首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The RNA binding sites of the protein complex of L7/12 dimers and L10, and of protein L11, occur within the 5'-one third of 23S RNA. Binding of the L7/12-L10 protein complex to the 23S RNA is stimulated by protein L11 and vice-versa. This is the second example to be established of mutual stimulation of RNA binding by two ribosomal proteins or protein complexes, and suggests that this may be an important principle governing ribosomal protein-RNA assembly. When the L7/12-L10 complex is bound to the RNA, L10 becomes strongly resistant to trypsin. Since the L7/12 dimer does not bind specifically to the 23S RNA, this suggests that L10 constitutes a major RNA binding site of the protein complex. Only one of the L7/12 dimers is bound strongly in the (L7/12-L10)-23S RNA complex; the other can dissociate with no concurrent loss of L10.  相似文献   

6.
7.
The RNA bacteriophages of E. coli specifically encapsidate a single copy of the viral genome in a protein shell composed mainly of 180 molecules of coat protein. Coat protein is also a translational repressor and shuts off viral replicase synthesis by interaction with a RNA stem-loop containing the replicase initiation codon. We wondered whether the translational operator also serves as the viral pac site, the signal which mediates the exclusive encapsidation of viral RNA by its interaction with coat protein. To test this idea we measured the ability of lacZ RNA fused to the translational operator to be incorporated into virus-like particles formed from coat protein expressed from a plasmid. The results indicate that the operator-lacZ RNA is indeed encapsidated and that nucleotide substitutions in the translational operator which reduce the tightness of the coat protein-operator interaction also reduce or abolish encapsidation of the hybrid RNA. When coat protein is expressed in excess compared to the operator-lacZ RNA, host RNAs are packaged as well. However, elevation of the level of operator-lacZ RNA relative to coat protein results in its selective encapsidation at the expense of cellular RNAs. Our results are consistent with the proposition that this single protein-RNA interaction accounts both for translational repression and viral genome encapsidation.  相似文献   

8.
9.
Assembly protein was isolated by DEAE cellulose chromatography from disrupted R17 bacteriophage and reconstituted with purified R17 phage RNA. Following reconstitution, 125I labeled assembly protein co-sediments with 27S R17 phage RNA in a sucrose gradient. SDS-polyacrylamide gel analysis of the 27S 125I labeled protein-RNA complex confirmed that assembly protein was the only phage protein associated with the RNA. The specific infectivity (PFU/μg RNA) of the R17 phage RNA-assembly protein complex was 35-fold greater than that of R17 phage RNA when assayed on Escherichia coli spheroplasts. Infectivity of both preparations was destroyed by treatment with pancreatic ribonuclease A. Furthermore, the assembly protein-RNA complex was infectious for intact cells whereas phage RNA was not infectious. Infectivity of this 27S complex for intact cells was totally eliminated by pretreatment with ribonuclease.  相似文献   

10.
Sin Nombre virus is a member of the Hantavirus genus, family Bunyaviridae, and is an etiologic agent of hantavirus pulmonary syndrome. The hantavirus nucleocapsid (N) protein plays an important role in the encapsidation and assembly of the viral negative-sense genomic RNA. The Sin Nombre N protein was expressed as a C-terminal hexahistidine fusion in Escherichia coli and initially purified by nickel-affinity chromatography. We developed methods to extract the soluble fraction and to solubilize the remainder of the N protein using denaturants. Maximal expression of protein from native purification was observed after a 1.5-h induction with IPTG (2.4 mg/L). The zwitterionic detergent Chaps did not enhance the yield of native purifications, but increased the yield of protein obtained from insoluble purifications. Both soluble and insoluble materials, purified by nickel-affinity chromatography, were also subjected to Hi Trap SP Sepharose fast-flow (FF) chromatography. Both soluble and insoluble proteins had a similar A(280) profile on the Sepharose FF column, and both suggested the presence of a nucleic acid contaminant. The apparent dissociation constant of the N protein, purified by nickel-affinity and SP Sepharose FF chromatography, and the 5' end of the viral S-segment genome were measured using a filter binding assay. The N protein-vRNA complex had an apparent dissociation constant of 140 nM.  相似文献   

