首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two forms of Ca2+-dependent cysteine proteinase (calpain, EC 3.4.22.17) and their specific endogenous inhibitor (calpastatin) were partially purified from porcine retina: calpain I (low-Ca2+-requiring form) was half-maximally activated at 8 microM-Ca2+, and calpain II (high-Ca2+-requiring form) at 250 microM-Ca2+. Both calpain I and calpain II were inhibited by calpastatin. Calpain I from porcine retina was shown to be composed of 83 000- and 29 000-Mr subunits, and calpain II of 80 000- and 29 000-Mr subunits, by the use of monospecific antibodies. Calpains I and II were both found to hydrolyse microtubule-associated proteins 1 and 2 rapidly.  相似文献   

2.
Identification of both calpains I and II in nucleated chicken erythrocytes   总被引:2,自引:0,他引:2  
Chicken erythrocytes were found to contain two species of calpains which differ in elution profile from DEAE-cellulose and in Ca2+ requirement. After partial purification, one of them was half-maximally activated by 10 microM Ca2+ and the other by 180 microM Ca2+. The low- and high-Ca2+-requiring proteases cross-reacted only with the respective monospecific antibodies for mammalian calpain I and calpain II, respectively. Approximately 5 times more calpain I than calpain II is present in chicken erythrocytes. By immunoelectrophoretic blot analysis, both calpains I and II from chicken erythrocytes were proved to be heterodimers composed of 76 and 28 kDa, and 80 and 28 kDa subunits, respectively. Our present finding that the heavy subunit of calpain I is smaller than that of calpain II is noteworthy, since the opposite is known to be true of various mammalian calpains. An immunological study has revealed that the calpain I newly found in chicken erythrocytes is not derived from calpain II. Thus, the co-existence of calpains I and II in one animal species also holds in chickens, contrary to the previously advocated notion that chickens have only one type of calpain.  相似文献   

3.
As a step towards understanding the physiological function of calpain (Ca2+-activated neutral proteinase, EC 3.4.22.17) in blood platelets, and in view of some suggestions that calpain is transferred to the platelet external surface during platelet activation, the enzyme was studied with immunochemical methods in resting and thrombin-activated cells. (1) A mouse IgG1 monoclonal antibody was prepared which binds strongly only to the denatured large subunit of human calpain I, and weakly to that of human calpain II. A polyclonal antibody raised against rat calpain II was available which, apart from binding strongly to rat calpain II, binds to the large subunits of human calpain I and II about equally. (2) With these antibodies, it was found that calpain could be detected in fixed platelets in suspension only after permeabilization with 0.1% saponin, and could not be detected on the exterior surface of resting or of activated platelets, or in the supernatant media of these platelets. It was concluded that calpain is not significantly externalized during platelet activation. (3) Immunoblotting showed that conversion of the larger calpain I subunit from 80 kDa into 76-78 kDa occurred only when thrombin-activated platelets were stirred to permit aggregation, and did not occur during unstirred thrombin activation. Although an action of calpain in the 80 kDa form on possible platelet substrates such as cytoskeletal proteins cannot be excluded, calpain is certainly not present as the 76-78 kDa form, which is assumed to be its active form, until aggregation is initiated.  相似文献   

4.
Low and high Ca2+-requiring forms of Ca2+-dependent cysteine proteinase are known as calpain I and calpain II, respectively. We have obtained, for the first time, monospecific antibodies for calpain I and for calpain II. Using these antibodies and an electrophoretic blotting method, we have found that a small, but reproducible, amount of calpain I was associated with human erythrocyte membranes while the bulk of the protease was contained in the cytosol. Most of membrane-associated calpain I was extractable with 1% Triton X-100, but not with 0.1% detergent. In the presence of 0.1 mM Ca2+ and 5 mM cysteine, membrane-associated calpain I degraded the membrane protein band 4.1 preferentially and band 3 protein only slowly. The Ca2+-induced autodigestion of the membrane preparation was inhibited by leupeptin but not by a cytosolic calpain inhibitor, calpastatin, added to the incubation medium. No calpain II was detected in either erythrocyte cytosol or membranes when anti-calpain II antibody was used under the same conditions as those for the detection of calpain I.  相似文献   

