首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A biosensor for NO(inf3)(sup-) was constructed by attaching a 30- to 70-(mu)m-wide capillary with immobilized denitrifying bacteria in front of an N(inf2)O microsensor. These bacteria reduced O(inf2) so that only bacteria in the very tip of the sensor were exposed to O(inf2) whereas bacteria at a greater depth could carry out the anaerobic process of denitrification. In the presence of acetylene, which inhibits nitrous oxide reductase, bacteria reduced NO(inf3)(sup-) (or NO(inf2)(sup-)) from the surrounding medium to N(inf2)O and the concentration sensed by the N(inf2)O microsensor was directly proportional to the concentration of NO(inf3)(sup-) in the medium. By applying a 250-(mu)m-long capillary in front of the N(inf2)O microsensor, the 90% response time of the biosensor was 50 s. Biosensors may also be made with nitrous oxide-deficient strains so that acetylene inhibition can be omitted.  相似文献   

2.
Recent studies on Northern Ireland rivers have shown that summer nitrite (NO(inf2)(sup-)) concentrations greatly exceed the European Union guideline of 3 (mu)g of N liter(sup-1) for rivers supporting salmonid fisheries. In fast-flowing aerobic small streams, NO(inf2)(sup-) is thought to originate from nitrification, due to the retardation of Nitrobacter strains by the presence of free ammonia. Multiple regression analyses of NO(inf2)(sup-) concentrations against water quality variables of the six major rivers of the Lough Neagh catchment in Northern Ireland, however, suggested that the high NO(inf2)(sup-) concentrations found in the summer under warm, slow-flow conditions may result from the reduction of NO(inf3)(sup-). This hypothesis was supported by field observations of weekly changes in N species. Here, reduction of NO(inf3)(sup-) was observed to occur simultaneously with elevation of NO(inf2)(sup-) levels and subsequently NH(inf4)(sup+) levels, indicating that dissimilatory NO(inf3)(sup-) reduction to NH(inf4)(sup+) (DNRA) performed by fermentative bacteria (e.g., Aeromonas and Vibrio spp.) is responsible for NO(inf2)(sup-) accumulation in these large rivers. Mechanistic studies in which (sup15)N-labelled NO(inf3)(sup-) in sediment extracts was used provided further support for this hypothesis. Maximal concentrations of NO(inf2)(sup-) accumulation (up to 1.4 mg of N liter(sup-1)) were found in sediments deeper than 6 cm associated with a high concentration of metabolizable carbon and anaerobic conditions. The (sup15)N enrichment of the NO(inf2)(sup-) was comparable to that of the NO(inf3)(sup-) pool, indicating that the NO(inf2)(sup-) was predominantly NO(inf3)(sup-) derived. There is evidence which suggests that the high NO(inf2)(sup-) concentrations observed arose from the inhibition of the DNRA NO(inf2)(sup-) reductase system by NO(inf3)(sup-).  相似文献   

3.
The effects of nitrate availability and the presence of Glyceria maxima on the composition and activity of the dissimilatory nitrate-reducing bacterial community were studied in the laboratory. Four different concentrations of NO(inf3)(sup-), 0, 533, 1434, and 2,905 (mu)g of NO(inf3)(sup-)-N g of dry sediment(sup-1), were added to pots containing freshwater sediment, and the pots were then incubated for a period of 69 days. Upon harvest, NH(inf4)(sup+) was not detectable in sediment that received 0 or 533 (mu)g of NO(inf3)(sup-)-N g of dry sediment(sup-1). Nitrate concentrations in these pots ranged from 0 to 8 (mu)g of NO(inf3)(sup-)-N g of dry sediment(sup-1) at harvest. In pots that received 1,434 or 2,905 (mu)g of NO(inf3)(sup-)-N g of dry sediment(sup-1), final concentrations varied between 10 and 48 (mu)g of NH(inf4)(sup+)-N g of dry sediment(sup-1) and between 200 and 1,600 (mu)g of NO(inf3)(sup-)-N g of dry sediment(sup-1), respectively. Higher input levels of NO(inf3)(sup-) resulted in increased numbers of potential nitrate-reducing bacteria and higher potential nitrate-reducing activity in the rhizosphere. In sediment samples from the rhizosphere, the contribution of denitrification to the potential nitrate-reducing capacity varied from 8% under NO(inf3)(sup-)-limiting conditions to 58% when NO(inf3)(sup-) was in ample supply. In bulk sediment with excess NO(inf3)(sup-), this percentage was 44%. The nitrate-reducing community consisted almost entirely of NO(inf2)(sup-)-accumulating or NH(inf4)(sup+)-producing gram-positive species when NO(inf3)(sup-) was not added to the sediment. The addition of NO(inf3)(sup-) resulted in an increase of denitrifying Pseudomonas and Moraxella strains. The factor controlling the composition of the nitrate-reducing community when NO(inf3)(sup-) is limited is the presence of G. maxima. In sediment with excess NO(inf3)(sup-), nitrate availability determines the composition of the nitrate-reducing community.  相似文献   

