首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effectiveness of tiletamine plus zolazepam (Telazol) and xylazine was evaluated as an immobilizing combination for raccoons (Procyon lotor). Fifteen raccoons were injected intramuscularly with a 3:2 mixture of Telazol (3.2+/-0.6 mg/kg [mean+/-SD]) and xylazine (2.1+/-0.4 mg/kg) at Pictured Rocks National Lakeshore, Michigan, USA, during May-October, 2001-03. Mean induction time was 4.8+/-3.8 min; mean recovery time was 128.5+/-48.4 min. No linear relationships were found between the amount (mg/kg) of Telazol-xylazine injected and induction (r2 = 0.06, P = 0.40) or recovery times (r2 = 0.01, P = 0.78). Mean heart rate, respiratory rate, and body temperature declined through 20 min after induction (P< 0.05). No mortality occurred and no short-term adverse effects were observed in recaptured individuals. I conclude that a 3:2 mixture of Telazol-xylazine is a safe and effective immobilizing agent for raccoons when conducting nonsurgical field procedures. Immobilizing raccoons with Telazol at 3 mg/kg and xylazine at 2 mg/kg should provide up to 60 min of handling time and usually allow full recovery in about 120 min.  相似文献   

2.
The effectiveness of tiletamine plus zolazepam (Telazol) and xylazine as an immobilizing combination for fishers (Martes pennanti) was evaluated. Ten fishers were intramuscularly injected using a 5:3 mixture of Telazol (2.9+/-0.6 mg/kg [mean+/-SD]) and xylazine (2.1+/-0.4 mg/kg) at Pictured Rocks National Lakeshore, Michigan (USA) during May to October, 2001-05. Mean induction time was 4.7+/-4.4 min; mean recovery time was 94.6+/-46.0 min. There was no relationship between the amount (mg/kg) of Telazol-xylazine injected and time to first effect of immobilants, dosage and time to induction, or between dosage and time to recovery. Mean heart rate remained constant through 20 min postinduction. Respiratory rate and body temperature declined through 10 and 20 min postinduction, respectively. No mortality occurred and no adverse effects were observed in individuals up to 19 mo later. It was concluded that a 5:3 mixture of Telazol-xylazine is a safe and effective immobilizing agent for fishers when conducting nonsurgical field procedures. Immobilizing fishers with 6-7 mg/kg of the combination (3.8-4.4 mg/kg Telazol and 2.3-2.6 mg/kg xylazine) should provide > or =30 min of handling time and allow full recovery in < 90 min.  相似文献   

3.
Ketamine hydrochloride (KH) and a 5:1 combination of KH and xylazine hydrochloride (XH) were used successfully to immobilize short-tailed weasels (Mustela erminea) and American martens (Martes americana), respectively. Four adult male martens were intramuscularly injected with 30 to 82 mg/kg KH and 8.0 to 16.4 mg/kg XH. Three adult male short-tailed weasels were intramuscularly injected with 20.8 to 42.1 mg/kg KH. Mean (+/- SE) induction times for martens and short-tailed weasels were 1.8 +/- 0.2 min and 46 +/- 4.1 sec, respectively; recovery times were 100.4 +/- 19.3 min and 97.9 +/- 6.3 min, respectively. Heart rate was relatively constant among martens; however, respiration varied widely (21 to 122 breaths per minute). Marten body temperature decreased between 0 and 20 min post-recumbency. Short-tailed weasel heart rate and respiration decreased in response to sedation until slightly before arousal. Body temperature stabilized by 20 min post-recumbency. Two short-tailed weasels tremored slightly within 10 min of arousal. I conclude that KH and KH/XH are safe immobilizing agents for martens and short-tailed weasels, respectively.  相似文献   

