共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of Si pretreatment on Al toxicity in an Al sensitive maize variety (Zea mays L. var. BR 201 F) was investigated using root elongation rates (RER) and hematoxylin staining as stress indicators. Plants pretreated with 1 mt M Si (+ Si) and then exposed for 24 h to Al in nutrient solution without concurrent Si supply in the rooting medium exhibited higher RER than plants that were not pretreated with Si (-Si). The ameliorative effect of Si was due to lower Al uptake and to the exclusion of Al from the root tips in + Si plants. Lower Al uptake in + Si plants was not a consequence of decreased Al availability in the bulk solution. The possible mechanisms of Si-induced increase of Al resistance are discussed 相似文献
2.
Loblolly pine (Pinus taeda L.) seedlings were grown in sand culture and exposed to solution Al concentrations of 0, 5, 10, 20, 40, and 80 mg.l−1 in two separate studies. Root regeneration potential (RRP) of loblolly pine was found to be very sensitive to Al. Both the
total number and total length of new white roots produced during a 24-day period declined with as little as 5 mg Al.l−1 in solution. 相似文献
3.
Characterization of a selenate-resistant Arabidopsis mutant. Root growth as a potential target for selenate toxicity 总被引:4,自引:0,他引:4 下载免费PDF全文
El Kassis E Cathala N Rouached H Fourcroy P Berthomieu P Terry N Davidian JC 《Plant physiology》2007,143(3):1231-1241
Screening an Arabidopsis (Arabidopsis thaliana) T-DNA mutant library for selenate resistance enabled us to isolate a selenate-resistant mutant line (sel1-11). Molecular and genetic characterization showed that the mutant contained a lesion in the SULTR1;2 gene that encodes a high affinity root sulfate transporter. We showed that SULTR1;2 is the only gene among 13 mutated genes of the Arabidopsis sulfate transporter family whose mutation conferred selenate resistance to Arabidopsis. The selenate resistance phenotype of the sel1-11 mutant was mirrored by an 8-fold increase of root growth in the presence of selenate as shown by the calculated lethal concentration values. The impairment of SULTR1;2 activity in sel1-11 resulted in a reduced (35)S-sulfate uptake capacity by both roots and calli and a reduced sulfate and selenate content in root, shoot, and calli. Comparing sulfate-to-selenate ratios instead of absolute sulfate and selenate contents in roots and shoots enabled us to gain better insight into the mechanism of selenate toxicity in Arabidopsis. Roots of the sel1-11 mutant line showed a higher sulfate to selenate ratio than that of wild-type roots, while there were no significant differences in sulfate to selenate ratios in shoots of wild-type and mutant lines. These results indicated that the mechanism that confers the selenate resistance phenotype to the sel1-11 line takes place rather in the roots. It might be in part the result of a lower selenate uptake and of a protective effect of sulfate against the toxic effects of selenate on root growth. These results revealed in plants a central and specific role of the transporter SULTR1;2 in selenate sensitivity; they further suggested that root growth and potentially the root tip activity might be a specific target of selenate toxicity in Arabidopsis. 相似文献
4.
The regulation of primary mesenchyme cell patterning 总被引:6,自引:0,他引:6
C A Ettensohn 《Developmental biology》1990,140(2):261-271
The primary mesenchyme cells (PMCs) of the sea urchin embryo undergo a dramatic sequence of morphogenetic behaviors that includes migration, localization at specific sites within the embryo, and synthesis of the larval skeleton. To gain information about how these processes are regulated, PMC migration and patterning were analyzed in embryos with experimentally altered numbers of PMCs. PMC movements were followed by labeling the cells with a fluorescent dye, rhodamine B isothiocyanate, or with the PMC-specific monoclonal antibody 6a9. These methods show that individual PMCs have the capacity to join any position in the pattern, and rule out the possibility that PMC morphogenesis involves a sorting out of discrete subpopulations of cells to predetermined sites. All sites in the PMC pattern have the capacity to accept more cells than they normally do, and PMCs do not appear to compete with one another for preferred sites in the pattern. Even in embryos with 2-3 times the normal complement of PMCs, all these cells take part in spiculogenesis and the resultant skeleton is normal in size and configuration. Two special sites along the basal lamina (those corresponding to the positions of the PMC ventrolateral clusters) promote spicule elongation, an effect that is independent of the numbers of PMCs at these sites. These observations emphasize the role of the basal lamina, blastocoel matrix, and embryonic epithelium in regulating key aspects of PMC morphogenesis. The PMCs remain highly flexible in their ability to respond to patterning cues in the blastocoel, since postmigratory PMCs will repeat their patterning process if microinjected into the blastocoel of young recipient embryos. 相似文献
5.
