首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine synthesis. Its activity is known to be controlled acutely (minutes) by phosphorylation and chronically (days) by protein synthesis. Using bovine adrenal chromaffin cells we found that nicotine, acting via nicotinic receptors, sustained the phosphorylation of TH at Ser40 for up to 48 h. Nicotine also induced sustained activation of TH, which for the first 24 h was completely independent of TH protein synthesis, and the phosphorylation of TH at Ser31. Imipramine did not inhibit the acute phosphorylation of TH at Ser40 or TH activation induced by nicotine, but did inhibit the sustained responses to nicotine seen at 24 h. The protein kinase(s) responsible for TH phosphorylation at Ser40 switched from being protein kinase C (PKC) independent in the acute phase to PKC dependent in the sustained phase. Sustained phosphorylation and activation of TH were also observed with histamine and angiotensin II. Sustained phosphorylation of TH at Ser40 provides a novel mechanism for increasing TH activity and this leads to increased catecholamine synthesis. Sustained phosphorylation of TH may be a selective target for drugs or pathology in neurons that contain TH and synthesize dopamine, noradrenaline or adrenaline.  相似文献   

2.
We have previously shown that the phosphorylation of Ser19 in tyrosine hydroxylase can increase the rate of phosphorylation of Ser40 in tyrosine hydroxylase threefold in vitro. In this report we investigated the role of Ser19 on Ser40 phosphorylation in intact cells. Treatment of bovine chromaffin cells with anisomycin produced a twofold increase in Ser19 phosphorylation with no increase in Ser31 phosphorylation and only a small increase in Ser40 phosphorylation. Treatment of bovine chromaffin cells with forskolin produced a fourfold increase in Ser40 phosphorylation but no significant increase in either Ser19 or Ser31 phosphorylation. When chromaffin cells were first treated with anisomycin, the level of Ser40 phosphorylation after treatment by forskolin was 76% greater than the level of Ser40 phosphorylation in cells treated with forskolin alone. This potentiation of Ser40 phosphorylation by anisomycin could be completely blocked by the p38 MAP (mitogen-activated protein) kinase inhibitor SB 203580. The potentiation of Ser40 phosphorylation by anisomycin was not due to an increase in Ser40 kinase activity. Anisomycin treatment of chromaffin cells potentiated the forskolin-induced increase in tyrosine hydroxylase activity by 50%. This potentiation of activity was also blocked by SB 203580. These data provide the first evidence that the phosphorylation of Ser19 can potentiate the phosphorylation of Ser40 and subsequent activation of tyrosine hydroxylase in intact cells.  相似文献   

3.
Tyrosine hydroxylase is the rate-limiting enzyme in the biosynthesis of the catecholamines. It has been reported that retinol (vitamin A) modulates tyrosine hydroxylase activity by increasing its expression through the activation of the nuclear retinoid receptors. In this study, we observed that retinol also leads to an acute activation of tyrosine hydroxylase in bovine adrenal chromaffin cells and this was shown to occur via two distinct non-genomic mechanisms. In the first mechanism, retinol induced an influx in extracellular calcium, activation of protein kinase C and serine40 phosphorylation, leading to tyrosine hydroxylase activation within 15 min. This effect then declined over time. The retinol-induced rise in intracellular calcium then led to a second slower mechanism; this involved an increase in reactive oxygen species, activation of extracellular signal-regulated kinase 1/2 and serine31 phosphorylation and the maintenance of tyrosine hydroxylase activation for up to 2 h. No effects were observed with retinoic acid. These results show that retinol activates tyrosine hydroxylase via two sequential non-genomic mechanisms, which have not previously been characterized. These mechanisms are likely to operate in vivo to facilitate the stress response, especially when vitamin supplements are taken or when retinol is used as a therapeutic agent.  相似文献   

4.
Urocotins (Ucns) are newly discovered members of the corticotropin-releasing factor (CRF) neuropeptide family. Ucn 2 is expressed in the adrenal medulla, and its receptor, CRF2 receptor, is also expressed in the adrenal gland. To predict the physiological significance of Ucn 2 expression in the adrenal medulla, we examined the effects of Ucn 2 on catecholamine secretion and intracellular signaling using PC12 cells, a rat pheochromocytoma cell line. PC12 cells were found to express CRF2 receptor, but not CRF1 receptor. Treatment with Ucn 2 increased noradrenaline secretion and induced phosphorylation of PKA and Erk1/2. Tyrosine hydroxylase (TH), a rate-limiting enzyme for catecholamine synthesis, was also phosphorylated by Ucn 2. Pretreatment with a PKA inhibitor blocked Ucn 2-induced NA secretion, and Erk1/2 and TH phosphorylation. Pretreatment with a MEK inhibitor did not block Ucn 2-induced noradrenaline secretion or PKA phosphorylation, although TH phosphorylation was blocked. Thus, Ucn 2 induces noradrenaline secretion and TH phosphorylation through the PKA pathway and the PKA-Erk1/2 pathway, respectively. These results suggest Ucn 2 in the adrenal gland may be involved in the regulation of catecholamine release and synthesis.  相似文献   

