首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The innermost chorionic layer (ICL) within egg shells of Drosophila melanogaster is composed of thin, abutting three-dimensional crystalline plates which form a closed, membrane-like sheath. Collectively, the crystals within the sheath appear to form a family of related three-dimensional crystals in space group C222; however, specimens prepared for electron microscopy are actually two-dimensional crystals in c222. The projected structures of the negatively stained crystals have been studied by minimal dose electron microscopy employing image reconstruction methods. Thin sections indicate that unit cells within the ICL are composed of paired layers; top and bottom layers are related by centrally located 2-fold axes, aligned parallel to the surface of the ICL. The most probable structural unit of the crystals is a tetramer of chorin dimers with a point group symmetry of 222, which is denoted a chorin octamer. Projection maps were computed from average transforms of two-dimensional crystals for delta (the primitive unit cell angle) equal to 84 degrees, 90 degrees and 97 degrees (+/- 1.5 degrees). The maps indicate that the molecular transitions responsible for the observed family of crystals involve concerted intramolecular rearrangements about molecular 2-fold axes. The significance in vivo of the family of crystals within the ICL is not known; however, structural considerations suggest that the observed polymorphism may reflect one facet of an intrinsic bonding flexibility of the ICL octamer that may play a role in the formation of interplate junctions and the assembly of a continuous closed sheath. The ICL may therefore serve as a structural bridge between the vitelline membrane-wax layer and the endochondrial floor, allowing the larva to shed the inner egg shell layers during hatching.  相似文献   

2.
Chen B  Tycko R 《Biophysical journal》2011,(12):3035-3044
We report Monte Carlo simulations of the initial stages of self-assembly of the HIV-1 capsid protein (CA), using a coarse-grained representation that mimics the CA backbone structure and intermolecular contacts observed experimentally. A simple representation of N-terminal domain/N-terminal domain and N-terminal domain/C-terminal domain interactions, coupled with the correct protein shape, is sufficient to drive formation of an ordered lattice with the correct hexagonal symmetry in two dimensions. We derive an approximate concentration/temperature phase diagram for lattice formation, and we investigate the pathway by which the lattice develops from initially separated CA dimers. Within this model, lattice formation occurs in two stages: 1), condensation of CA dimers into disordered clusters; and 2), nucleation of the lattice by the appearance of one hexamer unit within a cluster. Trimers of CA dimers are important early intermediates, and pentamers are metastable within clusters. Introduction of a preformed hexamer at the beginning of a Monte Carlo run does not directly seed lattice formation, but does facilitate the formation of large clusters. We discuss possible connections between these simulations and experimental observations concerning CA assembly within HIV-1 and in vitro.  相似文献   

3.
The self-association of alfalfa mosaic virus coat protein was studied by sedimentation analysis and electron microscopy under a wide range of conditions. In the depolymerized state the protein exists as a molecular species with a sedimentation constant of roughly 3 S and with a molecular weight of (48.4 ± 1.1) × 103. This value is, within experimental error, twice the value of the monomer (van Beynum, 1975). The dimer has a very stable configuration, as no evidence was found for a monomer-dimer equilibrium between pH values of 3 and 9 and values of ionic strength up to 1.0. One main type of association product (30 S) was found with a molecular weight of (1.48 ± 0.03) × 106. Therefore this particle accomodates 30 dimers which are arranged according to a point group symmetry of 532. The orientation of the 30 dimers within the icosahedral lattice must be such that lattice dyads coincide with the 2-fold axes of the dimers. Micrographs of the 30 S particles show a diameter of about 123 Å; analysis of linear arrays of these particles shows that at low resolution the particle is a hollow sphere with an average coat thickness of about 40 Å.The influence of pH, ionic strength, protein concentration and the type of buffer on the polymerization was determined to some extent and is discussed. The assembly of dimers into the icosahedral particle is an entropy-driven process (Lauffer, 1975); this is concluded from studying the temperature-dependence of the free energy change. Under favourable conditions (phosphate buffer pH 5.5 and ionic strength 0.5) the average enthalpy and entropy changes for the insertion of one dimer into the lattice are about 6.4 kilocalories per mole and 50 entropy units, respectively, based on the unit mole fraction.  相似文献   