5.
The desmin-specific calpain I from chicken gizzard smooth muscle is a dimer of 83 and 35 kDalton subunits. A monoclonal antibody to the large subunit did not cross-react with chicken gizzard and hamster skeletal muscle calpain II, but it did recognize hamster skeletal muscle desmin-specific calpain I and the denatured calpain II from chicken gizzard smooth muscle. These results indicate that different desmin-specific calpains have similar large subunits which differ significantly from the large subunit of calpain II in the same tissue.  相似文献   

6.
Isovalerylcarnitine, a product of the catabolism of L-leucine, is a potent activator of rat calpains isolated from erythrocytes, kidney, liver, skeletal and heart muscle. Only calpains II, but not calpains I, are activated by IVC, with the only exception of rat erythrocyte calpain I, the only species present in these cells which has a Ca2+ requirement higher than that of most calpain I isoenzymes. Activation by IVC involves a dual effect: 1) a ten fold increase in the affinity of calpain for Ca2+, and 2) an increase in the Vmax 1.3-1.6 fold above the values observed with the native enzymes at saturating [Ca2+] as well as with the autolyzed fully active calpain form at 5 microM Ca2+. The increased affinity for calcium results in an increased rate of autoproteolysis of calpain II. Activation by IVC is additive to that promoted by interaction (or association) to phospholipids vesicles. Together these results suggest that IVC may operate as a selective activator of calpain both in the cytosol and at the membrane level; in the latter case in synergism with the activation induced by association of the proteinase to the cell membrane.  相似文献   

7.
Intracellular localization of two molecular species of calpain (Ca2+-dependent cysteine proteinase) was studied by immunocyto- and histochemical methods employing antibodies strictly monospecific for the respective antigens. Apparent immunological cross-reactivity between the larger subunits of calpain I (low Ca2+-requiring form) and calpain II (high Ca2+-requiring form) was calculated to be 15-17%, and two steps of affinity chromatography were needed to obtain antibodies which can discriminate between the two proteases. Indirect immunofluorescent staining of cultured PK 15 cells revealed diffuse staining of the cytoplasm with both antibodies against calpain I and calpain II. Preincubation with Ca2+-ionophore had no effect on the staining patterns. Sections of porcine kidney were stained by the avidin-biotinylated peroxidase complex method. The proximal and distal tubules and collecting duct were stained, but the glomerulus, macula densa, and vascular vessels were not stained by either anti-calpain I or anti-calpain II antibodies.  相似文献   

8.
Two different forms of Ca2+-dependent cysteine proteinase, low-Ca2+-requiring calpain I and high-Ca2+-requiring calpain II, are known to be heterodimers, each composed of one heavy (called 80K) and one light (called 30K) subunit. The most probable identity of the 30K and the substantial difference between the 80K subunits of porcine calpains I and II were clearly demonstrated by comparing the tryptic peptide maps obtained upon running a high performance liquid chromatography which permitted parallel detection of tryptophan-containing peptides by fluorometry. Comparison of the amino acid compositions of the two 30K and 80K subunits also confirmed this conclusion. The same chromatographical analysis also revealed close structural similarity of the human calpain I 30K subunit, and even some similarity existing between the calpain I 80K subunits of human and porcine origins.  相似文献   

9.
Possible role of calpain I and calpain II in differentiating muscle   总被引:2,自引:0,他引:2  
The variable distribution of the 80-kD subunit of two calcium-activated proteases, calpain I and calpain II, has been examined in L8 and L6 myoblasts, and their non-fusing variants, fu-1 and M3A using non-cross-reacting monoclonal antibodies to both subunits. Immunofluorescence results have shown that while the 80-kD subunit of calpain I is localized in the cytoplasm of all the myoblasts, the 80-kD subunit of calpain II appears to be predominantly associated with the plasma membranes of L8 and L6 myoblasts. The distribution of the 80-kD subunit of calpain II in non-fusing myoblasts, fu-1 and M3A, is generally cytoplasmic and diffuse. Immunoblot analysis of membrane and cytosol fractions of all the myoblasts using the monoclonal antibodies described above essentially confirms the immunofluorescence findings. Because calpain II exhibits a peripheral distribution in cells which are fusion-competent, L6 and L8 myoblasts, but not in fu-1 and M3A myoblasts, we suggest that calpain II may play a role in the Ca2+-mediated fusion events of differentiating (prefusion) myoblasts.  相似文献   

