首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ryanodine receptor has been purified from junctional terminal cisternae of fast skeletal muscle sarcoplasmic reticulum (SR). The ryanodine receptor was solubilized with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) and stabilized by addition of phospholipids. The solubilized receptor showed the same [3H]ryanodine binding properties as the original SR vesicles in terms of affinity, Ca2+ dependence, and salt dependence. Purification of the ryanodine receptor was performed by sequential column chromatography on heparin-agarose and hydroxylapatite in the presence of CHAPS. The purified receptor bound 393 +/- 65 pmol of ryanodine/mg of protein (mean +/- S.E., n = 5). The purified receptor showed three bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Mr of 360,000, 330,000, and 175,000. Densitometry indicates that these are present in the ratio of 2/1/1, suggesting a monomer Mr of 1.225 X 10(6) and supported by gel exclusion chromatography in CHAPS. Electron microscopy of the purified preparation showed the square shape of 210 A characteristic of and comparable in size and shape to the feet structures of junctional terminal cisternae of SR, indicating that ryanodine binds directly to the feet structures. From the ryanodine binding data, the stoichiometry between ryanodine binding sites to the number of feet structures is estimated to be about 2. Since the ryanodine receptor is coupled to Ca2+ gating, the present finding suggests that the ryanodine receptor and Ca2+ release channel represent a functional unit, the structural unit being the foot structure which, in situ, is junctionally associated with the transverse tubules. It is across this triad junction that the signal for Ca2+ release is expressed. Thus, the foot structure appears to directly respond to the signal from transverse tubules, causing the release of Ca2+ from the junctional face membrane of the terminal cisternae of SR.  相似文献   

2.
Longitudinal tubules and junctional sarcoplasmic reticulum (SR) were prepared from heart muscle microsomes by Ca2+-phosphate loading followed by sucrose density gradient centrifugation. The longitudinal SR had a high Ca2+ loading rate (0.93 +/- 0.08 mumol.mg-1.min) which was unchanged by addition of ruthenium red. Junctional SR had a low Ca2+ loading rate (0.16 +/- 0.02 mumol.mg-1.min) which was enhanced about 5-fold by ruthenium red. Junctional SR had feet structures observed by electron microscopy and a high molecular weight protein with Mr of 340,000, whereas longitudinal SR was essentially devoid of both. Thus, these subfractions have similar characteristics to longitudinal and junctional terminal cisternae of SR from fast twitch skeletal muscle. Ryanodine binding was localized to junctional cardiac SR as determined by [3H]ryanodine binding. Scatchard analysis of the binding data showed two types of binding (high affinity, Kd approximately 7.9 nM; low affinity, Kd approximately 1 microM), contrasting with skeletal junctional terminal cisternae where only one site with Kd of approximately 50 nM was observed. The ruthenium red enhancement of Ca2+ loading rate in junctional cardiac SR was blocked by pretreatment with low concentrations of ryanodine as reported for junctional terminal cisternae of skeletal muscle SR. The Ca2+ loading rate of junctional cardiac SR was enhanced by preincubation with high concentrations of ryanodine. The apparent inhibition constant (Ki approximately 7 nM) and stimulation constant (Km approximately 1.1 microM) for ryanodine on junctional SR corresponded to the Kd for high affinity binding (Kd approximately 7.9 nM) and low affinity binding (Kd approximately 1.1 microM), respectively. These results suggest that high affinity ryanodine binding locks the Ca2+ release channels in the open state and that low affinity binding closes the Ca2+ release channels of the junctional cardiac SR. The characteristics of the Ca2+ release channels of junctional cardiac SR appear to be similar to that of skeletal muscle SR, but the Ca2+ release channels of cardiac SR are more sensitive to ryanodine.  相似文献   

3.
The total number of high-affinity ryanodine receptor (RyR) binding sites present in skeletal and cardiac muscle and in brain tissue of the rabbit was determined by [3H]ryanodine binding to subfractions obtained by differential centrifugation of homogenates prepared in a low-ionic strength medium, containing 0.5% Chaps. In all three tissues at least 80% of [3H]ryanodine binding was recovered in the total membrane (TM) fraction obtained by centrifuging between 650 g for 10 min and 120,000 x g for 90 min. Skeletal muscle displayed higher contents of high-affinity RyR sites (about 49 pmol/g wet wt) than heart and brain (about 12 pmol and 3.5 pmol/g wet wt, respectively). The affinity for ryanodine, as well as the affinity for Ca2+, in the absence or presence of Ca2(+)-releasing drugs (caffeine and doxorubicin) of TM from skeletal muscle, were found to be identical to those of purified terminal cisternae. As low as 1 g of tissue was sufficient to perform several experiments.  相似文献   