4.
A mixture of 15 mg/kg body weight ketamine hydrochloride (KE) and 1.5 mg/kg body weight xylazine hydrochloride (XY) was used to successfully immobilize free-ranging brown palm civets (Paradoxurus jerdoni). Between March 1998 and June 1999, 10 immobilizations of 7 individuals were carried out in tropical rainforests of the Kalakad-Mundanthurai Tiger Reserve (India). Five males and two females were captured in Havahart live traps, using banana as bait. The mean dosage for the animals, whose weight (mean +/- SD) was 2.4 kg +/- 0.8 was 36.0 +/- 11.0 mg KE and 3.7 +/- 1.1 mg XY, administered intramuscularly. Mean time for lateral recumbency was 6.1 +/- 3.78 min (n = 10) and the mean time taken for complete recovery was 84.9 +/- 28.8 min (n = 9). Recovery was gradual and no fatalities or injuries occurred during the operation. The drug combination used was effective and has the potential for immobilizing other viverrids.  相似文献   

5.
The combination of tiletamine HCl and zolazepam HCl has been used on many species of wild mammals. Short induction time, low dosage, satisfactory safety margins, relatively constant immobilization time, and smooth recovery are benefits reported. This combination (Zoletil 100) was used during a study on behavioural ecology of the crested porcupine (Hystrix cristata) in a Mediterranean coastal area (Maremma Regional Park, Tuscany, Italy). We used this mixture 42 times on 31 individuals. Mean adult dose was (+/- SE) 7.24 +/- 0.37 mg/kg (74.0 +/- 3.0 mg/individual). Average adult induction time was 5.3 min (+/- 1.1) and average adult immobilization time was 22.6 min (+/- 6.0). One adult male porcupine died after chemical restraints. The use of tiletamine-zolazepam seems adequate for chemical immobilization of crested porcupines under field conditions, mainly because of its short induction time, small volume to be injected and wide safety margin.  相似文献   

6.
We injected 27 adult Molina's hog-nosed skunks (Conepatus chinga) intramuscularly by hand with ketamine hydrochloride (KH) and xylazine hydrochloride (XH) in the Pampas grassland of Argentina. Skunks were immobilized with a mean (±SD) dosage of 24.9±6.5 mg/kg KH and 1.9±0.6 mg/kg XH. The mean effective dosages of KH (27.6 mg/kg) and XH (1.7 mg/kg) were higher and lower, respectively, than those reported in skunks previously. Mean induction and recovery time were 5.3±1.9 min and 47.7±18.5 min, respectively. Hypothermia was the only problem detected in field immobilization and occurred in winter but did not appear to be associated with to drug doses. We conclude that KH/XH is a safe immobilizing drug combination for Molina's hog-nosed skunk.  相似文献   

7.
A combination of tiletamine-zolazepam/xylazine (TZ/X) is effective in the chemical immobilization of white-tailed deer (Odocoileus virginianus); however, the lengthy duration of immobilization may limit its usefulness. From October to November 2002, 21 captive female deer were assigned randomly to an alpha(2) antagonist treatment to reverse xylazine-induced sedation (seven does per group). All deer were given 220 mg of TZ (4.5+/-0.4 mg/kg) and 110 mg of X (2.2+/-0.2 mg/kg) intramuscularly (IM). Antagonist treatments were either 200 mg of tolazoline (4.0+/-0.4 mg/kg), 11 mg of atipamezole (0.23+/-0.02 mg/kg), or 15 mg of yohimbine (0.30+/-0.02 mg/kg) injected, half intravenously and half subcutaneously, 45 min after the IM TZ/X injection. In addition, 10 other deer (five per group) were immobilized as before and then given tolazoline (200 mg) after 45 min, with either a carrier (dimethyl sulfoxide [DMSO]) or carrier (DMSO) plus flumazenil (5 mg) to reverse the zolazepam portion of TZ. Mean times from antagonist injection until a deer raised its head were different for alpha(2) antagonist treatments (P=0.02). Times were longer for yohimbine (62.3+/-42.7 min) than for either atipamezole (24.3+/-17.1 min) or tolazoline (21.3+/-14.3 min). Mean times from antagonist injection until standing were not different (P=0.15) among yohimbine (112.0+/-56.4 min), atipamezole (89.7+/-62.8 min), or tolazoline (52.6+/-37.2 min). A sedation score based on behavioral criteria was assigned to each deer every 30 min for 5 hr. On the basis of sedation scores, tolazoline resulted in a faster and more complete reversal of immobilization. Flumazenil treatment did not affect recovery.  相似文献   

