首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Reactivity of the nociceptive system, psychoemotional behavior and cognitive abilities in female and male rats born to mothers that were exposed to chronic injection of fluoxetine, a serotonin reuptake inhibitor, on days 9–20 of pregnancy were studied in a battery of behavioral tests during the prepubertal period. It was found that chronic injection of physiological saline to pregnant females evoked enhanced nociceptive responses in their offspring of both sexes while fluoxetine injection neutralized the effects of such an invasive intervention, demonstrating thereby the antinociceptive effect of this agent. Negative effects of maternal fluoxetine included a weight loss in the neonate offspring of both sexes and 25-day-old males, as well as the increased anxiety level in females only as detected in the elevated plus maze test. Fluoxetine had no effect on the level of depressive-like behavior in the forced swim test in rats of both sexes. The positive prenatal effect of fluoxetine manifested itself in males as an improved spatial learning ability in the Morris water maze; the anti-nociceptive effect of chronic fluoxetine injection, as compared to the pro-nociceptive effect of chronic saline injection, can also be considered as a positive effect of fluoxetine. Sex differences in the prenatal effect of fluoxetine were revealed in the anxiety level with more anxiety behavior in females.  相似文献   

2.
Substantial evidence indicates that predisposition to diseases can be acquired during early stages of development and interactions between environmental and genetic factors may be implicated in the onset of many pathological conditions. Data collected over several decades have shown that chemicals are among the relevant factors that can endanger CNS. We previously showed that perinatal exposure to methylmercury (MeHg) causes persistent changes in learning and motivational behavior in mice. In this study, we report that the depression-like behavior in MeHg-exposed male mice is reversed by chronic treatment with the antidepressant fluoxetine. Behavioral alterations are associated with a decrease in brain-derived neurotrophic factor (BDNF) mRNA in the hippocampal dentate gyrus and fluoxetine treatment restores BDNF mRNA expression. We also show that MeHg-exposure induces long-lasting repressive state of the chromatin structure at the BDNF promoter region, in particular DNA hypermethylation, an increase in histone H3-K27 tri-methylation and a decrease in H3 acetylation at the promoter IV. While fluoxetine treatment does not alter hypermethylation of H3-K27, it significantly up-regulates H3 acetylation at the BDNF promoter IV in MeHg-exposed mice. Our study shows that developmental exposure to low levels of MeHg predisposes mice to depression and induces epigenetic suppression of BDNF gene expression in the hippocampus.  相似文献   

3.
The selective serotonin reuptake inhibitor fluoxetine modifies social behavior in a number of species, including humans. Because the neural substrates for social behavior in prairie voles are sexually dimorphic, we tested whether the effects of fluoxetine on these behaviors differ by sex. Parental and pair-bonded voles were chronically treated with fluoxetine or saline and subsequently tested for parental responsiveness. Fluoxetine-treated animals displayed a longer latency to exhibit parental responsiveness than did saline-treated controls (p< 0.02), but they did not differ in other aspects of parental care. There were no sex differences in the effects of fluoxetine on parental behavior. After completion of the tests for parental behavior, the subjects were tested for aggressive behavior using the resident–intruder paradigm. Fluoxetine-treated males displayed less aggressive behavior than their saline-treated counterparts (p< 0.02). Although we did not find any effects of fluoxetine on aggressive behavior in females, no significant interaction was found between sex and treatment. Fluoxetine did not alter nonsocial behaviors. The findings suggest that serotonin influences social behavior in prairie voles.  相似文献   

4.
The following study set out to test the hypothesis that acute treatment with the selective serotonin reuptake inhibitor, fluoxetine, would result in a rise in circulating 5-HT levels and consequently a decrease in territorial aggression in the Gulf toadfish, Opsanus beta. Size-matched pairs of toadfish were implanted intraperitoneally with the same dose of fluoxetine (0, 10 or 25 μg g− 1). After a social interaction between a pair of fish, circulating levels of serotonin (5-HT; 5-hydroxytryptamine) and cortisol were measured and relative mRNA expression of the 5-HT1A receptor in the toadfish brain was determined using quantitative (real-time) PCR (qPCR). Behavioral endpoints such as the number of aggressive acts and swimming activity were also quantified so that dominant and subordinate fish could be identified. Fluoxetine treatment resulted in an increase in circulating levels of 5-HT, regardless of social status. Circulating cortisol concentrations were unaffected by fluoxetine, but were significantly higher in subordinate individuals when compared to dominant fish. Toadfish brain 5-HT1A receptor mRNA expression was not affected by treatment or social status. Lastly and contrary to our predictions, fluoxetine treatment resulted in an increase in the number of aggressive acts made by dominant individuals, with no differences in the level of aggression or swimming activity of subordinate fish. This study is the first to describe elevated aggression in a teleost fish with elevated circulating levels of 5-HT.  相似文献   