4.
Cardiac ryanodine receptor was purified from canine ventricle as a single polypeptide of Mr 400,000 by a stepwise sucrose density gradient centrifugation and heparin-Sepharose CL-4B column chromatography. The [3H]ryanodine binding capacity (Bmax) was 60-fold enriched from cardiac microsomes without a change in affinity for [3H]ryanodine. The purity of the final preparation was determined to be greater than 95% by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Using this purified preparation as an antigen, we produced six monoclonal antibodies which immunoprecipitated the cardiac ryanodine receptor. Three of these antibodies recognized the cardiac receptor on immunoblot analysis. In contrast, no protein in the microsomes isolated from Type I (slow) or Type II (fast) skeletal muscles was recognized by these antibodies. The [3H]ryanodine binding to cardiac and skeletal muscle microsomes was dependent on free Ca2+ concentration. In skeletal muscle microsomes, the [3H]ryanodine binding was remarkably enhanced by the addition of ATP or KCl and inhibited by high free Ca2+, whereas it was less sensitive to these agents in cardiac microsomes. All of these results clearly demonstrate that the cardiac ryanodine receptor is different from the skeletal muscle receptors and is not present even in Type I (slow) skeletal muscle fibers, in which cardiac isoforms of some of the muscle proteins are constitutively expressed.  相似文献   

5.
The phosphorylation of canine cardiac and skeletal muscle ryanodine receptors by the catalytic subunit of cAMP-dependent protein kinase has been studied. A high-molecular-weight protein (Mr 400,000) in cardiac microsomes was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. A monoclonal antibody against the cardiac ryanodine receptor immunoprecipitated this phosphoprotein. In contrast, high-molecular-weight proteins (Mr 400,000-450,000) in canine skeletal microsomes isolated from extensor carpi radialis (fast) or superficial digitalis flexor (slow) muscle fibers were not significantly phosphorylated. In agreement with these findings, the ryanodine receptor purified from cardiac microsomes was also phosphorylated by cAMP-dependent protein kinase. Phosphorylation of the cardiac ryanodine receptor in microsomal and purified preparations occurred at the ratio of about one mol per mol of ryanodine-binding site. Upon phosphorylation of the cardiac ryanodine receptor, the levels of [3H]ryanodine binding at saturating concentrations of this ligand increased by up to 30% in the presence of Ca2+ concentrations above 1 microM in both cardiac microsomes and the purified cardiac ryanodine receptor preparation. In contrast, the Ca2+ concentration dependence of [3H]ryanodine binding did not change significantly. These results suggest that phosphorylation of the ryanodine receptor by cAMP-dependent protein kinase may be an important regulatory mechanism for the calcium release channel function in the cardiac sarcoplasmic reticulum.  相似文献   

6.
The Ca2+-ryanodine receptor complex is solubilized in functional form on treating sarcoplasmic reticulum (SR) vesicles from rabbit fast skeletal muscle with 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate (CHAPS) (1 mg/mg protein) and 1 M NaCl at pH 7.1 by shaking for 30 min at 5 degrees C. The heavy membrane preparations obtained from pyrophosphate homogenates frequently exhibit junctional feet and appear to be derived primarily from the terminal cisternae of the SR. The characteristics of [3H]ryanodine binding are similar for the soluble receptor and the heavy SR vesicles with respect to dependence on Ca2+, pharmacological specificity for inhibition by six ryanoids and ruthenium red, and lack of sensitivity to voltage-dependent Ca2+-channel blockers, inositol 1,4,5-trisphosphate, or doxorubicin. In contrast, the cation sensitivity is decreased on receptor solubilization. The soluble receptor is modulated by cyclic nucleotides and rapidly denatured at 50 degrees C. Saturation experiments reveal a single class of receptors (Kd = 9.6 nM), whereas kinetic measurements yield a calculated association constant of 5.5 X 10(6) min-1 M-1 and a dissociation constant of 5.7 X 10(-4) min-1, suggesting that the [3H]ryanodine receptor complex ages with time to a state which is recalcitrant to dissociation. Sepharose chromatography shows that the receptor complex consists primarily of two protein fractions, one of apparent Mr 150,000-300,000 and a second, the [3H]ryanodine binding component, of approximately Mr 1.2 X 10(6). Preliminary analysis of the soluble receptor preparation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals subunits of Mr greater than 200,000 and major bands of calsequestrin and Ca2+-transport ATPase. These findings indicate that [3H]ryanodine binds to the Ca2+-induced open state of the channel involved in the release of contractile Ca2+.  相似文献   