4.
The complex polymerization dynamics of the microtubule (MT) plus end are closely linked to the hydrolysis of the GTP nucleotide bound to the β-tubulin. The destabilization is thought to be associated with the conformational change of the tubulin dimers from the straight conformation in the MT lattice to a curved conformation. It remains under debate whether this transformation is directly related to the nucleotide state, or a consequence of the longitudinal or lateral contacts in the MT lattice. Here, we present large-scale atomistic simulations of short tubulin protofilaments with both nucleotide states, starting from both extreme conformations. Our simulations indicate that both interdimer and intradimer contacts in both GDP and GTP-bound tubulin dimers and protofilaments in solution bend. There are no observable differences between the mesoscopic properties of the contacts in GTP and GDP-bound tubulin or the intradime and interdimer interfaces.  相似文献   

5.
6.
The tail of the bacteriophage P22 is composed of multiple protein components and integrates various biological functions that are crucial to the assembly and infection of the phage. The three-dimensional structure of the P22 tail machine determined by electron cryo-microscopy and image reconstruction reveals how the five types of polypeptides present as 51 subunits are organized into this molecular machine through twelve-, six- and three-fold symmetry, and provides insights into molecular events during host cell attachment and phage DNA translocation.  相似文献   

7.
Small heat shock proteins are a superfamily of molecular chaperones that suppress protein aggregation and provide protection from cell stress. A key issue for understanding their action is to define the interactions of subunit domains in these oligomeric assemblies. Cryo-electron microscopy of yeast Hsp26 reveals two distinct forms, each comprising 24 subunits arranged in a porous shell with tetrahedral symmetry. The subunits form elongated, asymmetric dimers that assemble via trimeric contacts. Modifications of both termini cause rearrangements that yield a further four assemblies. Each subunit contains an N-terminal region, a globular middle domain, the alpha-crystallin domain, and a C-terminal tail. Twelve of the C termini form 3-fold assembly contacts which are inserted into the interior of the shell, while the other 12 C termini form contacts on the surface. Hinge points between the domains allow a variety of assembly contacts, providing the flexibility required for formation of supercomplexes with non-native proteins.  相似文献   

8.
Dinitroaniline and phosphorothioamidate herbicides disrupt microtubule assembly from tubulin protein dimers and thereby halt microtubule-based processes such as mitosis in plant cells. Despite the contrasting chemical properties of dinitroaniline and phosphorothioamidate herbicides, a three-dimensional molecular analysis revealed remarkable electrostatic similarity between these two classes of herbicide. From these data it is proposed that dinitroaniline and phosphorothioamidate herbicides share common binding site(s) in the plant cell.  相似文献   

9.
Kimber MS  Pai EF 《The EMBO journal》2000,19(7):1407-1418
We have determined the structure of the beta-carbonic anhydrase from the dicotyledonous plant Pisum sativum at 1.93 A resolution, using a combination of multiple anomalous scattering off the active site zinc ion and non-crystallographic symmetry averaging. The mol- ecule assembles as an octamer with a novel dimer of dimers of dimers arrangement. Two distinct patterns of conservation of active site residues are observed, implying two potentially mechanistically distinct classes of beta-carbonic anhydrases. The active site is located at the interface between two monomers, with Cys160, His220 and Cys223 binding the catalytic zinc ion and residues Asp162 (oriented by Arg164), Gly224, Gln151, Val184, Phe179 and Tyr205 interacting with the substrate analogue, acetic acid. The substrate binding groups have a one to one correspondence with the functional groups in the alpha-carbonic anhydrase active site, with the corresponding residues being closely superimposable by a mirror plane. Therefore, despite differing folds, alpha- and beta-carbonic anhydrase have converged upon a very similar active site design and are likely to share a common mechanism.  相似文献   

10.
A low-resolution three-dimensional structure of the crystalline innermost chorionic layer (ICL) of the Hawaiian species Drosophila grimshawi and the Drosophila melanogaster eggshell mutant fs(1)384 has been calculated from electron microscope images of tilted negatively stained specimens. The isolated ICL of Drosophila grimshawi is a three-layer structure, about 36 nm thick, whereas the ICL of Drosophila melanogaster eggshell mutant fs(1)384 is a single layer, about 12 nm thick. Each unit in both crystalline structures includes octamers made up of four heterodimers. Crosslinks between the structural elements, both within and between unit cells form an interconnecting network, apparently important in maintaining the integrity of the layer. A model which may account for the ICL self-assembly formation in vivo and the ICL observed lattice polymorphism is proposed, combining data from the three-dimensional reconstruction work and secondary structure features of the ICL component proteins s36 and s38.  相似文献   

11.
Sundquist WI  Hill CP 《Cell》2007,131(1):17-19
Retroviral capsids are composed of hexagonal arrays of the viral CA protein. In this issue of Cell, Ganser-Pornillos et al. (2007) provide a molecular model of the hexagonal HIV-1 CA lattice obtained from a new electron cryomicroscopic reconstruction. This study reveals the three principal stabilizing interfaces in the capsid lattice and explains how two different classes of inhibitors can block capsid assembly.  相似文献   