5.
Male aggressive behavior is generally regulated by testosterone (T). In most temperate breeding males, aggressive behavior is only expressed during the reproductive period. At this time circulating T concentrations, brain steroid receptors, and steroid metabolic enzymes are elevated in many species relative to the nonreproductive period. Many tropical birds, however, display aggressive behavior both during the breeding and the nonbreeding season, but plasma levels of T can remain low throughout the year and show little seasonal fluctuation. Studies on the year-round territorial spotted antbird (Hylophylax n. naevioides) suggest that T nevertheless regulates aggressive behavior in both the breeding and nonbreeding season. We hypothesize that to regulate aggressive behaviors during the nonbreeding season, when T is at its minimum, male spotted antbirds increase brain sensitivity to steroids. This can be achieved by locally up-regulating androgen receptors (ARs), estrogen receptors (ERs), or the enzyme aromatase (AROM) that converts T into estradiol. We therefore compared mRNA expression of AR, ERalpha, and AROM in free- living male spotted antbirds across reproductive and nonreproductive seasons in two brain regions known to regulate both reproductive and aggressive behaviors. mRNA expression of ERalpha in the preoptic area and AR in the nucleus taeniae were elevated in male spotted antbirds during the nonbreeding season when circulating T concentrations were low. This unusual seasonal receptor regulation may represent a means for the year-round regulation of vertebrate aggressive behavior via steroids by increasing the brain's sensitivity to sex steroids during the nonbreeding season.  相似文献   

6.
7.
Fluoxetine, as a serotonin re-uptake inhibitor augments serotonin concentration within the synapse by inhibiting the serotonin transporter. The contribution of amino acids has also been shown in depression. We hypothesized that fluoxetine exerts its actions at least in part by intervening brain signaling operated by amino acid transmitters. Therefore the aim of this study is to supply neurochemical evidence that fluoxetine produces changes in amino acids in cerebrospinal fluid of rats. Sprague-Dawley rats were anesthetized and concentric microdialysis probes were implanted stereotaxically into the right lateral ventricle. Intraperitoneal fluoxetine (2.5 or 5 mg/kg) or physiological saline was administered and the probes were perfused with artificial cerebrospinal fluid at a rate of 1 μl/min. In the chronic fluoxetine group, the rats were treated daily with oral fluoxetine solution or inert syrup for 3 weeks. The microdialysis probes were placed on the 21st day and perfused the next day. Fluoxetine was ineffective in changing the cerebrospinal fluid GABA levels at the dose of 2.5 mg/kg but produced a significant increase in the perfusates following injection of 5 mg/kg of fluoxetine (P < 0.05). Oral fluoxetine administration (5 mg/kg) for 21 days also elevated the CSF GABA levels by approximately 2-fold (P < 0.05). l-glutamic acid levels were not affected in all groups. These neurochemical findings show that fluoxetine, a selective serotonin re-uptake inhibitor affects brain GABA levels indirectly, and our results suggest that acute or chronic effects may be involved in beneficial and/or adverse effects of the drug.  相似文献   

8.
This laboratory study examined the effects of the specific serotonin reuptake inhibitor fluoxetine on growth following molting and on a range of behaviors in the crayfish Orconectes rusticus. For growth experiments, male Form I and Form II crayfish were weighed and measured and placed individually in water containing 0–500 μg/L of fluoxetine. They were held in fluoxetine or control water until they molted and were reweighed two weeks post-molt. In behavior experiments, juvenile and adult animals were held individually in 0, 2, 200, or 500 μg/L of fluoxetine for 10 days and tested in an open field arena to assess locomotion, thigmotaxis, sheltering, and habituation to a novel environment. Under our laboratory conditions, crayfish exposed to fluoxetine at 500 μg/L showed significantly enhanced growth: post-molt Form I animals had greater body weight and post-molt Form II animals had greater carapace length, relative to controls. In open field tests, juvenile crayfish exposed to 2 and 500 μg/L fluoxetine displayed significantly reduced locomotion compared to controls. The results indicate that crayfish growth and locomotion can be manipulated by short-term exposure to ambient fluoxetine, suggesting that this means of exposure may offer a useful and noninvasive way to examine drug effects in freely moving animals. However, effects were only observed at concentrations well above fluoxetine levels currently reported in the environment. This suggests that O. rusticus may be relatively resistant to this form of pharmaceutical pollution but whether effects would occur following long-term exposure to lower concentrations is unknown.  相似文献   