8.
Twenty-nine free-ranging Himalayan tahr (Hemitragus jemlahicus) were darted in the Sagarmatha National Park (Nepal) using different combinations of xylazine and ketamine. Animals in Group 1 (n = 4) received a mean xylazine-ketamine dose of 2.77 +/- 0.99 mg/kg xylazine plus 3.32 +/- 0.19 mg/kg ketamine in males and 2.39 +/- 0.10 mg/kg xylazine plus 4.29 +/- 0.17 mg/kg ketamine in females. Animals in Group 2 (n = 25) received a mean xylazine-ketamine dose of 1.70 +/- 0.41 mg/kg xylazine plus 3.06 +/- 0.74 mg/kg ketamine in males and 1.82 +/- 0.29 mg/kg xylazine plus 3.29 +/- 0.52 mg/kg ketamine in females. No anesthetic-related mortality was recorded. Anesthesia was reversed by a standard dose of 11 mg/animal of atipamezole administered by intramuscular injection. Although all anesthetic dosages immobilized free-ranging tahr successfully, a quick and smooth recovery was obtained (11.1 +/- 5.6 min) only with the dosages of Group 2.  相似文献   

9.
We captured 10 free-ranging desert mule deer (Odocoileus hemionus crooki) (five males and five females) by net-gun from a helicopter and immobilized them with xylazine hydrochloride (HCl) (100 mg) and ketamine HCl (300 to 400 mg) injected intramuscularly. Arousal and ambulation times were 13.9 +/- 4.2 and 14.3 +/- 4.2 min in eight deer injected intravenously with tolazoline HCl (3.0 mg/kg). We observed a curvilinear relationship (R = 0.50, P less than 0.01) between rectal temperature and time after induction of anesthesia. Mean peak temperature (41.4 C) occurred at 23.7 +/- 3.2 min postinduction and was greater (P less than 0.01) than the mean temperature measured initially (40.8 C). Heart and respiratory rates (108 beats/min and 75 breaths/min) were elevated prior to immobilization. Mean heart rate increased (P less than 0.05) from 90 +/- 9 beats/min in anesthetized deer to 120 +/- 13 beats/min after tolazoline HCl injection. A 20% capture-related mortality rate suggests this combination of physical and chemical capture has serious limitations. Captive deer permitted to recover from xylazine HCl-ketamine HCl immobilization without a reversal agent were able to walk in 290 +/- 79 min.  相似文献   

10.
No published information exists on the chemical immobilization of free-ranging dholes (Cuon alpinus), binturongs (Arctictis binturong), or yellow-throated martens (Martes flavigula). We chemically immobilized these species in Thailand using a mixture of ketamine hydrochloride with xylazine hydrochloride (KH–XH) and tiletamine hydrochloride with zolazepam hydrochloride (TH–ZH). Mean (±SD) dose of KH–XH was 18.1±5.3 and 0.9±0.1 mg/kg for dholes (n=2), 19.7±4.1 and 1.3±0.4 mg/kg for binturongs (n=8), and 28.7±3.3 and 1.1±0.1 mg/kg for yellow-throated martens (n=5), respectively. Mean dose of TH–ZH was 4.1±0.1 mg/kg for dhole (n=2). Induction time, duration of anesthesia, and recovery time were satisfactory for standard field research procedures including radio-collaring, although the effects on yellow-throated martens and binturongs were more variable. Respiration and muscle rigidity were monitored during sedation with no observed adverse physiological effects. Individuals were released after full recovery and monitored via radio telemetry for 4–23 months with no observed detrimental effects due to chemical immobilization. We conclude that KH–XH and TH–ZH are safe and effective immobilization agents for these carnivores; however, we suggest testing different KH–XH ratios and dosages, and other immobilizing agents for these species.  相似文献   