12.
Creatine kinase (CK), catalyzing the reversible trans-phosphorylation between ATP and creatine, plays a key role in the energy metabolism of cells with high and fluctuating energy requirements. We have solved the X-ray structure of octameric human ubiquitous mitochondrial CK (uMtCK) at 2.7 A resolution, representing the first human CK structure. The structure is very similar to the previously determined structure of sarcomeric mitochondrial CK (sMtCK). The cuboidal octamer has 422 point group symmetry with four dimers arranged along the fourfold axis and a central channel of approximately 20 A diameter, which extends through the whole octamer. Structural differences with respect to sMtCK are found in isoform-specific regions important for octamer formation and membrane binding. Octameric uMtCK is stabilized by numerous additional polar interactions between the N-termini of neighboring dimers, which extend into the central channel and form clamp-like structures, and by a pair of salt bridges in the hydrophobic interaction patch. The five C-terminal residues of uMtCK, carrying positive charges likely to be involved in phospholipid-binding, are poorly defined by electron density, indicating a more flexible region than the corresponding one in sMtCK. The structural differences between uMtCK and sMtCK are consistent with biochemical studies on octamer stability and membrane binding of the two isoforms.  相似文献   

13.
Microtubule architecture can vary with eukaryotic species, with different cell types, and with the presence of stabilizing agents. For in vitro assembled microtubules, the average number of protofilaments is reduced by the presence of sarcodictyin A, epothilone B, and eleutherobin (similarly to taxol) but increased by taxotere. Assembly with a slowly hydrolyzable GTP analogue GMPCPP is known to give 96% 14 protofilament microtubules. We have used electron cryomicroscopy and helical reconstruction techniques to obtain three-dimensional maps of taxotere and GMPCPP microtubules incorporating data to 14 A resolution. The dimer packing within the microtubule wall is examined by docking the tubulin crystal structure into these improved microtubule maps. The docked tubulin and simulated images calculated from "atomic resolution" microtubule models show tubulin heterodimers are aligned head to tail along the protofilaments with the beta subunit capping the microtubule plus end. The relative positions of tubulin dimers in neighboring protofilaments are the same for both types of microtubule, confirming that conserved lateral interactions between tubulin subunits are responsible for the surface lattice accommodation observed for different microtubule architectures. Microtubules with unconventional protofilament numbers that exist in vivo are likely to have the same surface lattice organizations found in vitro. A curved "GDP" tubulin conformation induced by stathmin-like proteins appears to weaken lateral contacts between tubulin subunits and could block microtubule assembly or favor disassembly. We conclude that lateral contacts between tubulin subunits in neighboring protofilaments have a decisive role for microtubule stability, rigidity, and architecture.  相似文献   

14.
The three-dimensional structure of the lambda repressor C-terminal domain (CTD) has been determined at atomic resolution. In the crystal, the CTD forms a 2-fold symmetric tetramer that mediates cooperative binding of two repressor dimers to pairs of operator sites. Based upon this structure, a model was proposed for the structure of an octameric repressor that forms both in the presence and absence of DNA. Here, we have determined the structure of the lambda repressor CTD in three new crystal forms, under a wide variety of conditions. All crystals have essentially the same tetramer, confirming the results of the earlier study. One crystal form has two tetramers bound to form an octamer, which has the same overall architecture as the previously proposed model. An unexpected feature of the octamer in the crystal structure is a unique interaction at the tetramer-tetramer interface, formed by residues Gln209, Tyr210 and Pro211, which contact symmetry-equivalent residues from other subunits of the octamer. Interestingly, these residues are also located at the dimer-dimer interface, where the specific interactions are different. The structures thus indicate specific amino acid residues that, at least in principle, when altered could result in repressors that form tetramers but not octamers.  相似文献   

15.
A low-resolution three-dimensional structure of the crystalline innermost chorion layer (ICL) has been calculated from electron microscope images of tilted negatively stained crystals. The isolated ICL is a single layer, about 12 nm thick and appears to be made up of two types of subunits, each approximately 3 nm in diameter, arranged regularly as groups of four heterodimers in space group C222. Linking density between these groups of subunits, maintaining the integrity of the layer, appears to be confined mainly to the outer surfaces of the ICL.  相似文献   