4.
The kinetics of inhibition of CH(inf4) oxidation by NH(inf4)(sup+), NO(inf2)(sup-), and NO(inf3)(sup-) in a humisol was investigated. Soil slurries exhibited nearly standard Michaelis-Menten kinetics, with half-saturation constant [K(infm(app))] values for CH(inf4) of 50 to 200 parts per million of volume (ppmv) and V(infmax) values of 1.1 to 2.5 nmol of CH(inf4) g of dry soil(sup-1) h(sup-1). With one soil sample, NH(inf4)(sup+) acted as a simple competitive inhibitor, with an estimated K(infi) of 8 (mu)M NH(inf4)(sup+) (18 nM NH(inf3)). With another soil sample, the response to NH(inf4)(sup+) addition was more complex and the inhibitory effect of NH(inf4)(sup+) was greater than predicted by a simple competitive model at low CH(inf4) concentrations (<50 ppmv). This was probably due to NO(inf2)(sup-) produced through NH(inf4)(sup+) oxidation. Added NO(inf2)(sup-) was inherently more inhibitory of CH(inf4) oxidation at low CH(inf4) concentrations, and more NO(inf2)(sup-) was produced as the CH(inf4)-to-NH(inf4)(sup+) ratio decreased and the competitive balance shifted. NaNO(inf3) was a noncompetitive inhibitor of CH(inf4) oxidation, but inhibition was evident only at >10 mM concentrations, which also altered soil pHs. Similar concentrations of NaCl were also inhibitory of CH(inf4) oxidation, so there may be no special inhibitory mechanism of nitrate per se.  相似文献   

5.
Laboratory-scale soil microcosms containing different soils were permeated with CH(inf4) for up to 6 months to investigate their capacity to develop a methanotrophic community. Methane emissions were monitored continuously until steady states were established. The porous, coarse sand soil developed the greatest methanotrophic capacity (10.4 mol of CH(inf4) (middot) m(sup-2) (middot) day(sup-1)), the greatest yet reported in the literature. Vertical profiles of O(inf2), CH(inf4), and methanotrophic potential in the soils were determined at steady state. Methane oxidation potentials were greatest where the vertical profiles of O(inf2) and CH(inf4) overlapped. A significant increase in the organic matter content of the soil, presumably derived from methanotroph biomass, occurred where CH(inf4) oxidation was greatest. Methane oxidation kinetics showed that a soil community with a low methanotrophic capacity (V(infmax) of 258 nmol (middot) g of soil(sup-1) (middot) h(sup-1)) but relatively high affinity (k(infapp) of 1.6 (mu)M) remained in N(inf2)-purged control microcosms, even after 6 months without CH(inf4). We attribute this to a facultative, possibly mixotrophic, methanotrophic microbial community. When purged with CH(inf4), a different methanotrophic community developed which had a lower affinity (k(infapp) of 31.7 (mu)M) for CH(inf4) but a greater capacity (V(infmax) of 998 nmol (middot) g of soil(sup-1) (middot) h(sup-1)) for CH(inf4) oxidation, reflecting the enrichment of an active high-capacity methanotrophic community. Compared with the unamended control soil, amendment of the coarse sand with sewage sludge enhanced CH(inf4) oxidation capacity by 26%; K(inf2)HPO(inf4) amendment had no significant effect, while amendment with NH(inf4)NO(inf3) reduced the CH(inf4) oxidation capacity by 64%. In vitro experiments suggested that NH(inf4)NO(inf3) additions (10 and 71 (mu)mol (middot) g of soil(sup-1)) inhibited CH(inf4) oxidation by a nonspecific ionic effect rather than by specific inhibition by NH(inf4)(sup+).  相似文献   