11.
Fourteen wolves (Canis lupus L.) were singularly or repeatedly immobilized with 30 mg xylazine hydrochloride (HCl) and 400 mg ketamine HCl. Mean induction time was 5.3 +/- 4.6 min (mean +/- SD). Administration of 8.0 mg/kg tolazoline HCl as an antagonist significantly reduced immobilization times from 148.0 +/- 52.7 to 47.9 +/- 8.9 min (F = 63.69, df = 1,17, P less than 0.05). The average times from injection to ambulation for 2.0, 4.0, and 8.0 mg/kg tolazoline HCl were 35.2 +/- 31.8, 18.5 +/- 11.7, and 10.2 +/- 9.1 min. Tolazoline HCl increased heart rates significantly (P less than 0.001) from 75 +/- 14 to 120 +/- 23 beats/min, reversing a xylazine HCl-induced bradycardia. Respiratory rates also increased significantly (P less than 0.01) after tolazoline HCl injection from 19 +/- 7 to 28 +/- 8 breaths/min. Immobilization resulted in an initial hypertension which was normalized after tolazoline HCl administration. One female wolf had a single sinoatrial block within 1 min of receiving tolazoline HCl. Tolazoline HCl appears to be an effective antagonist for xylazine HCl-ketamine HCl immobilization of wolves.  相似文献   

12.
We compared the efficiency of succinylcholine chloride, xylazine hydrochloride and carfentanil/xylazine mixtures in immobilizing 364 free-ranging moose (Alces alces) between 1987 and 1997 in Québec (Canada). With succinylcholine chloride (0.070, 0.062, 0.051 mg/kg of estimated body weight for calves, juveniles and adults), 63% of the 252 immobilization attempts led to complete immobilization and marking, whereas 7% of the darted animals died of respiratory paralysis during handling. The moose took an average of 13 min to lay down after darting (down time). Injection of xylazine (3.67-4.22 mg/kg) permitted sedation (the animal laid down but got up again when approached) or complete immobilization in 78% of the 40 darted adult moose, the mean down time being 8.7 min. No mortality was noted with this drug but 58% of the marked animals were only sedated. The use of RX821002A (0.058 mg/kg) as an antagonist, permitted a mean recovery time of 2.8 min after intravenous injection. With the carfentanil/xylazine mixtures (0.0071 and 0.181 mg/kg), 96% of the immobilization trials (n = 72) led to complete (88%) or partial (8%) immobilization, but 6% of the moose died several days after capture. The mean down time was 6.6 min, and injection of naltrexone (0.709 mg/kg) antagonized the effect of the immobilizing agent within 3.7 min. The respiratory rate was higher (P < 0.05) among moose immobilized with xylazine (35/min) than among those immobilized with carfentanil/xylazine mixtures (19/min) but this variation could be related to a longer pursuit time (z = 3.60; P < 0.01) and higher stress levels during handling. Rectal temperature also was higher with xylazine but the difference was small (39.7 vs. 39.3, P = 0.03) and did not differ significantly between the sexes (P > 0.05). Considering loss of materials and helicopter flight time due to non-successful marking trials, carfentanil/xylazine mixtures were the least expensive ($333 Cdn/animal).  相似文献   

13.
A combination of 100 mg ketamine hydrochloride (KH) and 20 mg xylazine hydrochloride (XH) was used to immobilize fishers (Martes pennanti). Four adult males were intramuscularly injected a total of five times at dosages between 22.4 to 29.0 mg/kg KH and 4.1 to 6.6 mg/kg XH. Mean (+/- SE) induction time and arousal time were 3.3 +/- 0.5 min and 76.8 +/- 12.1 min, respectively. Respiration, heart rate, and body temperature in response to sedation appeared normal. A 5:1 mixture of KH-XH appears to be a safe immobilizing agent for fishers.  相似文献   

14.
Xylazine hydrochloride was used to immobilize 124 Rocky Mountain bighorn sheep (Ovis canadensis canadensis) between 1983 and 1988. Doses of xylazine for free-ranging lambs ranged from 70 to 130 mg with amounts increasing with lamb age. Average doses for 11 free-ranging adult males and 21 adult females darted from the ground were (means +/- SE) 363 +/- 16 and 251 +/- 7 mg, respectively. Adult females captured in "Stevenson's " box traps (n = 7) could be immobilized with significantly (P less than 0.001) less xylazine (93 +/- 9 mg) than free-ranging females but had similar induction times. Long recovery times associated with xylazine immobilization were eliminated with the intravenous administration of idazoxan (RX 781094) at an approximate dosage of 0.1 mg/kg. Eighteen sheep given idazoxan appeared fully recovered within 3 min of injection (means +/- SE = 1.2 +/- 0.2 min). Four mortalities (three lambs, one yearling male) (3% of total) occurred before idazoxan was available for trial.  相似文献   