11.
Formation of complexes between f2 RNA polymerase cistron was partially inhibited, some RNA and coat protein was studied using salt conditions which are optimum for phage protein synthesis. In this ionic environment, coat protein precipitation can be prevented by sulfhydryl group-protecting agents. Complexes formed at different protein-RNA input molar ratios were isolated and tested for template activity in an in vitro protein synthesizing system. Simultaneously, the number of protein molecules bound per RNA strand in such complexes was measured by the membrane (Millipore) filtration technique. Under conditions in which translation of the RNA strands were complexed with six molecules of coat protein, whereas some remained unbound. Strong inhibition of the translation of the RNA polymerase cistron was observed when each of the RNA strands present in the mixture was associated with six molecules of coat protein.  相似文献   

12.
A method is presented for the purification of gp groE, an Escherichia coli protein which is required for correct assembly of bacteriophages λ, T4, T5 and others, gp groE is a soluble protein which is found as an oligomer containing 14 subunits of molecular weight 65,000 each. The gp groE particle is cylindrical with a diameter of 125 Å and a height of 100 Å, and it has 7-fold rotational symmetry. It has a weak ATPase activity, and is identical to a protein commonly found to copurify with RNA polymerase and which was originally misidentified as RNA polymerase.  相似文献   

13.
14.
Complexes of f2 phage RNA and its A protein, or maturation protein, transfect Escherichia coli cells much better than does protein-free RNA. We used these complexes to introduce the bacteriophage f2 lysis gene into cells. The A protein-RNA complex was found to kill cells, probably by causing them to leak large macromolecules. Previously induced beta-galactosidase leaked from cells treated either with the A protein-RNA complex or with lethal but noninfectious complexes that had been treated with formaldehyde. This observation was consistent with an earlier finding that formaldehyde-treated f2 RNA stimulates the in vitro synthesis of a lysis protein. The complexes did not stimulate the rate of leakage of beta-galactosidase from a streptomycin-resistant mutant known to be lysis defective. On the other hand, the rate of leakage was increased in a double mutant resistant to both streptomycin and rifampin and which is lysed normally by f2 bacteriophage.  相似文献   

15.
A structural protein of Rauscher oncovirus of about 8,000 to 10,000 daltons (p10), encoded by the gag gene, has been purified in high yield to apparent homogeneity by a simple three-step procedure. The purified protein was highly basic, with an isoelectric point of more than 9.0, and its immunological antigenicity was chiefly group specific. A distinctive property of the protein was the binding to nucleic acids. The stoichiometry of p10 binding to Rauscher virus RNA was analyzed using both 125I-labeled p10 and 3H-labeled RNA. The protein-RNA complex, cross-linked by formaldehyde, was separated from free RNA and free protein by velocity sedimentation and density gradient centrifugation. A maximum of about 140 mol of p10 was bound per mol of 35S RNA, or about one molecule of p10 per 70 nucleotides. This protein-RNA complex banded at a density of about 1.55 g/ml. The number of nucleic acid sites bound and the affinity of p10 binding differed significantly among the other polynucleotides tested. The protein bound to both RNA and DNA with a preference for single-stranded molecules. Rauscher virus RNA and single-stranded phage fd DNA contained the highest number of binding sites. Binding to fd DNA was saturated with about 30 mol of p10 per mol of fd DNA, an average of about one p10 molecule per 180 nucleotides. The apparent binding constant was 7.3 X 10(7) M(-1). The properties of the p10 place it in a category with other nucleic acid binding proteins that achieve a greater binding density on single-stranded than on double-stranded molecules and appear to act by facilitating changes in polynucleotide conformation.  相似文献   