6.
The effect of water infiltration rate (IR) on nitrogen cycling in a saturated wetland soil was investigated by applying a (sup15)N isotope dilution and pairing method. Water containing [(sup15)N]nitrate was infiltrated through 10-cm-long cores of sieved and homogenized soil at rates of 72, 168, 267, and 638 mm day(sup-1). Then the frequencies of (sup30)N(inf2), (sup29)N(inf2), (sup15)NO(inf3)(sup-), and (sup15)NH(inf4)(sup+) in the outflow water were measured. This method allowed simultaneous determination of nitrification, coupled and uncoupled denitrification, and nitrate assimilation rates. From 3% (at the highest IR) to 95% (at the lowest IR) of nitrate was removed from the water, mainly by denitrification. The nitrate removal was compensated for by the net release of ammonium and dissolved organic nitrogen. Lower oxygen concentrations in the soil at lower IRs led to a sharper decrease in the nitrification rate than in the ammonification rate, and, consequently, more ammonium leaked from the soil. The decreasing organic-carbon-to-nitrogen ratio (from 12.8 to 5.1) and the increasing light A(inf250)/A(inf365) ratio (from 4.5 to 5.2) indicated an increasing bioavailability of the outflowing dissolved organic matter with increasing IR. The efflux of nitrous oxide was also very sensitive to IR and increased severalfold when a zone of low oxygen concentration was close to the outlet of the soil cores. N(inf2)O then constituted 8% of the total gaseous N lost from the soil.  相似文献   

7.
A facultative bacterium capable of removing the selenium (Se) oxyanions selenate (SeO(inf4)(sup2-)) and selenite (SeO(inf3)(sup2-)) from solution culture in flasks open to the atmosphere was isolated and studied with the goal of assessing its potential for use in bioremediation of seleniferous agricultural drainage water. Elemental Se (Se(sup0)) was confirmed as a product of the reaction. The organism, identified as Enterobacter cloacae and designated strain SLD1a-1 (ATCC 700258), removed from 61.5 to 94.5% of added SeO(inf4)(sup2-) (the primary species present in agricultural drainage water) at concentrations from 13 to 1,266 (mu)M. Equimolar amounts of nitrate (NO(inf3)(sup-)), which interferes with SeO(inf4)(sup2-) reduction in some organisms, did not influence the reaction in growth experiments but had a slight inhibitory effect in a washed-cell suspension. Washed-cell suspension experiments also showed that (i) SeO(inf3)(sup2-) is a transitory intermediate in reduction of SeO(inf4)(sup2-), being produced and rapidly reduced concomitantly; (ii) NO(inf3)(sup-) is also reduced concomitantly and at a much higher rate than SeO(inf4)(sup2-); and (iii) although enzymatic, reduction of either oxyanion does not appear to be an inducible process. Transmission electron microscopy revealed that precipitate particles are <0.1 (mu)m in diameter, and these particles were observed free in the medium. Evidence indicates that SLD1a-1 uses SeO(inf4)(sup2-) as an alternate electron acceptor and that the reaction occurs via a membrane-associated reductase(s) followed by rapid expulsion of the Se particles.  相似文献   

8.
Bromate Reduction by Denitrifying Bacteria   总被引:3,自引:0,他引:3       下载免费PDF全文
In the presence of bromide, ozonation as applied in water treatment results in the formation of bromate, an ion with carcinogenic properties. The reduction of bromate by mixed bacterial populations as well as pure cultures was studied under laboratory conditions. Bromate was reduced to bromide by a mixed bacterial population with and without a preceding nitrate reduction step in an anaerobically incubated medium with ethanol as the energy and carbon source at 20 and 25 deg C. The predominating bacteria isolated from the batches showing bromate reduction were identified as Pseudomonas spp. Strains of Pseudomonas fluorescens reduced BrO(inf3)(sup-) to Br(sup-) but at a much lower rate than the mixed bacterial population did. Nitrate is a preferred electron acceptor for the bromate-reducing bacteria. Bromate reduction did not occur in the presence of NO(inf3)(sup-), and the rate of bromate reduction was at least 100 times lower than the rate of nitrate reduction. Bromate was completely converted to Br(sup-), indicating that intermediates, e.g., BrO(inf2)(sup-), did not accumulate during bromate reduction.  相似文献   