7.
The purified ryanodine receptor of heart sarcoplasmic reticulum (SR) has been reconstituted into planar phospholipid bilayers and found to form Ca2+-specific channels. The channels are strongly activated by Ca2+ (10 nM) in the presence of ATP (1 mM) and ryanodine, and inactivated by Mg2+ (3 mM) or ruthenium red (30 microM). These characteristics are diagnostic of calcium release from heart SR. The cardiac ryanodine receptor, which has previously been identified as the foot structure, is now identified as the calcium release channel. A similar identity of the calcium release channel has recently been reported for skeletal muscle. The characteristics of the calcium release channel from skeletal muscle and heart are similar in that they: 1) consist of an oligomer of a single high molecular weight polypeptide (Mr 360,000 for skeletal muscle and 340,000 for heart); 2) exist morphologically as the foot structure; 3) are activated (ATP, Ca2+, ryanodine) and inhibited (ruthenium red and Mg2+) by a number of the same ligands. Important differences include: 1) Ca2+ activation at lower concentration of Ca2+ for the heart; 2) more dramatic stabilization by ryanodine of the open state for the skeletal muscle channel; and 3) different relative permeabilities (PCa/PK).  相似文献   

8.
In fast twitch skeletal muscle, the signal for excitation-contraction coupling is transferred from transverse tubule across the triad junction; calcium is thereby released from the terminal cisternae of sarcoplasmic reticulum triggering muscle contraction. Recently, the feet structures of terminal cisternae, which bridge the gap at the triad junction, have been identified as the ryanodine receptor and in turn with the calcium release channels of sarcoplasmic reticulum. The latter consists of an oligomer of a single high molecular weight polypeptide (Mr 360,000). This study attempts to identify the component in the transverse tubule which ligands with the foot structure to form the triad junction. The purified ryanodine receptor, derivatized with sulfosuccinimidyl-2-(p-azidosalicylimido)-1,3'-dithiopropionate (SASD), a thiol-cleavable, 125I-iodinatable, and photoactive probe, was shown to selectively cross-link to a protein with Mr of 71,000 in isolated transverse tubules. This coupling protein was purified from transverse tubule by solubilization with the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS) and then purified by sequential column chromatography. In the absence of sulfhydryl agents, the purified polypeptide has an Mr of 61,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A complementary approach using SASD was employed to confirm association of the coupling protein with the ryanodine receptor of terminal cisternae. We conclude that the transverse tubule coupling protein together with the ryanodine receptor (foot structure) is involved in the liganding between transverse tubule and terminal cisternae of sacroplasmic reticulum.  相似文献   

9.
Using density gradient centrifugation and [3H]ryanodine as a specific marker, the ryanodine receptor-Ca2+ release channel complex from Chaps-solubilized canine cardiac sarcoplasmic reticulum (SR) has been purified in the form of an approximately 30 S complex, comprised of Mr approximately 400,000 polypeptides. Purification resulted in a specific activity of approximately 450 pmol bound ryanodine/mg of protein, a 60-70% recovery of ryanodine binding activity, and retention of the high affinity ryanodine binding site (KD = 3 nM). Negative stain electron microscopy revealed a 4-fold symmetric, four-leaf clover structure, which could fill a box approximately 30 x 30 nm and was thus morphologically similar to the SR-transverse-tubule, junctionally associated foot structure. The structural, sedimentation, and ryanodine binding data strongly suggest there is one high affinity ryanodine binding site/30 S complex, comprised of four Mr approximately 400,000 subunits. Upon reconstitution into planar lipid bilayers, the purified complex exhibited a Ca2+ conductance (70 pS in 50 mM Ca2+) similar to that of the native cardiac Ca2+ release channel (75 pS). The reconstituted complex was also found to conduct Na+ (550 pS in 500 mM Na+) and often to display complex Na+ subconducting states. The purified channel could be activated by micromolar Ca2+ or millimolar ATP, inhibited by millimolar Mg2+ or micromolar ruthenium red, and modified to a long-lived open subconducting state by ryanodine. The sedimentation, subunit composition, morphological, and ryanodine binding characteristics of the purified cardiac ryanodine receptor-Ca2+ release channel complex were similar to those previously described for the purified ryanodine receptor-Ca2+ release channel complex from fast-twitch skeletal muscle.  相似文献   

