首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we report the effects of laser microirradiation of prophase nucleoli and mitotic chromosomes in cells of female rat kangaroo kidney epithelial cell line PTK1. When the laser power delivered to sample surface was 90-190 mW, irradiation of one of the two nucleoli in the prophase cell did not inhibit the mitotic progress, but resulted in the loss of the irradiated nucleolus in daughter cells. When the laser power was increased to 360-420 mW, either irradiation of the nucleolus or chromosome in midprophase caused a blockage of mitosis at terminal midprophase. The irradiated cells returned morphologically to early prophase. No mitotic reversion occurred in the case of irradiation of chromosomes at late prophase, prometaphase, metaphase, and anaphase. Irradiation of the cytoplasm in prophase cells caused a 50-70 min mitotic delay at prophase. However, the irradiated cells underwent successive mitotic divisions. The mechanism of laser-induced mitotic prophase reversion is discussed.  相似文献   

2.
To further understand the function of the nucleolus organizer (NO), especially as it relates to the mitotic cycle, we extended our previous irradiation studies to prophase chromosomes and nucleoli. The juxtanucleolar region of nucleolar chromosomes was irradiated with the argon laser microbeam, and cells were observed for several days. Nuclei with two nucleoli were generally chosen for irradiation because of their two clear secondary constrictions. Summarized results are as follows: (1) When either one or several juxtanucleolar sites of both or all nucleoli are irradiated, the mitotic process is blocked and the cells return to interphase. (2) When only the chromosomes associated with the largest nucleolus are irradiated, mitosis is also blocked. (3) When the juxtanucleolar regions of the smallest nucleolus are irradiated, the cells generally go into metaphase and complete division, but with a reduction in the number of resulting nucleoli. (4) When the nucleoli themselves are irradiated, mitosis proceeds and daughter nuclei show no reduction in nucleolar number. (5) When chromosomes are randomly irradiated at non-juxtanucleolar regions, the nucleus divides and produces the same number of nucleoli in each daughter nucleus as were present in the mother cell.  相似文献   

3.
4.
Summary Argon ion laser irradiation of L929 cells transiently inhibits both entry into and passage through mitosis without affecting clonogenic survival. Anaphase mitotic figures virtually disappear from irradiated cell monolayers although prophase + metaphase mitotic figures can still be identified. The total number of mitotic figures does not change significantly and time-lapse video recording shows that cells do not enter mitosis following irradiation. This effect is dependent on light dose within the 900–2700 J/cm2 range and persists for 10–48 h depending on the initial light exposure. Inhibition of cell locomotion and subsequent recovery were observed to occur over a similar time course. The possible contribution of these phenomena must be considered whenever biological systems are exposed to argon ion laser irradiation.  相似文献   

5.
Root tip cells of broad bean (Vicia faba L. cv. ’Wase soramame’) and barley (Hordeum vulgare L. cv. ’Minorimugi’) were immunostained with antibodies specific for acetylated histone H4. With an antiserum that recognizes histone H4 acetylated at lysine-5, the nucleolar organizing region (NOR) in mitotic chromosomes was strongly labeled in both species. The broad bean had two signals in the metaphase and telophase chromosome complements and four signals in the prophase and anaphase chromosome complements, while the barley had four signals in the metaphase and telophase chromosome complements and eight signals in the prophase and anaphase complements. Five different patterns of signals were observed at interphase: in type I only nucleoli were wholly stained; in type II perinucleolar knob-like signals and/or fiber-like signals emanated from the nucleus; in type III aggregate signals appeared in the nucleolus; in type IV many small dot-like signals were distributed throughout the nucleus, except nucleoli; and in type V string-like or some granule-like signals appeared in the nucleoli. Type II was very similar to previous results by in situ hybridization with sense rDNA probes. Type III was similar to the patterns of DNA synthesis recognized as chromatin domains by anti-BrdU antibodies. Type V was very similar to the results of in situ hybridization with pTa71, rDNA probes and the appearance of the dense fibrillar components of the nucleolus. Received: 7 August 1996; in revised form: 16 September 1996 / Accepted: 16 September 1996  相似文献   