9.
Recent studies have proposed a role for serotonin and its transporter in regulation of bone cell function. In the present study, we examined the in vitro effects of serotonin and the serotonin transporter inhibitor fluoxetine "Prozac" on osteoblasts and osteoclasts. Human mononuclear cells were differentiated into osteoclasts in the presence of serotonin or fluoxetine. Both compounds affected the total number of differentiated osteoclasts as well as bone resorption in a bell-shaped manner. RT-PCR on the human osteoclasts demonstrated several serotonin receptors, the serotonin transporter, and the rate-limiting enzyme in serotonin synthesis, tryptophan hydroxylase 1 (Tph1). Tph1 expression was also found in murine osteoblasts and osteoclasts, indicating an ability to produce serotonin. In murine pre-osteoclasts (RAW264.7), serotonin as well as fluoxetine affected proliferation and NFkappaB activity in a biphasic manner. Proliferation of human mesenchymal stem cells (MSC) and primary osteoblasts (NHO), and 5-HT2A receptor expression was enhanced by serotonin. Fluoxetine stimulated proliferation of MSC and murine preosteoblasts (MC3T3-E1) in nM concentrations, microM concentrations were inhibitory. The effect of fluoxetine seemed direct, probably through 5-HT2 receptors. Serotonin-induced proliferation of MC3T3-E1 cells was inhibited by the PKC inhibitor (GF109203) and was also markedly reduced when antagonists of the serotonin receptors 5-HT2B/C or 5-HT2A/C were added. Serotonin increased osteoprotegerin (OPG) and decreased receptor activator of NF-kappaB ligand (RANKL) secretion from osteoblasts, suggesting a role in osteoblast-induced inhibition of osteoclast differentiation, whereas fluoxetine had the opposite effect. This study further describes possible mechanisms by which serotonin and the serotonin transporter can affect bone cell function.  相似文献   

10.
We previously reviewed the effects of gonadal hormones on the sexual and aggressive behavior of macaques as observed in field, outdoor colony, and laboratory studies. There were consistent similarities between findings from different observational settings, but there were also noteworthy differences which suggested the importance of social and environmental factors in modulating the effects of hormones. We now examine the role of these factors further and consider the extent to which partner preferences, familiarity between individuals, and also dominance rank can affect the behavior of male-female pairs and thereby modify the influences of hormones. The evidence suggests that all these factors are important. Hormone-dependent short-term partner preferences appear to be critical for the formation of consort bonds and to facilitate mating between unfamiliar partners. Socially based partner preferences tend to dampen hormonal influences and may lead to long-term familiarity. Long-term familiarity decreases sexual interactions and may be a proximate mechanism underlying incest avoidance and periodic male troop transfers. Both males and females exhibit mate competition under certain conditions, and their dominance rank can modify sexual and aggressive behavior by either optimizing or reducing hormone-dependent changes. These interaction effects between social and hormonal variables also have relevance for the design and interpretation of laboratory experiments. © 1996 Wiley-Liss, Inc.  相似文献   

11.

Background

Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine are the most common form of medication treatment for major depression. However, approximately 50% of depressed patients fail to achieve an effective treatment response. Understanding how gene expression systems respond to treatments may be critical for understanding antidepressant resistance.

Methods

We take a novel approach to this problem by demonstrating that the gene expression system of the dentate gyrus responds to fluoxetine (FLX), a commonly used antidepressant medication, in a stereotyped-manner involving changes in the expression levels of thousands of genes. The aggregate behavior of this large-scale systemic response was quantified with principal components analysis (PCA) yielding a single quantitative measure of the global gene expression system state.