16.
Little is known about the assembly pathway and structure of hepatitis C virus (HCV) since insufficient quantities of purified virus are available for detailed biophysical and structural studies. Here, we show that bacterially expressed HCV core proteins can efficiently self-assemble in vitro into nucleocapsid-like particles. These particles have a regular, spherical morphology with a modal distribution of diameters of approximately 60 nm. Self-assembly of nucleocapsid-like particles requires structured RNA molecules. The 124 N-terminal residues of the core protein are sufficient for self-assembly into nucleocapsid-like particles. Inclusion of the carboxy-terminal domain of the core protein modifies the core assembly pathway such that the resultant particles have an irregular outline. However, these particles are similar in size and shape to those assembled from the 124 N-terminal residues of the core protein. These results provide novel opportunities to delineate protein-protein and protein-RNA interactions critical for HCV assembly, to study the molecular details of HCV assembly, and for performing high-throughput screening of assembly inhibitors.  相似文献   

17.
The matrix (M) protein of vesicular stomatitis virus (VSV) is a major structural component of the virion which is generally believed to bridge between the membrane envelope and the ribonucleocapsid (RNP) core. To investigate the interaction of M protein with cellular membranes in the absence of other VSV proteins, we examined its distribution by subcellular fractionation after expression in HeLa cells. Approximately 90% of M protein, expressed without other viral proteins, was soluble, whereas the remaining 10% was tightly associated with membranes. A similar distribution in VSV-infected cells has been observed previously. Conditions known to release peripherally associated membrane proteins did not detach M protein from isolated membranes. Membrane-associated M protein was soluble in the detergent Triton X-114, whereas soluble M protein was not, suggesting a chemical or conformational difference between the two forms. Membranes containing associated M protein were able to bind RNP cores, whereas membranes lacking M protein were not. We suggest that this membrane-bound M fraction constitutes a functional subset of M protein molecules required for the attachment of RNP cores to membranes during normal virus budding.  相似文献   

18.
Specific binding of the type C viral core protein p12 with purified viral RNA.   总被引:24,自引:0,他引:24  
A Sen  C J Sherr  G J Todaro 《Cell》1976,7(1):21-32
The major viral phosphoproteins (p12) of the Rauscher murine leukemia virus (R-MuLV) and the simian sarcoma-associated virus (SSAV) bind in vitro to their homologous 70S and 35S viral RNAs. Using purified 32P-labeled RNA and 125I-labeled p12 protein, complexes that are stabilized by formaldehyde-cross-linking can be readily detected after velocity gradient centrifugation. The in vitro reconstructed ribonucleoprotein complexes are seen only with p12 proteins incubated with viral RNAs isolated from the same type C viruses; no such complexes form with heterologous protein-RNA mixtures. Homologous but not heterologous p12 molecules compete with radiolabeled p12 protein for the specific viral RNA binding sites. The competition assay permits the detection of 10 ng of viral p12 protein. The major internal protein of type C viruses (p30) does not bind to viral RNA using identical assay conditions. From the specific activities of the radiolabeled components and also by equilibrium sedimentation analysis, we estimate that fewer than 15 molecules of p12 protein bind to each molecule of viral RNA. Both the specificity and stoichiometry of the p12-RNA interactions suggest that these RNA tumor virus proteins have a regulatory role in cells.  相似文献   

19.
A native structure containing the major 60-kilodalton common antigen polypeptide (designated TpN60) was isolated from Treponema pallidum subsp. pallidum (Nichols strain) through a combination of differential centrifugation and sucrose density gradient sedimentation. Gel filtration chromatography indicated that this structure is a high-molecular-weight homo-oligomer of TpN60. Antisera to TpN60 reacted with the groEL polypeptide of Escherichia coli, as determined by immunoperoxidase staining of two-dimensional electroblots. Electron microscopy of the isolated complex revealed a ringlike structure with a diameter of approximately 16 nm which was very similar in appearance to the groEL protein. Comparison of the N-terminal amino acid sequence of TpN60 with the deduced sequences of the E. coli groEL protein, related chaperonin proteins from mycobacteria and Coxiella burnetti, the hsp60 protein of Saccharomyces cerevisiae, the wheat ribulose bisphosphate carboxylase-oxygenase-subunit-binding protein (alpha subunit), and the human P1 mitochondrial protein indicated sequence identity at 8 of 22 to 10 of 22 residues (36 to 45% identity). We conclude that the oligomer of TpN60 is homologous to the groEL protein and related chaperonins found in a wide variety of procaryotes and eucaryotes and thus may represent a heat shock protein involved in protein folding and assembly.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号