6.
In interphase cells of the SPEV culture treated with Triton X-100, 2 M NaCl, and DNAse, in the presence of 2 mM CuCl2, we clearly revealed a stabilized nuclear protein material (NPM) composed of a peripheral lamina, residual nucleolus, and internal fibrillar network. This network is formed by thin fibrils 10–20 nm in diameter, which are also revealed in the nonhistone matrix of mitotic chromosomes at all stages of mitosis. In mitotic chromosomes, NPM is represented as a network of the 10–20-nm-thick fibrils without any features of the central-axial structures. Beginning from the middle prophase, it is possible to see approached sister chromatids in contact with each other in certain sites, similar to centromeres. At these sites, the thickness of fibrils increases up to 40–50 nm, whereas the fibrils themselves are disposed more tightly; this structure can be seen in the chromosome until telophase. At the end of telophase, the decondensation of chromosomes and formation of two new nuclei whose NPM is analogous to NPM of usual interphase nucleus are observed. Thus, the NPM elements can perform the role of a skeleton in both the interphase nucleus and mitotic chromosomes.  相似文献   

7.
Irradiation of the kinetochore region of PtK2 chromosomes by laser light of 532 nm was used to study the function of the kinetochore region in chromosome movement and to create artificial micronuclei in cells. When the sister kinetochores of a chromosome were irradiated at prometaphase, the affected chromosome detached from the spindle and exhibited no further directed movements for the duration of mitosis. The chromatids of the chromosome remained attached to one another until anaphase, at which point they separated. No poleward movement of the chromatids was observed, and at telophase they passively moved to one of the daughter cells and were enclosed in a micronucleus. The daughter cell containing the micronucleus was then isolated by micromanipulation and followed through subsequent mitoses. At the next mitosis, two chromosomes, each with two chromatids, condensed in the micronucleus. These chromosomes did not attach to the spindle and showed chromatid separation, but no poleward movements at anaphase. They were again enclosed in micronuclei at telophase. The third generation mitosis was similar to the second. Occasionally, both the irradiation-produced and naturally occurring micronuclei exhibited no chromosome condensation at mitosis. Feulgenstained monolayers of PtK2 cells with naturally occurring micronuclei showed that some micronuclei stain positive for DNA and others do not. This finding raises questions about the fate of chromosomes in a micronucleus.  相似文献   

8.
When vertebrate somatic cells are selectively irradiated in the nucleus during late prophase (<30 min before nuclear envelope breakdown) they progress normally through mitosis even if they contain broken chromosomes. However, if early prophase nuclei are similarly irradiated, chromosome condensation is reversed and the cells return to interphase. Thus, the G2 checkpoint that prevents entry into mitosis in response to nuclear damage ceases to function in late prophase. If one nucleus in a cell containing two early prophase nuclei is selectively irradiated, both return to interphase, and prophase cells that have been induced to returned to interphase retain a normal cytoplasmic microtubule complex. Thus, damage to an early prophase nucleus is converted into a signal that not only reverses the nuclear events of prophase, but this signal also enters the cytoplasm where it inhibits e.g., centrosome maturation and the formation of asters. Immunofluorescent analyses reveal that the irradiation-induced reversion of prophase is correlated with the dephosphorylation of histone H1, histone H3, and the MPM2 epitopes. Together, these data reveal that a checkpoint control exists in early but not late prophase in vertebrate cells that, when triggered, reverses the cell cycle by apparently downregulating existing cyclin-dependent kinase (CDK1) activity.  相似文献   

9.
Walsh CJ 《PloS one》2012,7(4):e34763
Mitosis in the amebo-flagellate Naegleria pringsheimi is acentrosomal and closed (the nuclear membrane does not break down). The large central nucleolus, which occupies about 20% of the nuclear volume, persists throughout the cell cycle. At mitosis, the nucleolus divides and moves to the poles in association with the chromosomes. The structure of the mitotic spindle and its relationship to the nucleolus are unknown. To identify the origin and structure of the mitotic spindle, its relationship to the nucleolus and to further understand the influence of persistent nucleoli on cellular division in acentriolar organisms like Naegleria, three-dimensional reconstructions of the mitotic spindle and nucleolus were carried out using confocal microscopy. Monoclonal antibodies against three different nucleolar regions and α-tubulin were used to image the nucleolus and mitotic spindle. Microtubules were restricted to the nucleolus beginning with the earliest prophase spindle microtubules. Early spindle microtubules were seen as short rods on the surface of the nucleolus. Elongation of the spindle microtubules resulted in a rough cage of microtubules surrounding the nucleolus. At metaphase, the mitotic spindle formed a broad band completely embedded within the nucleolus. The nucleolus separated into two discreet masses connected by a dense band of microtubules as the spindle elongated. At telophase, the distal ends of the mitotic spindle were still completely embedded within the daughter nucleoli. Pixel by pixel comparison of tubulin and nucleolar protein fluorescence showed 70% or more of tubulin co-localized with nucleolar proteins by early prophase. These observations suggest a model in which specific nucleolar binding sites for microtubules allow mitotic spindle formation and attachment. The fact that a significant mass of nucleolar material precedes the chromosomes as the mitotic spindle elongates suggests that spindle elongation drives nucleolar division.  相似文献   