9.
Rhodococcus erythropolis N1-36, a desulfurization strain, was grown in continuous culture at 10 different dilution rates with 50 (mu)M dibenzothiophene sulfone (DBTO(inf2)) as the growth-limiting nutrient. The steady-state biomass, concentrations of substrate (DBTO(inf2)) and product (monohydroxybiphenyl), saturation constant (0.39 (mu)M DBTO(inf2)), and cell yield coefficient (9 mg of biomass(middot)(mu)M(sup-1) DBTO(inf2)) were measured. Continuous cultures at five temperatures allowed calculation of activation energy (0.84 kcal(middot)mol(sup-1) [ca. 3.5 kJ(middot)mol(sup-1)]) near the optimal temperature (30(deg)C) for growth. A washout technique was used to calculate the maximum specific growth rate (0.235 h(sup-1)), a value equivalent to a minimum generation time of 2.95 h.  相似文献   

10.
Peak emissions of NO and N(inf2)O are often observed after wetting of soil. The reactions to sudden changes in the aeration of cultures of nitrifying and denitrifying bacteria with respect to NO and N(inf2)O emissions were compared to obtain more information about the microbiological aspects of peak emissions. In continuous culture, the nitrifier Nitrosomonas europaea and the denitrifiers Alcaligenes eutrophus and Pseudomonas stutzeri were cultured at different levels of aeration (80 to 0% air saturation) and subjected to changes in aeration. The relative production of NO and N(inf2)O by N. europaea, as a percentage of the ammonium conversion, increased from 0.87 and 0.17%, respectively, at 80% air saturation to 2.32 and 0.78%, respectively, at 1% air saturation. At 0% air saturation, ammonium oxidation and N(inf2)O production ceased but NO production was enhanced. Coculturing of N. europaea with the nitrite oxidizer Nitrobacter winogradskyi strongly reduced the relative levels of NO and N(inf2)O production, probably as an effect of the lowered nitrite concentration. After lowering the aeration, N. europaea produced large short-lasting peaks of NO and N(inf2)O emissions in the presence but not in the absence of nitrite. A. eutrophus and P. stutzeri began to denitrify below 1% air saturation, with the former accumulating nitrite and N(inf2)O and the latter reducing nitrate almost completely to N(inf2). Transition of A. eutrophus and P. stutzeri from 80 to 0% air saturation resulted in transient maxima of denitrification intermediates. Such transient maxima were not observed after transition from 1 to 0%. Reduction of nitrate by A. eutrophus continued 48 h after the onset of the aeration, whereas N(inf2)O emission by P. stutzeri increased for only a short period. It was concluded that only in the presence of nitrite are nitrifiers able to dominate the NO and N(inf2)O emissions of soils shortly after a rainfall event.  相似文献   

11.
The effect of phosphorus (P) and nitrogen (N) additions on the Synechococcus cell cycle was tested with natural populations from the Mediterranean Sea in summer. In the absence of stimulation, the Synechococcus cell cycle was synchronized to the light-dark cycle. DNA synthesis began around 1600, a maximum of S-phase cells was observed at around dusk (2100), and a maximum of G(inf2)-phase cells was observed at around 2400. Addition of P (as PO(inf4)(sup3-)) caused, in all cases, a decrease in the fraction of cells in G(inf2) at around 1800, no change at around 2400, and an increase at around 1200 the next day, while addition of N (as NO(inf3)(sup-)) had no effect. We hypothesize that P addition induced a shortening of the G(inf1) phase, resulting in cells entering and leaving the S and G(inf2) phases earlier. These data suggest very strongly that the Synechococcus cells were P limited rather than N limited during this period of the year. In most cases, additions as low as 20 nM P induced a cell cycle response. From dose-response curves, we established that the P concentration inducing a 50% change in the percentage of cells in G(inf2) was low, close to 10 nM, at the beginning of the sampling period (30 June) and increased to about 50 nM by the end (9 July), suggesting a decrease in the severity of P limitation. This study extends recent observations that oligotrophic systems may be P rather than N limited at certain times of the year.  相似文献   