Christoph Plieth Burkhard Sattelmacher Ulf-Peter Hansen Marc R. Knight 《The Plant journal : for cell and molecular biology》1999,18(6):643-650
Aluminium, the most abundant metal in the earth's crust, is highly toxic to most plant species. One of the prevailing dogmas is that aluminium exerts this effect by disrupting cellular calcium homeostasis. However, recent research gives strongly conflicting results: aluminium was shown to provoke either an increase or a decrease in cytosolic free calcium concentration ([Ca2+]c). To solve this question, we have adopted a novel approach: [Ca2+]c measurements in intact plant roots as opposed to isolated cells, and the correlative measurements of intracellular and external pH. The results obtained show that plant roots respond to low external pH by a sustained elevation in [Ca2+]c. In the presence of aluminium, this pH-mediated elevation in [Ca2+]c does not occur, therefore any potential calcium-mediated protection against low pH is likely to be irreversibly inhibited. The severity of the inhibitory effect of aluminium on [Ca2+]c depends on the concentration of external calcium, thus perhaps explaining why the effects of aluminium toxicity are ameliorated in calcium-rich soils. It seems possible that a primary toxic effect of aluminium might be to impair calcium-mediated plant defence responses against low pH. 相似文献
6.
In maize ( Zea mays L. cv. LG 11) roots cultured in humid air, the presence of hairs was not related to root growth. However, maximum hair length and length of the hair zone could be correlated to the elongation rate of the primary root. Under the growth conditions used, the emergence of root hairs always took place in the extending zone. In more basal regions, rhizodermal cells could not give rise to root hairs. Results were similar for roots preincubated in a buffer solution. 相似文献
7.
8.
A mechanism for acute aluminium toxicity in fish 总被引:2,自引:0,他引:2
Aluminium is acutely toxic to fish in acid waters. The gill is the principal target organ and death is due to a combination of ionoregulatory, osmoregulatory and respiratory dysfunction. The toxic mechanism has hitherto received little direct consideration and is unknown. In this paper the mechanism of acute aluminium toxicity is approached from a chemical perspective. Symptomatic evidence of toxicity is taken from the literature and combined with our own research to elucidate a biochemically sound model to describe a possible mechanism of acute aluminium toxicity in fish. The proposed model delineates the chemical conditions immediately adjacent to the gill surface and emphasizes their importance in aluminium's toxic mode of action. The mechanism is shown to be bipartite. Aluminium binding to functional groups both apically located at the gill surface and intracellularly located within lamellar epithelial cells disrupts the barrier properties of the gill epithelium. The concomitant iono- and osmoregulatory dysfunction results in accelerated cell necrosis, sloughing and death of the fish. The mechanism of epithelial cell death is proposed as a general mechanism of aluminium-induced accelerated cell death. 相似文献
9.
10.
Plasma membrane of younger and outer cells is the primary specific site for aluminium toxicity in roots 总被引:2,自引:0,他引:2
Experiments were carried out to identify the primary site for aluminium (Al) toxicity in roots. Al accumulated in large amounts in the younger and outer cells in roots of pea and was retarded when the ionic strength of the Al solution was high. Cell destruction was extensive in the regions with high Al accumulation. The accumulation of Al in, and potassium (K) leakage from, the root tip were in the order pea>maize>rice, the same order as their sensitivity to Al.The protoplasts from the root tip portion of pea incubated with Al showed a wrinkled and uneven surface. The protoplasts progressively shrank and eventually collapsed. Viability decreased in this process. In the control protoplasts of maize, -glucan formation was uniform on the spherical surfaces, whereas it was spotty in the Al-treated protoplasts; the cell wall material of the latter contained partly 1, 3--glucan which is known to be synthesised by 1, 3--glucan synthase embedded in the plasma membrane. These results suggest that the specific site for Al toxicity is the plasma membrane of younger and outer cells in roots and that Al tolerance depends largely on the integrity of the plasma membrane. 相似文献
11.