10.
The scope of this study was to investigate possible relationships between He-Neon laser radiation and mitotic and phase indices in meristematic cells of Allium cepa L. bulbs. Our results indicate that mitotic index increased after irradiation depending this modification on the time exposure and the potency of the He-Neon beam. Phase indices were also modified: frequency of prophase increased, while inter- meta- and anaphase decreased: telophases remain unchanged. These variations were significative only when the preparations were irradiated a) with 5 mW for 10 min. or more, b) with 10 mW or c) when the preparations were processed 60 min. after irradiation. These findings could not be attributed to thermal changes. Modifications in RNA or protein synthesis could be responsible.  相似文献   

11.
WISH cell cultures 24 hours after passage were irradiated with 3 GHz microwaves (10 cm) at far field conditions in free space (anechoic chamber) for 30 minutes, at field power density 5 or 20 mW/cm2. Within 1,24 and 48 hours of the exposure to microwave fields the volumes of nuclei and nucleoli were measured with the use of a micrometer, and logvolumes and nucleo-nucleolar ratios were calculated. Under the applied irradiation conditions the culture medium temperature did not exceed 37 degrees C. In cultures irradiated at field power density 20 mW/cm2 increased number of cells with small nuclei and enlarged nucleoli was noted within 1 hour of the exposure. Within 24 and 48 hours after irradiation the nucleolar volume showed a slight decrease, whereas the nuclear volume increased. In cultures irradiated at field power density 5 mW/cm2 increased numbers of cells with enlarged nuclei and nucleoli were found. Analysis of the distribution curves of nuclear and nucleolar volumes suggests that non-thermal power densities of microwaves stimulate the metabolism of cell cultures. However, at higher power densities (20 mW/cm2) the stimulation phase is preceded by a period of reduced viability of cell cultures.  相似文献   

12.
von Well  Eben  Booyse  Mardé  Fossey  Annabel 《Protoplasma》2022,259(2):453-468

Ionizing irradiation induces positive or negative changes in plant growth (M1) depending on the amount of irradiation applied to seeds or plant parts. The effect of 50–350 Gy gamma irradiation of kernels on nucleolar activity, as an indicator of metabolic activity, in root tip cells of tetraploid wheat Triticum turgidum ssp. durum L. cv. Orania (AABB) was investigated. The number of nucleoli present in nuclei and micronuclei as well as the mitotic index in the different irradiation dosages was used as an indicator of the cells entering mitosis, the chromosomes with nucleolar organizer regions that are active as well as chromosome doubling in the event of unsuccessful mitotic division. Nucleolar activity was investigated from 17.5 to 47.5 h after the onset of imbibition to study the first mitotic division and its consequences on the cells that were in G2 and G1 phases at the time of gamma irradiation. Untreated material produced a maximum of four nucleoli formed by the nucleolar organizing regions (NORs) on chromosomes 1B and 6B. In irradiated material, additional nucleoli were noted that are due to the activation of the NORs on chromosome 1A in micronuclei. The onset of mitosis was highly significantly retarded in comparison to the control due to checkpoints in the G2 phase for the repairing of damaged DNA. This study is the first to report on the appearance of nucleoli in micronuclei as well as activation of NORs in the micronuclei that are inactive in the nucleus and the effect of chromosome doubling on nucleolar activity in the event of unsuccessful mitotic division.

