagon on cellular glucose formation, lactate formation, and fatty acid synthesis; and c) the effects of insulin and dexamethasone on the estradiol-dependent production of vitellogenin. Incubation of trout liver cells with fructose, lactate, glucose, dihydroxyacetone, or glycerol resulted in enhanced rates of cellular glucose and lactate production. Substrate-induced effects usually were more clearly expressed after extended (20 h) than after acute (5 h) culture periods. Addition of the hormones insulin or glucagon caused dose-dependent alterations in the flux of substrates to glucose and lactate. Rates of de novo synthesis of fatty acids from [14C]acetate were stimulated by insulin and inhibited by glucagon during acute and extended incubation periods. Treatment of liver cells isolated from male trout for 72 h with estradiol induced vitellogenin production and secretion into the medium. However, the addition of insulin or dexamethasone drastically reduced this estrogen-induced vitellogenesis. These results indicate that trout liver cells cultured in defined medium maintain central metabolic pathways, including glycolysis, gluconeogenesis, lipogenesis, and vitellogenesis as well as their responsiveness to various hormones, for at least 72 h. This cell culture system should provide an excellent model to further characterize metabolic processes in fish liver.  相似文献   

18.
Dietary iron deficiency in rats results in increased blood glucose turnover and recycling. We measured the rates of glucose production in isolated hepatocytes from iron-sufficient (Fe+) and iron-deficient (Fe-) rats to assess the intrinsic capacity of the Fe- liver to carry out gluconeogenesis. Low-iron and control diets were given to 21-day-old female rats. After 4-5 wk, hemoglobin concentrations averaged 4.1 g/dl in the Fe- and 14.3 g/dl in the Fe+ animals. In the hepatocytes from Fe- rats, there was a 35% decrease in the rate of glucose production from 1 mM pyruvate + 10 mM lactate, a 48% decrease from 0.1 mM pyruvate + 1 mM lactate, a 39% decrease from 1 mM alanine, and a 48% decrease from 1 mM glycerol. The addition of 5 microM norepinephrine or 0.5 microM glucagon to the incubation media produced stimulatory effects on hepatocytes from both Fe- and Fe+ rats, resulting in the maintenance of an average difference of 38% in the rates of gluconeogenesis between the two groups. Studies on isolated liver mitochondria and cytosol revealed alpha-glycerophosphate-cytochrome c reductase and phospho(enol)pyruvate carboxykinase activities to be decreased by 27% in Fe- rats. We conclude that because severe dietary iron deficiency decreases gluconeogenesis in isolated rat hepatocytes, the increased gluconeogenesis demonstrated by Fe- rats in vivo is attributable to increased availability of gluconeogenic substrates and upregulation of the pathway.  相似文献   

19.
Gluconeogenesis from fructose was studied in periportal and pericentral regions of the liver lobule in perfused livers from fasted, phenobarbital-treated rats. When fructose was infused in increasing concentrations from 0.25 to 4 mM, corresponding stepwise increases in glucose formation by the perfused liver were observed as expected. Rates of glucose and lactate production from 4 mM fructose were around 100 and 75 mumol/g/h, respectively. Rates of fructose uptake were around 190 mumol/g/h when 4 mM fructose was infused. 3-Mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase, decreased glucose formation from fructose maximally by 20% suggesting that a fraction of the lactate formed from fructose is used for glucose synthesis. A good correlation (r = 0.92) between extra oxygen consumed and glucose produced from fructose was observed. At low fructose concentrations (less than 0.5 mM), the extra oxygen uptake was much greater than could be accounted for by glucose synthesis possibly reflecting fructose 1-phosphate accumulation. Furthermore, fructose diminished ATP/ADP ratios from about 4.0 to 2.0 in periportal and pericentral regions of the liver lobule indicating that the initial phosphorylation of fructose via fructokinase occurs in both regions of the liver lobule. Basal rates of oxygen uptake measured with miniature oxygen electrodes were 2- to 3-fold higher in periportal than in pericentral regions of the liver lobule during perfusions in the anterograde direction. Infusion of fructose increased oxygen uptake by 65 mumol/g/h in periportal areas but had no effect in pericentral regions of the liver lobule indicating higher local rates of gluconeogenesis in hepatocytes located around the portal vein. When perfusion was in the retrograde direction, however, glucose was synthesized nearly exclusively from fructose in upstream, pericentral regions. Thus, gluconeogenesis from fructose is confined to oxygen-rich upstream regions of the liver lobule in the perfused liver.  相似文献   

20.
The metabolic effects of pent-4-enoate were studied in isolated rat hepatocytes; 1 mM-pent-4-enoate did not significantly inhibit gluconeogenesis from lactate, alanine and glycerol, but significantly decreased glucose synthesis from pyruvate. The addition of 1 mM-NH4Cl led to a drastic inhibition of glucose synthesis from all these substrates. In hepatocytes incubated with 10 mM-alanine and 1 mM-oleate, pent-4-enoate at 0.05-1 mM slightly inhibited glucose synthesis and ketogenesis. The addition of ammonia resulted in a dramatic potentiation of the metabolic effects of pent-4-enoate. Half-maximum effect of ammonia was observed at 0.2 mM concentration. Concomitant cellular concentrations of ATP and acetyl-CoA were also decreased by the addition of ammonia, as were lactate/pyruvate ratio and beta-hydroxybutyrate/acetoacetate ratio. These data suggest that ammonia seriously interferes with the cellular metabolism of pent-4-enoate and leads to a dramatic potentiation of its effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号