12.
Growth energetics of the acetic acid bacterium Acetobacter pasteurianus were studied with aerobic, ethanol-limited chemostat cultures. In these cultures, production of acetate was negligible. Carbon limitation and energy limitation were also evident from the observation that biomass concentrations in the cultures were proportional to the concentration of ethanol in the reservoir media. Nevertheless, low concentrations of a few organic metabolites (glycolate, citrate, and mannitol) were detected in culture supernatants. From a series of chemostat cultures grown at different dilution rates, the maintenance energy requirements for ethanol and oxygen were estimated at 4.1 mmol of ethanol (middot) g of biomass(sup-1) (middot) h(sup-1) and 11.7 mmol of O(inf2) (middot) g of biomass(sup-1) (middot) h(sup-1), respectively. When biomass yields were corrected for these maintenance requirements, the Y(infmax) values on ethanol and oxygen were 13.1 g of biomass (middot) mol of ethanol(sup-1) and 5.6 g of biomass (middot) mol of O(inf2)(sup-1), respectively. These biomass yields are very low in comparison with those of other microorganisms grown under comparable conditions. To investigate whether the low growth efficiency of A. pasteurianus might be due to a low gain of metabolic energy from respiratory dissimilation, (symbl)H(sup+)/O stoichiometries were estimated during acetate oxidation by cell suspensions. These experiments indicated an (symbl)H(sup+)/O stoichiometry for acetate oxidation of 1.9 (plusmn) 0.1 mol of H(sup+)/mol of O. Theoretical calculations of growth energetics showed that this low (symbl)H(sup+)/O ratio adequately explained the low biomass yield of A. pasteurianus in ethanol-limited cultures.  相似文献   

13.
The DbtS(sup+) phenotype (which confers the ability to oxidize selectively the sulfur atom of dibenzothiophene [DBT] or dibenzothiophene sulfone [DBTO(inf2)]) of Rhodococcus erythropolis N1-36 was quantitatively characterized in batch and fed-batch cultures. In flask cultures, production of the desulfurization product, monohydroxybiphenyl (OH-BP), was maximal at pH 6.0, while specific productivity (OH-BP cell(sup-1)) was maximal at pH 5.5. Quantitative measurements in fermentors (in both batch and fed-batch modes) demonstrated that DBTO(inf2) as the sole sulfur source yielded a greater amount of product than did DBT. Specifically, 100 (mu)M DBT maximally yielded (apprx=)40 (mu)M OH-BP, while 100 (mu)M DBTO(inf2) yielded (apprx=)60 (mu)M OH-BP. Neither maintaining the pH at 6.0 nor adding an additional carbon source increased the yield of OH-BP. The presence of SO(inf4)(sup2-) in growth media repressed expression of desulfurization activity, but SO(inf4)(sup2-) added to suspensions of cells grown in DBT or DBTO(inf2) did not inhibit desulfurization activity.  相似文献   

14.
Three new monomeric Cu(II) complexes of 5-amino-3-pyridin-2-yl-1,2,4-triazole (Hapt), [Cu(Hapt)(H(2)O)(2)(SO(4))] (1), [Cu(Hapt)(2)(H(2)O)(NO(3))](NO(3)) (2), and [Cu(Hapt)(2)(NCS-N)](NCS).H(2)O (3), have been prepared and characterized by single crystal X-ray diffraction. One distorted [CuN(2)O(2)+O(')] square-pyramidal (1), one distorted [CuN(3)O+N(')+O(')] octahedral (2), and one distorted [CuN(4)+N(')] intermediate between square-pyramidal and trigonal-bipyramidal (3) coordination configuration were found and are suggested to be due to the chelating nature of the ligand, which interacts with Cu(II) through the N4(triazole) and N(pyridine) atoms. Spectral properties of these chelates are in accordance with the X-ray structural data. With ascorbate and H(2)O(2) activation, compound 2 exhibits higher nuclease activity than compound 1. The influence on the DNA cleavage process of different scavengers of reactive oxygen species: dimethyl sulfoxide (DMSO), tert-butyl alcohol, sodium azide, 2,2,6,6-tetramethyl-4-piperidone and superoxide dismutase enzyme (SOD), and of the minor groove binder distamycin, is also studied.  相似文献   