  相似文献   

13.
S Iu Demin 《Tsitologiia》1999,41(1):66-86
Preparations of surface stretched amembranous nuclei and mitotic figures were used for revealing the high order nuclear and chromosomal structures. The preparations were obtained by dropping amembraneous nuclei and mitotic figures suspension in methanol-glacial acetic acid mixture (3:1) on wetted superclean slides. Amembraneous nuclei and mitotic figures were isolated from intact murine and human cells (lines L1210, SK-UT-1B, PHA-stimulated lymphocytes) by means of their 1-5 min prefixational capillary pipetting with freshly prepared 0.018-0.06% Triton X-100 solution in the conditional cultural medium. Stretched amembraneous nuclei and mitotic figures had no features of induced chromatin dispersion and compaction. Stretched interphase amembraneous nuclei showed spatially separated individual structures (thin chromatin fibres, nucleoli, intranuclear bodies), polymorphous pattern of perinucleolar chromatin aggregation and episodically expressed beaded thick chromatin fibres and a chromocenter. The chromomeric pattern of the spread chromosomes of mitotic figures was quite similar but hardly identical with that of G-banding. The stretched prometaphase mitotic figures in all tested cell types always contained loose "residual" nucleoli looking like typical prophase nucleoli as concerns their shape and number per cell (mitotic figure). The majority of chromosomes of stretched mitotic figures and of prophase amembraneous nuclei were attached to the nucleolar material. All tested cell lines showed almost the same variation in number of nucleolus-attached chromosomes, per both prophase amembraneous nucleus and prometaphase mitotic figure. Some chromosomes of stretched mitotic figures were colocated with "residual" nucleoli and looked shortened and strongly condensed. Other chromosomes, locally associated with "residual" nucleoli, were straight and oriented radially to these. Mutual chromosomal arrangements in mitotic cells on smears and in stretched mitotic figures were analogous. Equatorial plates from PBS-washed SK-UT-1B cells displayed a better stretching capacity than those from untreated cells. In the former case metaphase chromosomes were seen more uniformly stretched and well identified after GTG-banding procedure. The number of interchromosomal (mainly telomere-telomeric and telomere-centromeric) connections per stretched mitotic figure (or per stretched prophase amembraneous nucleus) was minimum in late prometaphase, maximum in prophase and early prometaphase, and intermediate in metaphase. The obtained data are discussed in terms of topology and longitudinal heterogeneity of mitotic chromosomes.  相似文献   

14.
15.
Repeated microscopic observations of exponentially growing Chinese hamster ovary cells were made and the times and mitotic stages were recorded in control and irradiated cultures at 37 degrees C. As determined by autoradiography, the time from the end of S phase to early prophase (the G2 phase) was 46 min, to breakdown of the nuclear envelope was 91 min, and to restoration of the nuclear envelope was 116 min. The time spent in morphologically distinguishable phases of mitosis and the effects of 0.5, 1.0, 1.5, 2.0, and 4.0 Gy of gamma or X radiation on cells at each phase were determined. Affected cells were found to be delayed without or with reversion to an earlier mitotic stage before recovering and advancing through mitosis. Cells were timed in the five steps comprising delay with reversion: inertia, cessation I, regression, cessation II, and reprogression. No cells treated in late prophase, i.e., within 8-10 min of nuclear envelope breakdown, were delayed by the doses used; therefore the critical or transition point must be situated in middle prophase. Cells irradiated in this stage were not delayed by 0.5 or 1.0 Gy, but suffered a dose-dependent delay with or without reversion after 1.5, 2.0, and 4.0 Gy. Cells irradiated in early prophase and very late interphase responded similarly, but a greater percentage of the latter reverted.  相似文献   

16.
Ultrastructural changes of the nucleolus in mitotic embryonic ectodermal cells of 7 1/2-day and 7 2/3-day rat embryos were examined. It was found that the nucleolus was broken down into small fragments during late prophase and metaphase, and that some of these fragments persisted in the cytoplasm of telophase cell (persistent nucleoli). No interphase embryonic ectodermal cells contained persistent nucleoli. Persistent nucleoli were also found in telophase cells of extraembryonic ectoderm, extraembryonic visceral endoderm and parietal endoderm of the embryos, but they disappeared in interphase cells. Persistent nucleoli in telophase cells tended to decrease in size with embryonic age, and they had almost completely disappeared in neuroectodermal cells of the telencephalon in 14 1/2-day embryos. They were concluded to be remnants of disappearing nucleoli in embryonic cells that were cycling too rapidly to permit their nucleoli to disappear completely.  相似文献   