10.
Two forms of calpastatin, differing in their specificity for the homologous calpain isozymes I and II, have been separated from rat skeletal muscle extracts and purified to homogeneity. Calpastatin I, the first form to elute in chromatography on DE32, is more effective against calpain I, while calpastatin II is more effective as an inhibitor of calpain II. Based on their molecular mass (approximately 105 kDa) both calpastatin forms belong to the high molecular mass class found in muscles of other animal species (Murachi, T., 1989, Biochem. Int. 18, 263-294). For calpain I, which is active with low (mu-M) concentrations of Ca2+, maximum inhibition with either calpastatin form was observed over a wide range of Ca2+ concentrations. With calpain II, which requires high (mM) concentrations of Ca2+ for activity, maximum inhibition required Ca2+ concentrations above 1 mM. Both calpastatin forms were found to be highly sensitive to degradation by calpain II, but almost completely resistant to degradation by calpain I. Degradation of calpastatin by calpain II is competitively inhibited by the addition of a calpain substrate. Isovaleryl carnitine (IVC), an intermediate product of L-leucine catabolism, previously demonstrated to be a potent and specific activator of rat skeletal muscle calpain II (Pontremoli, S., Melloni, E., Viotti, P. L., Michetti, M., Di Lisa, F., and Siliprandi, N., 1990. Biochem. Biophys. Res. Commun. 167, 373-380) greatly enhances the rate of degradation of calpastatins by calpain II. IVC, which decreases the Ca2+ requirement for maximal calpain II activity, also decreases the concentration of Ca2+ required for digestion of the inhibitor. For calpain II, regulation by either calpastatins may occur only in the presence of high [Ca2+].  相似文献   

11.
Evidence is presented of polymorphonuclear (PMN) cells derived from pig peripheral blood containing two molecular species of Ca2+-dependent cysteine endopeptidases, calpains I and II, which require low and high concentrations of Ca2+, respectively, for activation. Calpains I and II, purified from PMN homogenates, are heterodimers consisting of 83 plus 29 kDa and 80 plus 29 kDa subunits, respectively, which can be identified by using subunit-specific antibodies and which are identical with those of calpain species in other pig tissues and cells hitherto reported. However, a 70-kDa calpain can also be detected when pig PMN cells are disrupted by the nitrogen cavitation method under rather mild conditions, i.e., with minimal destruction of the lysosomes. Lines of evidence are presented showing that the 70-kDa species is devoid of the light subunit, that it is artificially derived from naturally occurring heterodimeric calpain I, and that the PMN cells before disruption contained no such monomeric form. The isolated 70-kDa calpain I, or monomeric artifact, requires only 1 microM Ca2+ for half-maximal activation, and it is less pH stable and much less heat stable than the parent heterodimeric calpain I. A possible mechanism for the production of this artifact is discussed.  相似文献   

12.
Comparison of calpain I and calpain II from carp muscle   总被引:2,自引:0,他引:2  
1. The content of calpain II is 3.4 times more than that of calpain I when estimated by the elution profiles from a column of DEAE-cellulose. 2. Calpain I required 1 mM Ca2+ and calpain II required 5 mM Ca2+ to show the full activities. These data demonstrated that Ca2+-sensitivities of both calpains were lower than those of mammalian calpains, respectively. 3. The optimum caseinolytic activity was pH 7.2 for calpain I and pH 7.5 for calpain II. 4. The molecular weight of calpain I was estimated to be 110 k and that of calpain II to be 120 k by gel filtration. 5. Calpain I was much more heat-stable than calpain II around 50-60 degrees C. 6. Both calpains were sensitive to calpastatin, an endogenous inhibitor for calpain.  相似文献   

13.
Purified calpain I and calpain II from porcine erythrocytes and kidney were cross-linked with a bifunctional reagent, disuccinimidyl suberate, and the cross-linked products were analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The major product had a molecular mass of 105 kDa, while the starting materials were resolved into 80-kDa and 30-kDa subunits. The cross-linking in the presence of 2 mM Ca2+ yielded several higher-molecular-weight species. The cross-linked products were shown to contain both the 80-kDa and 30-kDa proteins by means of immunoblotting with antibodies monospecific for the respective subunits, suggesting that the original calpain molecule existed in solution as an 80-kDa plus 30-kDa heterodimer and that Ca2+ induced closer association of these heterodimeric molecules.  相似文献   