5.
Intact bovine adrenal medullary chromaffin cells were preincubated with32PO4, and the multiplesite phosphorylation of tyrosine hydroxylase (TH) was studied. Up to eight32P-labeled peptides were produced by tryptic hydrolysis of TH; however, all of the tryptic phosphopeptides were derived from four phosphorylation sites—Ser8, Ser19, Ser31 and Ser40. In situ regulation of32P incorporation into the latter three sites was demonstrated with a diverse set of pharmacological agents.32P incorporation into Ser19 was preferentially increased by brief exposures to depolarizing secretagogues. Longer treatments also increased Ser31 and Ser40 phosphorylation. Nicotine, muscarine and vasoactive intestinal polypeptide—reflecting cholinergic and non-cholinergic components of sympatho-adrenal transmission—each produced different patterns of multiple-site phosphorylation of TH. Nicotine, bradykinin and histamine increased32P incorporation at each of the three sites whereas muscarine, angiotensin II, endothelin III, prostaglandin E1, GABA and ATP selectively increased Ser31 phosphorylation. Nerve growth factor did not influence TH phosphorylation in chromaffin cells from adult adrenal glands but selectively increased Ser31 phosphorylation in chromaffin cells isolated from calf adrenal glands.32P incorporation into Ser40 was selectively increased by forskolin and other cAMP-acting agents whereas vasoactive intestinal polypeptide increased Ser31 and Ser40 phosphorylation. Thus, the phosphorylation of TH in bovine chromaffin cells appears to be regulated at three sites by three separate intracellular signaling pathways—Ser19 via Ca2+/calmodulin-dependent protein kinase II; Ser31 via ERK (MAP2 kinases); and Ser40 via cAMP-dependent protein kinase. These signaling pathways, as well as the extracellular signals that were effective in stimulating them, are similar to those previously described for TH in rat pheochromocytoma cells. However, several of the pharmacological agents produced different patterns of multiple-site TH phosphorylation in the bovine chromaffin cells. These differences between tissues could be accounted for by differences in the coupling/access between the extracellular signal transduction systems and the intracellular signaling pathways as opposed to differences in the intracellular signaling pathwaysper se.Special issue dedicated to Dr. Paul Greengard  相似文献   

6.
Tyrosine hydroxylase phosphorylation: regulation and consequences   总被引:7,自引:0,他引:7  
The rate-limiting enzyme in catecholamine synthesis is tyrosine hydroxylase. It is phosphorylated at serine (Ser) residues Ser8, Ser19, Ser31 and Ser40 in vitro, in situ and in vivo. A range of protein kinases and protein phosphatases are able to phosphorylate or dephosphorylate these sites in vitro. Some of these enzymes are able to regulate tyrosine hydroxylase phosphorylation in situ and in vivo but the identity of the kinases and phosphatases is incomplete, especially for physiologically relevant stimuli. The stoichiometry of tyrosine hydroxylase phosphorylation in situ and in vivo is low. The phosphorylation of tyrosine hydroxylase at Ser40 increases the enzyme's activity in vitro, in situ and in vivo. Phosphorylation at Ser31 also increases the activity but to a much lesser extent than for Ser40 phosphorylation. The phosphorylation of tyrosine hydroxylase at Ser19 or Ser8 has no direct effect on tyrosine hydroxylase activity. Hierarchical phosphorylation of tyrosine hydroxylase occurs both in vitro and in situ, whereby the phosphorylation at Ser19 increases the rate of Ser40 phosphorylation leading to an increase in enzyme activity. Hierarchical phosphorylation depends on the state of the substrate providing a novel form of control of tyrosine hydroxylase activation.  相似文献   