Results

Quantitative measures of system state were highly correlated with variability in levels of antidepressant-sensitive behaviors in a mouse model of depression treated with fluoxetine. Analysis of dorsal and ventral dentate samples in the same mice indicated that system state co-varied across these regions despite their reported functional differences. Aggregate measures of gene expression system state were very robust and remained unchanged when different microarray data processing algorithms were used and even when completely different sets of gene expression levels were used for their calculation.

Conclusions

System state measures provide a robust method to quantify and relate global gene expression system state variability to behavior and treatment. State variability also suggests that the diversity of reported changes in gene expression levels in response to treatments such as fluoxetine may represent different perspectives on unified but noisy global gene expression system state level responses. Studying regulation of gene expression systems at the state level may be useful in guiding new approaches to augmentation of traditional antidepressant treatments.  相似文献   

12.
黑线仓鼠殴斗行为模式及其与生理状态的关系   总被引:1,自引:0,他引:1  
本文以分布于鲁西南山区的黑线仓鼠雄体为对象,通过测定重复遭遇战(repeated encounters)对黑线仓
鼠体重、生理指标等参数的作用,以期阐明社群冲突(social conflict)对黑线仓鼠生理状态的影响。研究结果表
明:在4 周的重复遭遇战过程中,参与冲突个体的体重增长率略有降低,但未达到显著水平;粪便肾上腺皮质
激素(GCs)含量呈现波动性变化,在整个遭遇战过程中,优势个体与从属个体的GCs 含量交替显著升高,与
冲突时间及个体社群地位均有关;优势个体保持较高的睾酮水平,利于其增强攻击行为和获得优势地位;从属
组雄体的肾上腺显著增大,但生殖腺间差异不显著;HPA 轴对HPG 轴具有显著的抑制效应,肾上腺分泌的皮质
醇可显著抑制个体的睾酮分泌,二者呈显著的负相关关系。这些数据表明,黑线仓鼠雄体可通过斗殴行为建立
明确的优势- 从属关系,睾酮可促进个体优势地位的形成并受到肾上腺皮质醇抑制;HPA 轴对HPG 轴的抑制未
能在器官指数方面得到证实。从属个体受到胁迫,对优势雄性黑线仓鼠野外生存和繁殖有重要意义。  相似文献   

13.
Species with alternative reproductive tacts are good models to investigate the poorly understood question of whether individual variation within sexes results from the same physiological mechanisms that control variation between sexes. We have shown previously that adult male tree lizards, Urosaurus ornatus, of different throat color morphs express different levels of aggression in the laboratory. Further field results support the suggestion that the two morphs practice alternative reproductive tactics because the two morphs express different levels of aggressive behavior under field conditions and exhibit dramatic and opposite responses to aggressive challenges. However, despite these behavioral differences, the two morphs do not differ in levels of testosterone or corticosterone either in undisturbed situations or following aggressive challenge. These results are consistent with the relative plasticity hypothesis which proposes that organizational, rather than activational, actions of steroid hormones will be more important in morph differentiation when morphs are fixed in adult life, as they are in tree lizards. These results also support the hypothesis that steroid hormonal levels are insensitive to social modulation in males of species such as U. ornatus without paternal care.  相似文献   

14.
In ovine pregnancy, as in human pregnancy, hypothalamus-pituitary-adrenal activity is chronically increased. These studies were designed to test the hypotheses that expression of serotonergic genes and responsiveness to serotonin are increased in pregnancy. We tested the stimulatory effect of an acute, intracerebroventricular injection of the serotonin reuptake inhibitor fluoxetine on plasma ACTH and cortisol in ewes during late pregnancy or postpartum. We also tested the effect of lower-dose, longer-term stimulation by intracerebroventricular infusion of fluoxetine in pregnant and nonpregnant ewes over 6 days. Overall, we found that the stimulatory effect of fluoxetine on ACTH and cortisol was not significantly different between late-gestation and nonpregnant ewes, although the effect of acute fluoxetine administration was inversely related to plasma progesterone concentrations. Also, there were no differences in hypothalamic expression of the glucocorticoid and mineralocorticoid receptors, corticotropin-releasing hormone, AVP, the serotonin reuptake transporter, or the serotonin [5-hydroxytryptamine (5-HT)] receptors 5-HT(1A) and 5-HT(2A) with pregnancy or fluoxetine treatment. However, chronic fluoxetine infusion reduced food intake in the nonpregnant, but not pregnant, ewes. Expression of proopiomelanocortin mRNA in the hypothalamus was reduced in pregnant compared with nonpregnant ewes. Our results indicate that pregnancy does not increase responsiveness of ACTH and cortisol to serotonergic stimulation but, rather, that progesterone reduces the ACTH response. In addition, we found a reduced ability of serotonin to inhibit feeding in the pregnant ewes, consistent with a reduction in anorexic mechanisms in the pregnant state.  相似文献   

15.