14.
Identification of an endogenous activator of calpain in rat skeletal muscle   总被引:3,自引:0,他引:3  
An additional component of the regulatory system of rat skeletal muscle calpain has been identified. It exerts a potent activating effect on calpain activity and is a heat stable small molecular weight protein. Of the two calpain isozymes present in muscle, the activator is specific for calpain II, being uneffective with calpain I. It promotes activation of the proteinase by reducing 50 fold, from 1 mM to of 20 microM, the requirement of Ca2+ for maximum catalytic activity of the proteinase. However in the presence of the activator calpain II expresses a consistent fraction of the maximum activity even at significantly lower concentrations of Ca2+ (below 5 microM Ca2+). The activator effect follows kinetics that are consistent with the presence of specific binding sites on the calpain molecules. The activator not only removes in a dose dependent fashion the inhibition of calpain by calpastatin, but also prevents inhibition of the proteinase upon the addition of calpastatin. Competition experiments revealed that the proteinase contains distinct sites for the activator and the inhibitor, and that both ligands can bind to calpain with the formation of an almost fully active ternary complex.  相似文献   

15.
DNA-dependent ATPases have been purified from logarithmically growing KB cells by chromatography on single-stranded DNA cellulose and phosphocellulose. Phosphocellulose resolved the DNA-dependent ATPases into three activities designated ATPase I, II and III, respectively. From gel filtration and sedimentation analysis ATPases II and III were found to be very similar, both with calculated molecular weights of 78,000. Due to the extreme lability these enzymes were not purified further. The molecular weight of ATPase I determined by gel filtration and sedimentation analysis was calculated to be 140,000. ATPase I was further purified by gradient elution on ATP-agarose, revealing two peaks of activity (IA and IB), and by sucrose gradient sedimentation. Analysis of the fractions from the sucrose gradient by sodium dodecylsulphate gel electrophoresis revealed only one broad polypeptide band co-sedimenting with both ATPase IA and ATPase IB. This band was composed of four closely spaced polypeptides with apparent molecular weights of 66,000, 68,000, 70,000 and 71,000. Comparison of the native molecule weight (140,000) with these results suggests that ATPase I is a dimer. ATPase IA and IB were indistinguishable in their structural and enzymatic properties and presumably represent the same enzyme. The purified enzyme has an apparent Km of 0.5 mM for ATP producing ADP + Pi. A maximum activity of 2,100 molecules of ATP hydrolyzed per enzyme molecular per minute was found. Hydrolysis of ATP requires the presence of divalent cations (Mg2+ greater than Ca2+ greater than Mn2+ greater than Co2+). A broad pH optimum (pH 6--8) was observed. The enzyme uses ATP or dATP preferentially as a substrate, while other deoxyribonucleoside or ribonucleoside triphosphates were inactive. ATPase I prefers denatured DNA as cofactor. The activity with native DNA is 40% of that with denatured DNA.  相似文献   

16.
The two isofunctional enzymes aspartokinases-homoserine dehydrogenases I and II from Escherichia coli K 12 are compared using immunochemical techniques. The antibodies raised against one of these two proteins when in its native state can only recognize the homologous antigen, whether it is native or denatured. Contrarily, the antibodies raised against one of these two proteins when in its denatured state can recognize both the homologous and heterologous denatured antigens. The existence of this cross-reaction only between the two denatured aspartokinases-homoserine dehydrogenases suggests that these two enzymes have some similarity since such a reaction is not detected with several other denatured proteins. The regions involved in this similarity are buried inside the native proteins, and become exposed only upon denaturation. The same results, the existence of a cross-reaction between denatured species and none between the native ones, is obtained with proteolytic fragments derived from these two proteins and endowed with homoserine dehydrogenase activity. This resemblance between the two aspartokinases-homoserine dehydrogenases suggests that these proteins derive from a common ancestor. It is also proposed that such a cross-reaction between two denatured proteins is evidence for an homology between their amino acid sequences, and that the use of denatured proteins as both immunogens and antigens could be useful in detecting sequence homologies.  相似文献   