10.
The mechanism of doxorubicin-induced Ca2+ release from skeletal and cardiac muscle sarcoplasmic reticulum (SR) was studied by examining the effects of azumolene (a water soluble dantrolene analog) on doxorubicin-mediated Ca2+ release and ryanodine binding. Doxorubicin induced a rapid Ca2+ release from both skeletal and cardiac SR in a similar concentration range (EC50 = 5-10 microM). Maximal doxorubicin-induced Ca2+ release was seen at 2 and 0.2 microM Ca2+ for skeletal and cardiac SR, respectively. Addition of 400 microM azumolene caused approx. 30% inhibition of doxorubicin-induced Ca2+ release from both skeletal and cardiac SR; skeletal SR had significantly higher sensitivity to azumolene than cardiac SR. In the presence of Ca2+, doxorubicin increased [3H]ryanodine binding to both skeletal and cardiac SR; whereas in the absence of Ca2+, doxorubicin led to significant ryanodine binding to skeletal SR, but not to cardiac SR. In both types of SR, doxorubicin-activated, but not Ca2+ activated ryanodine binding was inhibited by azumolene. Azumolene sensitivity for inhibition of doxorubicin-activated ryanodine binding was much higher in skeletal SR than cardiac SR, consistent with the results for effects of azumolene on Ca2+ release. Our results are consistent with the possibility that azumolene inhibits doxorubicin binding by direct competition for the drug receptor(s).  相似文献   

11.
Abnormal sarcoplasmic reticulum ryanodine receptor in malignant hyperthermia   总被引:17,自引:0,他引:17  
Previous studies have demonstrated that skeletal muscle from individuals susceptible to malignant hyperthermia (MH) has a defect associated with the mechanism of calcium release from its intracellular storage sites in the sarcoplasmic reticulum (SR). In this report we demonstrate that the [3H]ryanodine receptor of isolated MH-susceptible (MHS) porcine heavy SR exhibits an altered Ca2+ dependence of [3H]ryanodine binding at the low affinity Ca2+ site as well as a lower Kd for ryanodine (92 versus 265 nM) when compared to normal porcine SR. The Bmax of the normal and MHS [3H] ryanodine receptor (9.3-12.6 pmol/mg) was not significantly different, and analysis of MHS and normal SR proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis did not reveal a significant difference in the intensity of Coomassie Blue staining of the spanning protein/ryanodine receptor region of the gels (Mr greater than 300,000). We also find that MHS porcine muscle intact fiber bundles exhibit a 5-10-fold lower ryanodine threshold for twitch and tetanus inhibition, and contracture onset when compared to normal muscle. Since the SR ryanodine receptor is a calcium release channel as well as a component intimately involved in transverse tubule-SR communication, abnormalities in the skeletal muscle ryanodine receptor may be responsible for the abnormal SR calcium release and contractile properties demonstrated by MHS muscle.  相似文献   

12.
[3H]Ryanodine binding to skeletal muscle and cardiac sarcoplasmic reticulum (SR) vesicles was compared under experimental conditions known to inhibit or stimulate Ca2+ release. In the skeletal muscle SR, ryanodine binds to a single class of high-affinity sites (Kd of 11.3 nM). In cardiac SR vesicles, more than one class of binding sites is observed (Kd values of 3.6 and 28.1 nM). Ryanodine binding to skeletal muscle SR vesicles requires high concentrations of NaCl, whereas binding of the drug to cardiac SR is only slightly influenced by ionic strength. In the presence of 5'-adenylyl imidodiphosphate (p[NH]ppA), increased pH, and micromolar concentration of Ca2+ (which all induce Ca2+ release from SR) binding of ryanodine to SR is significantly increased in skeletal muscle, while being unchanged in cardiac muscle. Ryanodine binding to skeletal but not to cardiac muscle SR is inhibited in the presence of high Ca2+ or Mg2+ concentrations (all known to inhibit Ca2+ release from skeletal muscle SR). Ruthenium red or dicyclohexylcarbodiimide modification of cardiac and skeletal muscle SR inhibit Ca2+ release and ryanodine binding in both skeletal and cardiac membranes. These results indicate that significant differences exist in the properties of ryanodine binding to skeletal or cardiac muscle SR. Our data suggest that ryanodine binds preferably to site(s) which are accessible only when the Ca2+ release channel is in the open state.  相似文献   