17.
532 nm波段连续激光对视网膜和脉络膜生物学作用的观察   总被引:1,自引:0,他引:1  
目的:探讨532nm波段激光不同光剂量参数对眼底组织的损伤特点及损伤阈值。方法:以新西兰兔为实验对象,532nm连续激光照射眼底,眼底光斑直径1.5mm~2.5mm,功率密度从500mW/cm^2:~2400mW/cm^2,照射时间100s~300s,每组参数10个光斑。在照射后1h和24h进行眼底观察和荧光眼底造影,计算三种照射时间情况下视网膜的损伤阈值。结果:在照射后第1h,功率密度为902mW/crn2,照射时间300s开始出现视网膜灰色改变,病灶范围接近照光面积,在24h后颜色微加重。随着照光剂量的增加,在功率密度达1479mW/cm2,照射时间300s,照射后1h出现视网膜灰白色改变,在24h后出现脉络膜出血;而且随着照光剂量的增加,病灶范围扩大越明显。出血量越多。随着照光剂量的减少,当功率密度1003mW/cm^2,照射时间200s时,在照光后1h眼底没有改变,24h出现视网膜灰白色改变,面积接近照光面积;光剂量降低到1002mW/cm^2,照射时间100s时,在24h才出现视网膜灰白色改变,变化的视网膜范围小于照光面积。统计学计算在照射时间为300s、200s和100s,照光后1h视网膜损伤阈值分别为911.15628mW/cm^2,1167.64770mW/cm^2,1513.89832mW/cm^2,24h视网膜损伤阈值分别为827.09664mW/cm^2。1003.73143mW/cm^2,1154.17863mW/cm^2。结论:在光线照射后24h之内,视网膜损伤是一个逐渐增强的过程。从视网膜没有明显可见改变到视网膜出现灰白色可见损伤,变化范围从小于照光面积到接近照光面积,甚至超过照光面积,并出现脉络膜出血,出血面积随着照光剂量的增加而范围变大。相同能量密度的光剂量对视网膜损伤轻重取决于激光的功率密度。  相似文献   

18.
In this study, Aspergillus terreus was irradiated by a 7.3 mW He–Ne laser in the presence of crystal violet, toluidine blue O and hematoporphyrin as photosensitizers. Xylanases recovered from non-irradiated and irradiated fungi were purified and characterized. The maximum production of xylanase (42.2 U/ml) was obtained after 5 min of laser irradiation in the absence of the photosensitizer. The irradiation of the sensitized fungus diminished the production of xylanase. On purification using G-100, the specific activity of xylanase recovered from the irradiated fungus was 292 U/mg protein representing a 37-fold purification over the crude extract compared with 95.6 U/mg protein representing the 12.8-fold for the enzyme recovered from the non-irradiated fungus. The enzyme recovered from the irradiated fungus had lower molecular weight as compared with that recovered from the non-irradiated one. Characterization of the purified enzymes revealed that the enzyme recovered from the irradiated fungus was more thermostable and had a wider range of optimum reaction temperature (60–70°C) and pH (4.0–12.0), compared to the non-irradiated one.  相似文献   

19.
The effect of 2–48 h treatment of Lupinus angustifolius L. roots with lead nitrate at the concentration of 10−4 M on the nucleoli in meristematic cells was investigated. In the lead presence the number of ring-shaped as well as segregated nucleoli increased especially after 12–48 h of treatment, while spindle-shaped nucleoli appeared after 24 h and 48 h. Lead presence also increased the frequency of cells with silver-stained particles in the nucleus and the number of these particles especially from the 12th hour of treatment. It was accompanied by significant decline of nucleolar area. Analysis of these cells in transmission electron microscope confirmed the presence of ring-shaped and segregated nucleoli. Moreover, electron microscopy revealed compact structure nucleoli without granular component. Additionally, one to three oval-shaped fibrillar structures attached to nucleolus or lying free in the nucleoplasm were visible. The possible mechanism of lead toxicity to the nucleolus is briefly discussed.  相似文献   

20.
Summary An auto-antibody from human serum of patients with the autoimmune disease scleroderma was used to localize the nucleolus in meristematic cells of onion and soybean roots using indirect immunofluorescence microscopy. Similar lots of antiserum recognized a single 34 kD, nucleolar protein, fibrillarin, in a variety of animal cells (Ochs, et al. 1984, 1985). In both plants, antibody linked fluorescence is associated with the one to several nucleoli present in the interphase nucleus. The fluorescence becomes diffuse around condensing prophase chromosomes and becomes more diffused at metaphase with slightly more intense fluorescence surrounding the chromosomes. At anaphase-telophase the fluorescence is localized in dense areas within the chromosomes, presumably representing prenucleolar bodies which will form the interphase nucleoli of the daughter nuclei. This antiserum provides a new, valuable tool for the study of the nucleolus and the highly conversed nucleolar antigen(s) that it recognizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号