Background

Women are at great risk for mood and anxiety disorders during their childbearing years and may become pregnant while taking antidepressant drugs. In the treatment of depression and anxiety disorders, selective serotonin reuptake inhibitors (SSRIs) are the most frequently prescribed drugs, while it is largely unknown whether this medication affects the development of the central nervous system of the fetus. The possible effects are the product of placental transfer efficiency, time of administration and dose of the respective SSRI.

Methodology/Principal Findings

In order to attain this information we have setup a study in which these parameters were measured and the consequences in terms of physiology and behavior are mapped. The placental transfer of fluoxetine and fluvoxamine, two commonly used SSRIs, was similar between mouse and human, indicating that the fetal exposure of these SSRIs in mice is comparable with the human situation. Fluvoxamine displayed a relatively low placental transfer, while fluoxetine showed a relatively high placental transfer. Using clinical doses of fluoxetine the mortality of the offspring increased dramatically, whereas the mortality was unaffected after fluvoxamine exposure. The majority of the fluoxetine-exposed offspring died postnatally of severe heart failure caused by dilated cardiomyopathy. Molecular analysis of fluoxetine-exposed offspring showed long-term alterations in serotonin transporter levels in the raphe nucleus. Furthermore, prenatal fluoxetine exposure resulted in depressive- and anxiety-related behavior in adult mice. In contrast, fluvoxamine-exposed mice did not show alterations in behavior and serotonin transporter levels. Decreasing the dose of fluoxetine resulted in higher survival rates and less dramatic effects on the long-term behavior in the offspring.

Conclusions

These results indicate that prenatal fluoxetine exposure affects fetal development, resulting in cardiomyopathy and a higher vulnerability to affective disorders in a dose-dependent manner.  相似文献   

16.
Krämer UM  Riba J  Richter S  Münte TF 《PloS one》2011,6(11):e27668
Reactive aggression after interpersonal provocation is a common behavior in humans. Little is known, however, about brain regions and neurotransmitters critical for the decision-making and affective processes involved in aggressive interactions. With the present fMRI study, we wanted to examine the role of serotonin in reactive aggression by means of an acute tryptophan depletion (ATD). Participants performed in a competitive reaction time task (Taylor Aggression Paradigm, TAP) which entitled the winner to punish the loser. The TAP seeks to elicit aggression by provocation. The study followed a double-blind between-subject design including only male participants. Behavioral data showed an aggression diminishing effect of ATD in low trait-aggressive participants, whereas no ATD effect was detected in high trait-aggressive participants. ATD also led to reduced insula activity during the decision phase, independently of the level of provocation. Whereas previous reports have suggested an inverse relationship between serotonin level and aggressive behavior with low levels of serotonin leading to higher aggression and vice versa, such a simple relationship is inconsistent with the current data.  相似文献   

17.
Vasil'ev VA 《Genetika》2011,47(9):1157-1168
The review considers the known candidate gene loci that are involved in the dopamine, serotonin, and androgen systems and are associated with human deviant aggressive behavior. Both positive and negative correlations with deviant aggressive behavior have been observed for almost all of the candidate gene loci. Many genes of the neurotransmitter and androgen system and intricate interactions among them may influence the propensity to aggression. Further studies should focus not only on individual gene polymorphisms, but also on complex interactions among the alleles of all candidate genes that have functionally important polymorphisms affecting their expression and function. A complex analysis should be performed to study the association of the homozygous genotypes at all candidate gene markers with various forms of human deviant aggressive behavior. The approach will make it possible to assess the individual reactivity to various environmental stimuli that provoke aggression and to develop a means of predicting and preventing deviant aggressive behavior in humans.  相似文献   