13.
The calcium-ryanodine receptor complex of skeletal and cardiac muscle   总被引:14,自引:0,他引:14  
[3H]Ryanodine binds with high affinity to saturable and Ca2+-dependent sites in heavy sarcoplasmic reticulum (SR) preparations from rabbit skeletal and cardiac muscle. Ruthenium red, known to interfere with Ca2+-induced Ca2+ release from SR vesicles, inhibits [3H]ryanodine specific binding in both skeletal and cardiac preparations whereas Mg2+, Ba2+, Cd2+ and La3+ selectively inhibit the skeletal preparation. The toxicological relevance of the [3H]ryanodine binding site is established by the correlation of binding inhibition with toxicity for seven ryanoids including two botanical insecticides. These findings provide direct evidence for Ca2+-ryanodine receptor complexes that may play a role in excitation-contraction coupling.  相似文献   

14.
The 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (Chaps)-solubilized ryanodine receptor (RyR) of lobster skeletal muscle has been isolated by rate density centrifugation as a 30 S protein complex. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of the purified 30 S receptor revealed a single high molecular weight protein band with a mobility intermediate between those of the mammalian skeletal and cardiac M(r) 565,000 RyR polypeptides. Immunoblot analysis showed no or only minimal cross-reactivity with the rabbit skeletal and canine cardiac RyR polypeptides. By immunofluorescence the lobster RyR was localized to the junctions of the A-I bands. Following planar lipid bilayer reconstitution of the purified 30 S lobster RyR, single channel K+ and Ca2+ currents were observed which were modified by ryanodine and optimally activated by millimolar concentrations of cis (cytoplasmic) Ca2+. Vesicle-45Ca2+ flux measurements also indicated an optimal activation of the lobster Ca2+ channel by millimolar Ca2+, whereas 45Ca2+ efflux from mammalian skeletal and cardiac muscle sarcoplasmic reticulum (SR) vesicles is optimally activated by micromolar Ca2+. Further, mammalian muscle SR Ca2+ release activity is modulated by Mg2+ and ATP, whereas neither ligand appreciably affected 45Ca2+ efflux from lobster SR vesicles. These results suggested that lobster and mammalian muscle express immunologically and functionally distinct SR Ca2+ release channel protein complexes.  相似文献   

15.
Sphingosine inhibits the activity of the skeletal muscle Ca2+ release channel (ryanodine receptor) and is a noncompetitive inhibitor of [3H]ryanodine binding (Needleman et al., Am. J. Physiol. 272, C1465-1474, 1997). To determine the contribution of other sphingolipids to the regulation of ryanodine receptor activity, several sphingolipid bases were assessed for their ability to alter [3H]ryanodine binding to sarcoplasmic reticulum (SR) membranes and to modulate the activity of the Ca2+ release channel. Three lipids, N,N-dimethylsphingosine, dihydrosphingosine, and phytosphingosine, inhibited [3H]ryanodine binding to both skeletal and cardiac SR membranes. However, the potency of these three lipids and sphingosine was lower in rabbit cardiac membranes when compared to rabbit skeletal muscle membranes and when compared to sphingosine. Like sphingosine, the lipids inhibited [3H]ryanodine binding by greatly increasing the rate of dissociation of bound [3H]ryanodine from SR membranes, indicating that these three sphingolipid bases were noncompetitive inhibitors of [3H]ryanodine binding. These bases also decreased the activity of the Ca2+ release channel incorporated into planar lipid bilayers by stabilizing a long closed state. Sphingosine-1-PO4 and C6 to C18 ceramides of sphingosine had no significant effect on [3H]ryanodine binding to cardiac or skeletal muscle SR membranes. Saturation of the double bond at positions 4-5 decreased the ability of the sphingolipid bases to inhibit [3H]ryanodine binding 2-3 fold compared to sphingosine. In summary, our data indicate that other endogenous sphingolipid bases are capable of modulating the activity of the Ca2+ release channel and as a class possess a common mechanism of inhibition.  相似文献   