7.
8.
Tetrahydrobiopterin (BH4), the obligatory cofactor of the aromatic amino acid hydroxylases, decreased the in situ32P-phosphorylation of tyrosine hydroxylase (TH) in rat striatal synaptosomes. Incubation of pre-32P-labeled synaptosomes with BH4 in the presence of a permeant analogue of cAMP decreased the cAMP-stimulated level of32P label incorporation into TH by about 50%, as determined by immunoprecipitation and autoradiography of SDS-polyacrylamide gels. The extent of inhibition mirrored changes in intrasynaptosomal BH4 levels and varied both as a function of BH4 concentration and length of incubation. A similar decrease in the amount of TH32P-labeling was observed with the precursor of BH4, sepiapterin. This effect, in turn, was reversed by the inhibitor of sepiapterin reductase, N-acetyl-serotonin. Finally, exposure of pre-32P-labeled synaptosomes to the inhibitor of protein phosphatase 2A, okadaic acid, blocked the response to BH4. Collectively, the data suggest that BH4 stimulates the dephosphorylation of TH in situ and thus may play a dual role both as a cofactor for catalysis and a regulator of hydroxylase activity.Special issue dedicated to Dr. Bernard W. Agranoff.  相似文献   

9.
Muscarinic acetylcholine receptors (mAChRs) activate many downstream signaling pathways, some of which can lead to mitogen-activated protein kinase (MAPK) phosphorylation and activation. MAPKs play roles in regulating cell growth, differentiation, and synaptic plasticity. Here, the activation of MAPK was examined in PC12 cells endogenously expressing mAChRs. Western blot analysis using a phosphospecific MAPK antibody revealed a dose-dependent and atropine-sensitive increase in MAPK phosphorylation in cells stimulated with carbachol (CCh). The maximal response occurred after 5 min and was rapidly reduced to baseline. To investigate the receptors responsible for CCh activation of MAPK in PC12 cells, the mAChR subtypes present were determined using RT-PCR and immunoprecipitation. RT-PCR was used to amplify fragments of the appropriate sizes for m1, m4, and m5, and the identities of the bands were confirmed with restriction digests. Immunoprecipitation using subtype-specific antibodies showed that approximately 95% of the expressed receptors were m4, whereas the remaining approximately 5% were m1 and m5. A highly specific m1 toxin completely blocked MAPK phosphorylation in response to CCh stimulation. The mAChR-induced MAPK activation was abolished by protein kinase C down-regulation and partially inhibited by pertussis toxin. Although m1 represents a small proportion of the total mAChR population, pharmacological evidence suggests that m1 is responsible for MAPK activation in PC12 cells.  相似文献   

10.
Stress activates selected neuronal systems in the brain and this leads to activation of a range of effector systems. Our aim was to investigate some of the relationships between these systems under basal conditions and over a 40‐min period in response to footshock stress. Specifically, we investigated catecholaminergic neurons in the locus coeruleus (LC), ventral tegmental area and medial prefrontal cortex (mPFC) in the brain, by measuring tyrosine hydroxylase (TH) protein, TH phosphorylation and TH activation. We also measured the effector responses by measuring plasma adrenocorticotrophic hormone, corticosterone, glucose and body temperature as well as activation of adrenal medulla protein kinases, TH protein, TH phosphorylation and TH activation. The LC, ventral tegmental area and adrenal medulla all had higher basal levels of Ser19 phosphorylation and lower basal levels of Ser31 phosphorylation than the mPFC, presumably because of their cell body versus nerve terminal location, while the adrenal medulla had the highest basal levels of Ser40 phosphorylation. Ser31 phosphorylation was increased in the LC at 20 and 40 min and in the mPFC at 40 min; TH activity was increased at 40 min in both tissues. There were significant increases in body temperature between 10 and 40 min, as well as increases in plasma adrenocorticotropic hormone at 20 min and corticosterone and glucose at 20 and 40 min. The adrenal medulla extracellular signal‐regulated kinase 2 was increased between 10 and 40 min and Ser31 phosphorylation was increased at 20 min and 40 min. Protein kinase A and Ser40 phosphorylation were increased only at 40 min. TH activity was increased between 20 and 40 min. TH protein and Ser19 phosphorylation levels were not altered in any of the brain regions or adrenal medulla over the first 40 min. These findings indicate that acute footshock stress leads to activation of TH in the LC, pre‐synaptic terminals in the mPFC and adrenal medullary chromaffin cells, as well as changes in activity of the hypothalamic‐pituitary‐adrenal axis.