18.
Several different interventions improve depressed mood, including medication and environmental factors such as regular physical exercise. The molecular pathways underlying these effects are still not fully understood. In this study, we sought to identify shared mechanisms underlying antidepressant interventions. We studied three groups of mice: mice treated with a widely used antidepressant drug--fluoxetine, mice engaged in voluntary exercise, and mice living in an enriched environment. The hippocampi of treated mice were investigated at the molecular and cellular levels. Mice treated with fluoxetine and mice who exercised daily showed, not only similar antidepressant behavior, but also similar changes in gene expression and hippocampal neurons. These changes were not observed in mice with environmental enrichment. An increase in neurogenesis and dendritic spine density was observed following four weeks of fluoxetine treatment and voluntary exercise. A weighted gene co-expression network analysis revealed four different modules of co-expressed genes that were correlated with the antidepressant effect. This network analysis enabled us to identify genes involved in the molecular pathways underlying the effects of fluoxetine and exercise. The existence of both neuronal and gene expression changes common to antidepressant drug and exercise suggests a shared mechanism underlying their effect. Further studies of these findings may be used to uncover the molecular mechanisms of depression, and to identify new avenues of therapy.  相似文献   

19.
Accumulating evidence has indicated the involvement of glutamatergic neurotransmission in the pathophysiology of excitotoxicity and in the mechanism of action of antidepressants. We have previously shown that tricyclic desipramine and the selective serotonin reuptake inhibitor fluoxetine inhibit NMDA receptors (NMDARs) in the clinically relevant, low micromolar concentration range. As the different subtypes of NMDARs are markedly different in their physiological and pathological functions, our aim was to investigate whether the effect of antidepressants is subtype-specific. Using whole-cell patch-clamp recordings in rat cortical cell cultures, we studied the age-dependence of inhibition of NMDA-induced currents after treatment with desipramine and fluoxetine, as the expression profile of the NMDAR subtypes changes as a function of days in vitro. We also investigated the inhibitory effect of these antidepressants on NMDA-induced currents in HEK 293 cell lines that stably expressed rat recombinant NMDARs with GluN1a/GluN2A or GluN1a/GluN2B subunit compositions. The inhibitory effect of desipramine was not age-dependent, whereas fluoxetine displayed a continuously decreasing inhibitory profile, which was similar to the GluN1/GluN2B subtype-selective antagonist ifenprodil. In HEK 293 cells, desipramine equally inhibited NMDA currents in both cell lines, whereas fluoxetine showed an inhibitory effect only in cells that expressed the GluN1/GluN2B subtype. Our data show that fluoxetine is a selective inhibitor of GluN2B-containing NMDARs, whereas desipramine inhibits both GluN1/GluN2A and GluN1/GluN2B subtypes. As the clinical efficacy of these drugs is very similar, the putative NMDAR-associated therapeutic effect of antidepressants may be mediated only via inhibition of the GluN2B-containing subtype. The manifestation of the GluN1/GluN2B-selectivity of fluoxetine suggests the neuroprotective potential for this drug in both acute and chronic neurodegenerative disorders.  相似文献   

20.
Predators exert considerable top‐down pressure on ecosystems by directly consuming prey or indirectly influencing their foraging behaviors and habitat use. Prey is, therefore, forced to balance predation risk with resource reward. A growing list of anthropogenic stressors such as rising temperatures and ocean acidification has been shown to influence prey risk behaviors and subsequently alter important ecosystem processes. Yet, limited attention has been paid to the effects of chronic pharmaceutical exposure on risk behavior or as an ecological stressor, despite widespread detection and persistence of these contaminants in aquatic environments. In the laboratory, we simulated estuarine conditions of the shore crab, Hemigrapsus oregonensis, and investigated whether chronic exposure (60 days) to field‐detected concentrations (0, 3, and 30 ng/L) of the antidepressant fluoxetine affected diurnal and nocturnal risk behaviors in the presence of a predator, Cancer productus. We found that exposure to fluoxetine influenced both diurnal and nocturnal prey risk behaviors by increasing foraging and locomotor activity in the presence of predators, particularly during the day when these crabs normally stay hidden. Crabs exposed to fluoxetine were also more aggressive, with a higher frequency of agonistic interactions and increased mortality due to conflicts with conspecifics. These results suggest that exposure to field‐detected concentrations of fluoxetine may alter the trade‐off between resource acquisition and predation risk among crabs in estuaries. This fills an important data gap, highlighting how intra‐ and interspecific behaviors are altered by exposure to field concentrations of pharmaceuticals; such data more explicitly identify potential ecological impacts of emerging contaminants on aquatic ecosystems and can aid water quality management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号