The primary reactions leading to Al toxicity in plant cells have not yet been elucidated. We used soybean (Glycine max [L.] Merr.) cell suspension cultures to address the question whether lipid peroxidation plays an important role in Al toxicity. Upon transfer to an Al-containing culture medium with a calculated Al3+ activity of 15 microM soybean cells showed a distinct and longtime increase in lipid peroxidation within 4 h. At the same time a drastic loss of cell viability was observed. Butylated hydroxyanisole (BHA) and N,N'-diphenyl-p-phenylenediamine (DPPD), two lipophilic antioxidants, were able to almost completely suppress lipid peroxidation in Al-treated cells at a concentration of 20 microM. This effect was dose-dependent for DPPD and was observed at minimum concentrations of 1-2 microM. When lipid peroxidation was suppressed by DPPD or BHA cell viability remained high even in the presence of toxic Al concentrations. These results suggest that Al-induced enhancement of lipid peroxidation is a decisive factor for Al toxicity in suspension cultured soybean cells. 相似文献
12.
Role of calcium in aluminium toxicity 总被引:4,自引:1,他引:4
ZDENKO RENGEL 《The New phytologist》1992,121(4):499-513
13.
The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). 总被引:10,自引:0,他引:10
P S Kidd M Llugany C Poschenrieder B Gunsé J Barceló 《Journal of experimental botany》2001,52(359):1339-1352
Aluminium (Al) toxicity is widely considered to be the most important growth-limiting factor for plants in strongly acid soils (pH<5.0). The inhibition of root elongation in three varieties of maize (Zea mays L. vars Clavito, HS701b and Sikuani) was followed over the first 48 h of Al treatment, and during the initial 10 h elongation was determined on an hourly basis. The silicon (Si)-induced amelioration of Al toxicity was investigated by pre-treating seedlings for 72 h in nutrient solutions with 1000 microM Si before transfer into solutions with 0, 20 or 50 microM Al (without Si). Plants were either grown in complete low ionic strength nutrient solutions (CNS) or in low salt solutions of 0.4 mM CaCl2 (LSS). In addition, the role of root exudation of organic compounds as a mechanism of Si-induced alleviation of Al toxicity was investigated. Aluminium-induced inhibition of root elongation in the maize var. HS701b was observed within 1 h of Al exposure. After a lag time of at least 8 h, Si-induced alleviation of Al toxicity was observed in this variety when grown in LSS. In the Al-resistant var. Sikuani, Al-resistance was only observed after exposure to 50 microM Al, and not after exposure to 20 microM Al, suggesting that there exists a threshold Al concentration before the mechanisms of Al resistance are activated. Aluminium stimulated root exudation of oxalic acid in all three varieties, but exudate concentrations did not increase with either Al resistance or with Si pretreatment. Aluminium and Si triggered release of catechol and of the flavonoid-type phenolics: catechin, and quercetin. In the Al-resistant variety, Sikuani, Al-exposed plants pretreated with Si exuded up to 15 times more phenolics than those plants not pretreated with Si. The flavonoid-type phenolics, to date unconsidered, appear to play a role in the mechanism(s) of Si-induced amelioration of Al toxicity. 相似文献
14.
Hugo Mélida Asier Largo-Gosens Esther Novo-Uzal Rogelio Santiago Federico Pomar Pedro García Penélope García-Angulo José Luis Acebes Jesús álvarez Antonio Encina 《植物学报(英文版)》2015,57(4):357-372
Maize(Zea mays L.) suspension-cultured cells with up to 70% less cellulose were obtained by stepwise habituation to dichlobenil(DCB), a cellulose biosynthesis inhibitor. Cellulose de ficiency was accompanied by marked changes in cell wall matrix polysaccharides and phenolics as revealed by Fourier transform infrared(FTIR) spectroscopy.Cell wall compositional analysis indicated that the cellulosede ficient cell walls showed an enhancement of highly branched and cross-linked arabinoxylans, as well as an increased content in ferulic acid, diferulates and p-coumaric acid, and the presence of a polymer that stained positive for phloroglucinol. In accordance with this, cellulose-de ficient cell walls showed a fivefold increase in Klason-type lignin.Thioacidolysis/GC-MS analysis of cellulose-de ficient cell walls indicated the presence of a lignin-like polymer with a Syringyl/Guaiacyl ratio of 1.45, which differed from the sensu stricto stress-related lignin that arose in response to shortterm DCB-treatments. Gene expression analysis of these cells indicated an overexpression of genes specific for the biosynthesis of monolignol units of lignin. A study of stress signaling pathways revealed an overexpression of some of the jasmonate signaling pathway genes, which might trigger ectopic lignification in response to cell wall integrity disruptions. In summary, the structural plasticity of primary cell walls is proven, since a lignification process is possible in response to cellulose impoverishment. 相似文献
15.