  相似文献   


11.
12.
Brassinosteroid-induced phosphorylation of tyrosine residues in proteins was studied. Proteins of crude extract of pea leaves were analyzed by one- and two-dimensional electrophoresis followed by Western blotting with monoclonal antibodies PY20 to phosphotyrosine proteins. One- and two-dimensional electrophoresis revealed 7 and 13 tyrosine-phosphorylated proteins, respectively. Brassinolide increased the phosphorylation level of most of these proteins. With inhibitors of tyrosine protein phosphatases, such as phenylarsine oxide and orthovanadate, the level of tyrosine phosphorylation of these proteins increased.  相似文献   

13.
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in the synthesis of catecholamines. It is dephosphorylated by protein phosphatase (PP) 2A and PP2C. In this study we used a fixed amount of bacterially expressed rat TH (5 microM), phosphorylated only at serine 40 (pSer40TH), to determine the PP activities against this site that are present in extracts from the bovine adrenal cortex, adrenal medulla, adrenal chromaffin cells and rat striatum. We found that PP2C was the main TH phosphatase activity in extracts from the adrenal medulla and adrenal chromaffin cells. In adrenal cortex extracts PP2C and PP2A activities toward pSer40TH did not differ significantly. PP2A was the main TH phosphatase activity in extracts from rat striatum. Kinetic studies with extracts from adrenal chromaffin cells showed that when higher concentrations of pSer40TH (> 5 microM) were used the activity of PP2C increased more than the activity of PP2A. PP2C was maximally activated by 1.25 mM Mn2+ and by 5 mM Mg2+ but was inhibited by calcium. Our data suggest a more important role for PP2C than was previously suggested in the dephosphorylation of serine 40 on TH.  相似文献   

14.
15.
Tyrosine hydroxylase (TyrH), the catalyst for the key regulatory step in catecholamine biosynthesis, is phosphorylated by cAMP-dependent protein kinase A (PKA) on a serine residue in a regulatory domain. In the case of the rat enzyme, phosphorylation of Ser40 by PKA is critical in regulating the enzyme activity; the effect of phosphorylation is to relieve the enzyme from inhibition by dopamine and dihydroxyphenylalanine (DOPA). There are four isoforms of human tyrosine hydroxylase (hTyrH), differing in the size of an insertion after Met30. The effects of phosphorylation by PKA on the binding of DOPA and dopamine have now been determined for all four human isoforms. There is an increase of about two-fold in the Kd value for DOPA for isoform 1 upon phosphorylation, from 4.4 to 7.4 microM; this effect decreases with the larger isoforms such that there is no effect of phosphorylation on the Kd value for isoform 4. Dopamine binds more much tightly, with Kd values less than 3 nM for all four unphosphorylated isoforms. Phosphorylation decreases the affinity for dopamine at least two orders of magnitude, resulting in Kd values of about 0.1 microM for the phosphorylated human enzymes, due primarily to increases in the rate constant for dissociation of dopamine. Dopamine binds about two-fold less tightly to the phosphorylated isoform 1 than to the other three isoforms. The results extend the regulatory model developed for the rat enzyme, in which the activity is regulated by the opposing effects of catecholamine binding and phosphorylation by PKA. The small effects on the relatively high Kd values for DOPA suggest that DOPA levels do not regulate the activity of hTyrH.  相似文献   

16.
17.
DOPA synthesis from phenylalanine was studied in PC12 cells incubated with m-hydroxybenzylhydrazine, to inhibit aromatic L-amino acid decarboxylase. DOPA synthesis rose with increasing concentrations of either phenylalanine or tyrosine; maximal rates (~55 pmol/min/mg protein for tyrosine; ~40 pmol/min/mg protein for phenylalanine) occurred at a medium concentration of ~10 M for either amino acid. The Km for either amino acid was about 1 M (medium concentration). At tyrosine concentrations above 30 M, DOPA synthesis declined; inhibition was observed at higher concentrations for phenylalanine (300 M). These effects were most notable in the presence of 56 mM potassium. Measurements of intracellular phenylalanine and tyrosine suggested the Km for either amino acid is 20–30 M; maximal synthesis occurred at 120–140 M. In the presence of both phenylalanine and tyrosine, DOPA synthesis was inhibited by phenylalanine only at a high medium concentration (1000 M), regardless of medium tyrosine concentration. The inhibition of DOPA synthesis by high medium tyrosine concentrations was antagonized by high medium phenylalanine concentrations (100, 1000 M). Together, the findings indicate that for PC12 cells, phenylalanine can be a significant substrate for tyrosine hydroxylase, is a relatively weak inhibitor of the enzyme, and at high concentrations can antagonize substrate inhibition by tyrosine.  相似文献   