16.
A low-resolution three-dimensional structure of the crystalline innermost chorion layer (ICL) has been calculated from electron microscope images of tilted negatively stained crystals. The isolated ICL is a single layer, about 12 nm thick and appears to be made up of two types of subunits, each approximately 3 nm in diameter, arranged regularly as groups of four heterodimers in space group C222. Linking density between these groups of subunits, maintaining the integrity of the layer, appears to be confined mainly to the outer surfaces of the ICL.  相似文献   

17.
The three-dimensional structure of the baculovirus-expressed Norwalk virus capsid has been determined to a resolution of 2.2 nm using electron cryomicroscopy and computer image processing techniques. The empty capsid, 38.0 nm in diameter, exhibits T = 3 icosahedral symmetry and is composed of 90 dimers of the capsid protein. The striking features of the capsid structure are arch-like capsomeres, at the local and strict 2-fold axes, formed by dimers of the capsid protein and large hollows at the icosahedral 5- and 3-fold axes. Despite its distinctive architecture, the Norwalk virus capsid has several similarities with the structures of T = 3 single-stranded RNA (ssRNA) viruses. The structure of the protein subunit appears to be modular with three distinct domains: the distal globular domain (P2) that appears bilobed, a central stem domain (P1), and a lower shell domain (S). The distal domains of the 2-fold related subunits interact with each other to form the top of the arch. The lower domains of the adjacent subunits associate tightly to form a continuous shell between the radii of 11.0 and 15.0 nm. No significant mass density is observed below the radius of 11.0 mm. It is suspected that the hinge peptide in the adjoining region between the central domain and the shell domain may facilitate the subunits adapting to various quasi-equivalent environments. Architectural similarities between the Norwalk virus capsid and the other ssRNA viruses have suggested a possible domain organization along the primary sequence of the Norwalk virus capsid protein. It is suggested that the N-terminal 250 residues constitute the lower shell domain (S) with an eight-strand beta-barrel structure and that the C-terminal residues beyond 250 constitute the protruding (P1+P2) domains. A lack of an N-terminal basic region and the ability of the Norwalk virus capsid protein to form empty T = 3 shells suggest that the assembly pathway and the RNA packing mechanisms may be different from those proposed for tomato bushy stunt virus and southern bean mosaic virus but similar to that in tymoviruses and comoviruses.  相似文献   

18.
A rotation function study of bovine liver catalase at 10 Å resolution has shown the enzyme to have at least one 2-fold axis, although a molecular symmetry of 222 is likely and the molecular point group 4 is possible. The orientation of the molecular axes with respect to the crystallographic axes has also been determined.  相似文献   

19.
The three-dimensional structure of bacteriophage phiX174 external scaffolding protein D, prior to its interaction with other structural proteins, has been determined to 3.3 angstroms by X-ray crystallography. The crystals belong to space group P4(1)2(1)2 with a dimer in the asymmetric unit that closely resembles asymmetric dimers observed in the phiX174 procapsid structure. Furthermore, application of the crystallographic 4(1) symmetry operation to one of these dimers generates a tetramer similar to the tetramer in the icosahedral asymmetric unit of the procapsid. These data suggest that both dimers and tetramers of the D protein are true morphogenetic intermediates and can form independently of other proteins involved in procapsid morphogenesis. The crystal structure of the D scaffolding protein thus represents the state of the polypeptide prior to procapsid assembly. Hence, comparison with the procapsid structure provides a rare opportunity to follow the conformational switching events necessary for the construction of complex macromolecular assemblies.  相似文献   

20.
Assembly of hepatitis B virus capsid-like (core) particles occurs efficiently in a variety of heterologous systems via aggregation of approximately 180 molecules of a single 21.5-kDa core protein (p21.5), resulting in an icosahedral capsid structure with T = 3 symmetry. Recent studies on the assembly of hepatitis B virus core particles in Xenopus oocytes suggested that dimers of p21.5 represent the major building block from which capsids are generated. Here we determined the concentration dependence of this assembly process. By injecting serially diluted synthetic p21.5 mRNA into Xenopus oocytes, we expressed different levels of intracellular p21.5 and monitored the production of p21.5 dimers and capsids by radiolabeling and immunoprecipitation, by radioimmunoassay, or by quantitative enzyme-linked immunosorbent assay analysis. The data revealed that (i) p21.5 dimers and capsids are antigenically distinct, (ii) capsid assembly is a highly cooperative and concentration-dependent process, and (iii) p21.5 must accumulate to a signature concentration of approximately 0.7 to 0.8 microM before capsid assembly initiates. This assembly process is strikingly similar to the assembly of RNA bacteriophage R17 as defined by in vitro studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号