15.
Telazol was used to immobilize nine wild ocelots (Leopardus pardalis) captured in box-traps in southern Texas (USA) between May 1997 and April 1998. Mean (+/- SD) intramuscular dosage rate of 5.05 (+/- 0.76) mg/kg produced an induction time of 3.7 +/- 1.8 min. Duration of cataleptic anesthesia was 67.4 +/- 19.8 min and ocelots stood 50.0 +/- 30.7 min after emergence from cataleptic anesthesia. Ocelots recovered to their preinjection condition 129.7 +/- 28.8 min after first standing and 250.8 +/- 55.1 min after initial injection. We observed no adverse reactions to Telazol aside from minor loss of thermoregulatory control. Telazol administered at 5 mg/kg was an effective and safe immobilizing agent for wild ocelots.  相似文献   

16.
Gray wolves (Canis lupus) were immobilized with 0.5 mg/kg xylazine plus 7.5 micrograms/kg of either sufentanil (n = 8), etorphine (n = 8), or carfentanil (n = 2). Drug doses used in this study were selected to provide consistency for comparison and are not recommended doses for effective immobilization of wolves. Induction times were similar among groups (11.9 +/- 1.0 min). Thirty min after induction, wolves were given either 0.5 mg/kg naloxone hydrochloride plus 0.15 mg/kg yohimbine hydrochloride or saline only intravenously. Arousal times for wolves given naloxone and yohimbine (1.2 +/- 0.1 min) were shorter than wolves given saline (35.5 +/- 6.4 min). Respiratory rates were similar among the three drug groups (6.9 +/- 1.0 breaths/min). One animal given sufentanil then saline was found dead 108 min after induction. Presumptive diagnosis was renarcotization and hypothermia. Results indicated that sufentanil is an effective opioid immobilizing agent for gray wolves.  相似文献   

17.
Cardiopulmonary effects and the utility of a butorphanol/xylazine/ketamine combination were evaluated during twenty immobilizations of sixteen Baird's tapirs (Tapirus bairdii) between March 1996 and January of 1998 in Corcovado National Park (Costa Rica). The animals were attracted to a bait site and darted from tree platforms. The tapirs were estimated to weigh between 200 to 300 kg. Actual weights of three tapirs taken at later dates fell within the estimated range. A butorphanol, 48+/-1.84 (x +/- SE) mg/animal IM, and xylazine, 101+/-2.72 mg/animal IM, combination was used to immobilize the animals. In some instances, ketamine was used either IM or IV at 187+/-40.86 mg/animal to prolong the immobilization period in addition to the butorphanol/xylazine combination. Naltrexone was used IM to reverse butorphanol at 257+/-16.19 mg/animal. Either yohimbine, 34+/-0.61 or tolazoline at 12+/-10.27 mg/animal, was used to reverse xylazine. The mean time from dart impact to first visible effect was 4.63+/-0.50 min (x +/- SE). Mean time to sternal recumbency was 12.21+/-1.08 min. Mean time the tapirs were immobilized was 45.63+/-3.6 min. Mean time to return to sternal recumbency and standing in animals that received yohimbine and naltrexone was 3.16+/-1.06 and 5.33+/-1.45 min, respectively. Mean time to return to sternal recumbency and standing in animals that received tolazoline and naltrexone was 1.57+/-0.39 and 3.14+/-0.51 min, respectively. Cardiopulmonary parameters including heart rate, respiratory rate, body temperature, electrocardiogram, percent oxygen satoration, and indirect blood pressure were recorded. Arterial blood gas analysis was performed on four animals. A mild degree of hypoxemia was evidenced by low arterial oxygen saturations. Five of 14 (36%) animals measured had oxygen saturations below 90%. Bradycardia (heart rates <45 BPM) was an expected finding in 11 (55%) immobilizations. Induction, recovery and muscle relaxation of each immobilization was graded. Premature arousal, which occurred in six (30%) animals, was the only problem associated with the immobilizations. Butorphanol/xylazine is a recommended protocol for immobilization of calm, free-ranging tapirs lasting less than 30 min. Supplemental intravenous administration of ketamine is recommended for longer procedures. Nasal insufflation of oxygen is recommended.  相似文献   