15.
The activity and distribution of CH(inf4)-oxidizing bacteria (MOB) in flooded rice (Oryza sativa) soil microcosms was investigated. CH(inf4) oxidation was shown to occur in undisturbed microcosms by using (sup14)CH(inf4), and model calculations indicated that almost 90% of the oxidation measured had taken place at a depth where only roots could provide the O(inf2) necessary. Slurry from soil planted with rice had an apparent K(infm) for CH(inf4) of 4 (mu)M and a V(infmax) of 0.1 (mu)mol g (dry weight)(sup-1) h(sup-1). At a depth of 1 to 2 cm, there was no significant difference (P > 0.05) in numbers of MOB between soil from planted and nonplanted microcosms (mean, 7.7 x 10(sup5) g [fresh weight](sup-1)). Thus, the densely rooted soil at 1 to 2 cm deep did not represent rhizospheric soil with respect to the number of MOB. A significantly increased number of MOB was found only in soil immediately around the roots (1.2 x 10(sup6) g [fresh weight](sup-1)), corresponding to a layer of 0.1 to 0.2 mm. Plant-associated CH(inf4) oxidation was shown in a double chamber with carefully washed intact rice plants. Up to 90% of the CH(inf4) supplied to the root compartment was oxidized in the plants. CH(inf4) oxidation on isolated roots was higher and had a larger variability than that in soil slurries. Roots had an apparent K(infm) for CH(inf4) of 6 (mu)M and a V(infmax) of 5 (mu)mol g (dry weight)(sup-1) h(sup-1). The average number of MOB in homogenized roots was larger than on the rhizoplane and increased with plant age. MOB also were found in surface-sterilized roots and basal culms, indicating the ability of these bacteria to colonize the interior of roots and culms.  相似文献   

16.
The obligately ammonia-oxidizing bacterium Nitrosomonas europaea was incubated in medium containing 50 mM ammonium. Changes in the concentration of nitrite, the pH, and the NH(inf4)(sup+)- and NH(inf2)OH-dependent O(inf2) uptake activities of the cell suspension were monitored. The NH(inf4)(sup+)-dependent O(inf2) uptake activity doubled over the first 3 h of incubation and then slowly returned to its original level over the following 5 h. The extent of stimulation of NH(inf4)(sup+)-dependent O(inf2) uptake activity was decreased by lowering the initial pH of the medium. Radiolabeling studies demonstrated that the stimulation of NH(inf4)(sup+)-dependent O(inf2) uptake activity involved de novo synthesis of several polypeptides. Under O(inf2)-limited conditions, the stimulated NH(inf4)(sup+)-dependent O(inf2) uptake activity was stabilized. Rapid, controlled, and predictable changes in this activity could be caused by acidification of the medium in the absence of ammonia oxidation. These results indicate that the NH(inf4)(sup+)-dependent O(inf2) uptake activity in N. europaea is strongly regulated in response to NH(inf3) concentration.  相似文献   

17.
Transient-state experiments with the obligately autotrophic Thiobacillus sp. strain W5 revealed that sulfide oxidation proceeds in two physiological phases, (i) the sulfate-producing phase and (ii) the sulfur- and sulfate-producing phase, after which sulfide toxicity occurs. Specific sulfur-producing characteristics were independent of the growth rate. Sulfur formation was shown to occur when the maximum oxidative capacity of the culture was approached. In order to be able to oxidize increasing amounts of sulfide, the organism has to convert part of the sulfide to sulfur (HS(sup-)(symbl)S(sup0) + H(sup+) + 2e(sup-)) instead of sulfate (HS(sup-) + 4H(inf2)O(symbl)SO(inf4)(sup2-) + 9 H(sup+) + 8e(sup-)), thereby keeping the electron flux constant. Measurements of the in vivo degree of reduction of the cytochrome pool as a function of increasing sulfide supply suggested a redox-related down-regulation of the sulfur oxidation rate. Comparison of the sulfur-producing properties of Thiobacillus sp. strain W5 and Thiobacillus neapolitanus showed that the former has twice the maximum specific sulfide-oxidizing capacity of the latter (3.6 versus 1.9 (mu)mol/mg of protein/min). Their maximum specific oxygen uptake rates were very similar. Significant mechanistic differences in sulfur production between the high-sulfur-producing Thiobacillus sp. strain W5 and the moderate-sulfur-producing species T. neapolitanus were not observed. The limited sulfide-oxidizing capacity of T. neapolitanus appears to be the reason that it can convert only 50% of the incoming sulfide to elemental sulfur.  相似文献   