HERP1 is a cell type-specific primary target of Notch. 总被引:1,自引:0,他引:1
Tatsuya Iso Gene Chung Yasuo Hamamori Larry Kedes 《The Journal of biological chemistry》2002,277(8):6598-6607
16.
The screening of 37 Zea mays L. cultivars in nutrient solution using root elongation (24 h) as a parameter showed large genotypic differences in Al resistance among the genetic material evaluated.Callose concentrations in root tips were closely and positively related to Al-induced inhibition of root elongation. Therefore, Al-induced callose formation in root tips appears to be an excellent indicator of Al injury and can be used as a selection criteria for Al sensitivity. In contrast, aluminium concentrations in root tips were not related to Al-induced inhibition of root elongation, nor to Al-induced callose formation. Callose formation was also induced by short-term A1 treatment in root tip protoplasts, and the response of protoplasts clearly reflected the cultivar-specific response to Al of intact roots. This indicates that in maize, Al sensitivity is expressed on the protoplast level. 相似文献
18.
The maize leaf consists of four distinct tissues along its proximodistal axis: sheath, ligule, auricle and blade. liguleless1 (lg1) functions cell autonomously to specify ligule and auricle, and may propagate a signal that correctly positions the blade-sheath boundary. The dominant Wavy auricle in blade (Wab1) mutation disrupts both the mediolateral and proximodistal axes of the maize leaf. Wab1 leaf blades are narrow and ectopic auricle and sheath extend into the blade. The recessive lg1-R mutation exacerbates the Wab1 phenotype; in the double mutants, most of the proximal blade is deleted and sheath tissue extends along the residual blade. We show that lg1 is misexpressed in Wab1 leaves. Our results suggest that the Wab1 defect is partially compensated for by lg1 expression. A mosaic analysis of Wab1 was conducted in Lg1+ and lg1-R backgrounds to determine if Wab1 affects leaf development in a cell-autonomous manner. Normal tissue identity was restored in all wab1+/- sectors in a lg1-R mutant background, and in three quarters of sectors in a Lg1+ background. These results suggest that lg1 can influence the autonomy of Wab1. In both genotypes, leaf-halves with wab1+/- sectors were significantly wider than non-sectored leaf-halves, suggesting that Wab1 acts cell-autonomously to affect lateral growth. The mosaic analysis, lg1 expression data and comparison of mutant leaf shapes reveal previously unreported functions of lg1 in both normal leaf development and in the dominant Wab1 mutant. 相似文献
19.
A method has been developed to study aluminium (A1) toxicity towards Rhizobium. This involves growth in broth followed by washing and measurement of cell viability in deionized distilled water plus A1. The results illustrate the high degree of sensitivity and rapid response of Rhizobium leguminosarum biovar trifolii and R. loti to A1 under acid conditions but confirm earlier results on the relative tolerance of these two species. 相似文献
20.
Hugo Mélida Penélope García-Angulo Ana Alonso-Simón Jesús M. Álvarez José Luis Acebes Antonio Encina 《Phytochemistry》2010,71(14-15):1684-1689
Cultured maize cells habituated to grow in the presence of the cellulose synthesis inhibitor dichlobenil (DCB) have a modified cell wall in which the amounts of cellulose are reduced and the amounts of arabinoxylan increased. This paper examines the contribution of cell wall-esterified hydroxycinnamates to the mechanism of DCB habituation. For this purpose, differences in the phenolic composition of DCB-habituated and non-habituated cell walls, throughout the cell culture cycle and the habituation process were characterized by HPLC. DCB habituation was accompanied by a net enrichment in cell wall phenolics irrespective of the cell culture phase. The amount of monomeric phenolics was 2-fold higher in habituated cell walls. Moreover, habituated cell walls were notably enriched in p-coumaric acid. Dehydrodimers were 5–6-fold enhanced as a result of DCB habituation and the steep increase in 8,5′-diferulic acid in habituated cell walls would suggest that this dehydrodimer plays a role in DCB habituation. In summary, the results obtained indicate that cell wall phenolics increased as a consequence of DCB habituation, and suggest that they would play a role in maintaining the functionality of a cellulose impoverished cell wall. 相似文献