17.
All mammalian cells contain a calcium-dependent proteolytic system, composed by a proteinase, calpain, and an inhibitor, calpastatin. In some cell types an activator protein has also been identified. Moreover, two calpain isoforms, distinguishable on the basis of a different calcium requirement, can be present in a single cell. Both calpain forms are heterodimers composed of a heavy subunit (80 kDa) that contains the catalytic site and a smaller (regulatory?) subunit (30 kDa). Calpain I expresses full activity at 10-50 microM Ca2+, whereas calpain II requires calcium concentrations in the millimolar range. The removal by autoproteolysis of a fragment from the N-terminus of both calpain subunits generates a proteinase form that can express catalytic activity at concentrations of Ca2+ close to the physiological range. This process is significantly accelerated in the presence of cell membranes or phospholipid vesicles. Calpastatin, the specific inhibitor of calpain, prevents activation and the expression of catalytic activity of calpain. It is in itself a substrate of the proteinase and undergoes a degradation process which correlates with the general mechanism of regulation of the intracellular proteolytic system. The natural calpain activator specifically acts on calpain II isoform, by reducing the Ca2+ required for the autoproteolytic activation process. Based on the general properties of the calpain-calpastatin system and on the substrate specificity, its role in the expression of specific cell functions can be postulated.  相似文献   

18.
Two molecular species of Ca2+-dependent neutral protease (calpains I and II) and its endogenous inhibitor (calpastatin) in cytosol fraction of bovine adrenal medulla were separated by hydrophobic interaction chromatography. Both calpains I and II, having low and high Ca2+ requirements for casein hydrolysis, respectively, were found to activate tyrosine hydroxylase(TH) that had been purified from cytosol fraction of bovine adrenal medulla. This activation of TH by calpain was inhibited by leupeptin and the endogenous inhibitor, calpastatin. The activated TH with calpain II, characterized by high-performance gel permeation chromatography, had a reduced Mr of 120,000 from the Mr of 230,000 of native enzyme.  相似文献   

19.
Both low Ca2+- and high Ca2+-requiring forms of Ca2+-activated protease (calpains I and II) were found to bind to phenyl-Sepharose in a calcium-dependent manner, suggesting that both enzymes expose a hydrophobic surface region in the presence of Ca2+. Inclusion of leupeptin in column buffers prevented the loss of activity during hydrophobic-interaction and substrate-affinity chromatography. Under these conditions calpain II (high calcium-requiring form) was rapidly purified from bovine brain and rabbit skeletal muscle using successive phenyl-Sepharose and casein-Sepharose columns.  相似文献   

20.
We report a study of the substratum and medium requirements for attachment and neurite outgrowth by cells of the pheochromocytoma-derived PC12 line. In attachment medium containing both Ca2+ and Mg2+, more than 50% of cells attached within 1 hr to petri dishes coated with native collagen Types I/III or II, native or denatured collagen Type IV, laminin, wheat germ agglutinin (WGA), or poly-L-lysine; attachment to dishes coated with nerve growth factor (NGF) was only about 20% and attachment to uncoated dishes or to dishes coated with fibronectin or gelatin was almost nil. Neither prior culturing in the presence of NGF nor addition of NGF to the attachment medium significantly affected the extent of attachment to collagen or laminin. With Ca2+ (1 mM) as the sole divalent cation, cells attached normally to WGA, polylysine, and NGF, but failed to attach to collagen or laminin. With Mg2+ (1 mM) as the only divalent cation, attachment to all substrata was about the same as in medium with both Ca2+ and Mg2+. Like the ionic requirements, the kinetics of attachment, insensitivity to protease treatment of the cells, and inhibition by low temperature and sodium azide were similar for PC12 attachment to collagen and laminin, suggesting that a common molecular mechanism may underlie attachment to these substrata. The only significant difference observed was that addition of WGA (30 micrograms/ml) to the attachment medium inhibited attachment to collagen but promoted attachment to laminin. Finally, PC12 cells extended neurites on laminin, on native collagens I/III, II, and IV, and on denatured collagen IV; they did not extend neurites on denatured collagens I/III or II, NGF, or WGA. Neurite outgrowth on collagen and laminin occurred with Mg2+ as the sole divalent cation. These results suggest that the same Mg2+-dependent adhesion mechanism operates at the cell body and at the growth cone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号