18.
Thirty seven southern elephant seals (Mirounga leonina) were singularly or repeatedly immobilized with combinations of ketamine hydrochloride (HCl) and xylazine HCl or ketamine HCl and diazepam. Atropine sulphate was included in the drug combinations. To permit experimental procedures the seals were immobilized for periods of 30-330 min. The mean induction dose of ketamine HCl was 8.71 +/- 0.25 mg/kg (mean +/- SE). The mean induction time was 16.02 +/- 2.62 min. For the elephant seals immobilized for periods in excess of 180 min, the mean dose of ketamine HCl used per hr was 3.31 +/- 0.13 mg/kg/hr and the mean dose of ketamine HCl used per hr postinduction was 1.31 +/- 0.15 mg/kg/hr. The mean dose of diazepam used was 0.09 +/- 0.01 mg/kg and the mean dose of xylazine HCl was 0.41 +/- 0.01 mg/kg. Elephant seals were weighed on 20 occasions (weight range: 897-1,932 kg) and the relationship between standard length and weight was found to be: Weight = 9.98 length - 2,317.63 (r2 = 0.724). Adverse reactions to seals immobilized only once or twice were not observed. Two seals immobilized on three occasions developed abscesses at the site of injection.  相似文献   

19.
Twenty-six free-ranging North American bison (Bison bison) (22 adult bulls, one yearling male and three adult females) were immobilized using a combination of carfentanil and xylazine. For carfentanil the dose range (mean +/- SD) was 1.8-5.0 micrograms/kg (2.4 +/- 0.7 micrograms/kg) and for xylazine 0.004-0.125 mg/kg (0.07 +/- 0.03 mg/kg). Induction time (mean +/- SE) was 14.2 +/- 2.9 min (median 8 min), while the total mean reversal time after administration of a narcotic antagonist was 9.0 +/- 1.4 min (median 8 min). Only one animal that received the highest initial dose of carfentanil (2.5 mg) showed evidence of becoming "re-narcotized." Five animals required two or more doses of carfentanil before becoming immobilized. Overall, small volumes of drug used (mean = 0.62 ml for carfentanil, 0.53 ml for xylazine) enabled the use of 1 to 2 ml darts, increasing both accuracy and impact safety. Darting success approached 100%.  相似文献   

20.
Parenteral anesthetic combinations such as ketamine and xylazine have become the agents of choice for anesthesia in the rabbit, because they are effective, easily administered and inexpensive. A number of recent reports have recommended including acepromazine in this combination, but a critical evaluation of this combination in the rabbit has not been reported. Five adult New Zealand white rabbits were anesthetized intramuscularly with ketamine (35 mg/kg) and xylazine (5 mg/kg) with or without acepromazine (0.75 mg/kg). The study was conducted in a double blind fashion, where each rabbit was administered both combinations at a minimum of 7 day intervals. Physiologic parameters were evaluated including heart rate, respiratory rate, central arterial blood pressure, pedal, palpebral and postural reflex activity. The duration of general anesthesia, estimated by the time elapsed between the loss and return of the palpebral reflex, was greater (means = 99 +/- 20 minutes) when acepromazine was employed in the combination compared to (means = 77 +/- 5 minutes) when ketamine/xylazine were used alone. Mean central arterial blood pressure reached a lower level when acepromazine was utilized (means = 46 +/- 8 mm/Hg) than when it was not (means = 57 +/- 12 mm/Hg.). The addition of acepromazine in a ketamine/xylazine combination resulted in a 28% longer period of anesthesia, a 19% lower mean central arterial blood pressure and a 32% longer recovery of postural reflexes. The ketamine/xylazine/acepromazine combination is a useful regimen for normovolemic animals when anesthetic duration greater than that produced by ketamine/xylazine alone is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号