18.
Changes in protein tyrosine phosphorylation are an essential aspect of egg activation after fertilization. Such changes result from the net contributions of both tyrosine kinases and phosphatases (PTP). This study was conducted to determine what role(s) PTP may have in egg activation. We identified four novel PTP in Chaetopterus pergamentaceus oocytes, cpPTPNT6, cpPTPNT7, cpPTPR2B, and cpPTPR2A, that have significant homology to, respectively, human PTPsigma, -rho, -D2 and -BAS. The first two are cytosolic and the latter two are transmembrane. Several PTP inhibitors were tested to see if they would affect Chaetopterus pergamentaceus fertilization. Eggs treated with beta-bromo-4-hydroxyacetophenone (PTP inhibitor 1) exhibited microvillar elongation, which is a sign of cortical changes resulting from activation. Those treated with Na3VO4 underwent full parthenogenetic activation, including polar body formation and pseudocleavage and did so independently of extracellular Ca2+, which is required for the Ca2+ oscillations that initiate development after fertilization. Fluorescence microscopy identified phosphotyrosine-containing proteins in the cortex and around the nucleus of vanadate-activated eggs, whereas in fertilized eggs they were concentrated only in the cortex. Immunoblots of vanadate-activated and fertilized eggs showed tyrosine hyperphosphorylation of approximately 140 kDa protein. These results suggest that PTP most likely maintain the egg in an inactive state by dephosphorylation of proteins independent of the Ca2+ oscillations in the activation process.  相似文献   

19.
PC12h-R cell, a subclone of PC12 cells, exhibited a neuron-like phenotype, including neurite outgrowth and increased acetylcholinesterase activity, in response to epidermal growth factor (EGF) as well as nerve growth factor (NGF). We examined the mechanism by which EGF induced the neuronal differentiation in PC12h-R cells. The EGF-induced neuronal differentiation of PC12h-R cells was not blocked by K252a, whereas that induced by NGF was. EGF induced sustained tyrosine phosphorylation of the EGF receptor in PC12h-R cells, but not in the parent PC12h cells, which do not show neuronal differentiation in response to EGF. In addition, the rate of EGF-induced down-regulation of the EGF receptor in PC12h-R cells was decreased compared with that in PC12h cells. Furthermore, we found that the duration of EGF-induced tyrosine phosphorylation of the EGF receptor in PC12h-R cells was similar to that of NGF-induced tyrosine phosphorylation of p140 trkA in PC12h cells. The EGF-induced phosphorylation of the EGF receptor in PC12h cells was less sustained than that of p140 trkA by NGF in PC12h cells. These findings suggested that the EGF-induced neuronal differentiation of PC12h-R cells is due to the sustained activation of the EGF receptor, resulting from the decreased down-regulation of the EGF receptor and that the duration of the receptor tyrosine kinase activity determines the cellular responses of PC12 cells. We concluded that sustained activation of the receptor tyrosine kinase induces neuronal differentiation, although transient activation promotes proliferation of PC12 cells. Special issue dedicated to Dr. Hans Thoenen.  相似文献   

20.
Exposure of A431 cells to a rapid temperature increase from 37° to 46°C could induce an increased expression (∼200% of control) and tyrosine phosphorylation/activation (∼300% of control) of protein kinase FA/glycogen synthase kinase-3α (kinase FA/GSK-3α) in a time-dependent manner, as demonstrated by an anti-kinase FA/GSK-3α immunoprecipitate kinase assay and by immunoblotting analysis with anti-kinase FA/GSK-3α and anti-phosphotyrosine antibodies. The heat induction on the increased expression of kinase FA/GSK-3α could be blocked by actinomycin D but not by genistein. In contrast, the heat induction on tyrosine phosphorylation/activation of kinase FA/GSK-3α could be blocked by genistein or protein tyrosine phosphatase, indicating that heat stress induces a dual control mechanism, namely, protein expression and subsequent tyrosine phosphorylation to cause cellular activation of kinase FA/GSK-3α. Taken together, the results provide initial evidence that kinase FA/GSK-3α represents a newly described heat stress–inducible protein subjected to tyrosine phosphorylation/activation, representing a new mode of signal transduction for the regulation of this human carcinoma dedifferentiation modulator and a new mode of heat induction on cascade activation of a protein kinase. J. Cell. Biochem. 66:16–26, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号