18.
A new and extremely sensitive method for measuring nitrogenase activity through acetylene reduction is presented. Ethylene produced by nitrogenase-mediated reduction of acetylene is detected by using laser photoacoustics (LPA). This method possesses a detection limit making it 3 orders of magnitude more sensitive than traditional gas chromatographic analysis. Photoacoustic detection is based on the strong and unique absorption pattern of ethylene in the CO(inf2) laser wavelength region (9 to 11 (mu)m). The high sensitivity allowed on-line monitoring of nitrogenase activity in a culture of the heterocystous cyanobacterium Nodularia spumigena, which was isolated from a water bloom in the Baltic Sea. This setup makes it unnecessary to take subsamples from the culture and avoids long incubations in sealed vials. The fast response of the LPA technique allows measurement of real-time dynamic changes of nitrogenase activity. The method was used to analyze in vivo saturation of nitrogenase by acetylene in N. spumigena. It is demonstrated that 20% acetylene does not saturate nitrogenase and that the degree of saturation depends on light intensity. With concentrations of acetylene as low as 2.5% it is possible to assess the degree of saturation and to extrapolate to total nitrogenase activity. In N. spumigena nitrogenase activity becomes independent of light intensity above 20 to 80 (mu)mol of photons m(sup-2) s(sup-1) at 20% O(inf2).  相似文献   

19.
A Nitrite Microsensor for Profiling Environmental Biofilms   总被引:21,自引:12,他引:9       下载免费PDF全文
A highly selective liquid membrane nitrite microsensor based on the hydrophobic ion-carrier aquocyanocobalt(III)-hepta(2-phenylethyl)-cobrynate is described. The sensor has a tip diameter of 10 to 15 (mu)m. The response is log-linear in freshwater down to 1 (mu)M NO(inf2)(sup-) and in seawater to 10 (mu)M NO(inf2)(sup-). A method is described for preparation of relatively large polyvinyl chloride (PVC)-gelled liquid membrane microsensors with a tip diameter of 5 to 15 (mu)m, having a hydrophilic coating on the tip. The coating and increased tip diameter resulted in more sturdy sensors, with a lower detection limit and a more stable signal than uncoated nitrite sensors with a tip diameter of 1 to 3 (mu)m. The coating protects the sensor membrane from detrimental direct contact with biomass and can be used for all PVC-gelled liquid membrane sensors meant for profiling microbial mats, biofilms, and sediments. Thanks to these improvements, liquid membrane sensors can now be used in complex environmental samples and in situ, e.g., in operating bioreactors. Examples of measurements in denitrifying, nitrifying, and nitrifying/denitrifying biofilms from wastewater treatment plants are shown. In all of these biofilms high nitrite concentrations were found in narrow zones of less than 1 mm.  相似文献   

20.
The ability of cyanobacteria to serve as biocatalysts in the production of H(inf2) as a fuel and chemical feedstock was investigated with Anabaena variabilis. The results show that A. variabilis, when incubated under argon, dissimilated fructose to H(inf2) and CO(inf2) in a light-dependent reaction. The H(inf2) production had an obligate requirement for fructose and was heterocyst dependent, since NH(inf4)(sup+)-grown cultures lacking heterocysts failed to produce H(inf2). Differential inhibition studies with CO showed that nitrogenase is the main enzyme catalyzing the H(inf2) production. Net H(inf2) yield increased with increasing concentrations of fructose up to 10 mM in the medium. The average apparent conversion efficiency of fructose to H(inf2) (net H(inf2) produced/fructose removed from the medium) was about 10, although higher conversion efficiencies of 15 to 17 could be obtained during shorter periods and at optimum fructose concentrations. Under the same conditions, the ratio of CO(inf2) released to fructose removed from the medium was about 3.5, suggesting that only a fraction of the fructose carbon was completely oxidized to CO(inf2). Under conditions of carbon excess, which prevents H(inf2) uptake, the maximum ratio of H(inf2) to CO(inf2) was found to be 3.0. This is higher than the expected value of 2.0, indicating that water was also a source of reductant in this fructose-mediated H(inf2) production. Inhibition of H(inf2) evolution by 3-(3,4-dichlorophenyl)-1,1-dimethylurea confirmed a role for photosystem II in this process. The rate of H(inf2) production by A. variabilis SA1 was 46 ml h(sup-1) g (dry weight)(sup-1). This high rate was maintained for over 15 days. About 30% of this H(inf2) was derived from water (10 ml of H(inf2) h(sup-1) g [dry weight](sup-1)). These results show that filamentous, heterocystous cyanobacteria can serve as biocatalysts in the high-efficiency conversion of biomass-derived sugars to H(inf2) as a fuel source while simultaneously dissimilating water to H(inf2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号