16.
A unique set of high molecular weight proteins was identified in junctional sarcoplasmic reticulum (SR) vesicles isolated from both cardiac muscle and skeletal muscle. These high Mr proteins were not present in free SR vesicles isolated from either tissue, nor were they observed in purified sarcolemmal fractions. The junctional SR high Mr proteins migrated as doublets in sodium dodecyl sulfate-polyacrylamide gels and exhibited apparent Mr values between 290,000 and 350,000. The high Mr proteins bound calmodulin; they were the principal proteins labeled in the cardiac and skeletal muscle SR subfractions by azido-125I-calmodulin. The high Mr proteins were also substrates for an endogenous Ca2+-calmodulin-dependent protein kinase activity, as well as exogenously added catalytic subunit of cAMP-dependent protein kinase. In addition, the junctional SR high Mr proteins were the major SR proteins degraded by a Ca2+-activated protease purified from smooth muscle. Control experiments verified the separation of junctional SR vesicles and free SR vesicles from both muscle types. Junctional SR vesicles were enriched in calsequestrin, and they exhibited Ca2+ uptake which was stimulated up to 10-fold by either ryanodine or ruthenium red. Free SR vesicles were deficient in calsequestrin and were insensitive to these two agents. Localization of the cardiac and skeletal muscle high Mr proteins to the junctional SR, coupled with demonstration of their nearly identical biochemical properties, suggests that the proteins are homologous and are likely to have similar functions in both types of striated muscle.  相似文献   

17.
We have cloned and sequenced cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. The cDNA, 16,532 base pairs in length, encodes a protein of 4,969 amino acids with a Mr of 564,711. The deduced amino acid sequence is 66% identical with that of the skeletal muscle ryanodine receptor, but analysis of predicted secondary structures and hydropathy plots suggests that the two isoforms exhibit the same topology in both transmembrane and cytoplasmic domains. A potential ATP binding domain was identified at residues 2619-2652, a potential phosphorylation site at residue 2809, and potential calmodulin binding sites at residues 2775-2807, 2877-2898, and 2998-3016. We suggest that a modulator binding domain in the protein lies between residues 2619 and 3016. Northern blot analysis of mRNA from a variety of tissues demonstrated that the cardiac isoform is expressed in heart and brain, while the skeletal muscle isoform is expressed in both fast- and slow-twitch muscle. No ryanodine receptor mRNA was detected in extracts from smooth muscle or any other non-muscle tissue examined. The two receptors are clearly the products of separate genes, and the gene encoding the cardiac muscle ryanodine receptor was localized to chromosome 1.  相似文献   

18.
The subcellular distribution of the Ca(2+)-release channel/ryanodine receptor in adult rat papillary myofibers has been determined by immunofluorescence and immunoelectron microscopical studies using affinity purified antibodies against the ryanodine receptor. The receptor is confined to the sarcoplasmic reticulum (SR) where it is localized to interior and peripheral junctional SR and the corbular SR, but it is absent from the network SR where the SR-Ca(2+)-ATPase and phospholamban are densely distributed. Immunofluorescence labeling of sheep Purkinje fibers show that the ryanodine receptor is confined to discrete foci while the SR-Ca(2+)-ATPase is distributed in a continuous network-like structure present at the periphery as well as throughout interior regions of these myofibers. Because Purkinje fibers lack T- tubules, these results indicate that the ryanodine receptor is localized not only to the peripheral junctional SR but also to corbular SR densely distributed in interfibrillar spaces of the I-band regions. We have previously identified both corbular SR and junctional SR in cardiac muscle as potential Ca(2+)-storage/Ca(2+)-release sites by demonstrating that the Ca2+ binding protein calsequestrin and calcium are very densely distributed in these two specialized domains of cardiac SR in situ. The results presented here provide strong evidence in support of the hypothesis that corbular SR is indeed a site of Ca(2+)-induced Ca2+ release via the ryanodine receptor during excitation contraction coupling in cardiac muscle. Furthermore, these results indicate that the function of the cardiac Ca(2+)-release channel/ryanodine receptor is not confined to junctional complexes between SR and the sarcolemma.  相似文献   

19.
Sheep cardiac muscle sarcoplasmic reticulum ryanodine receptors have been isolated by density-gradient centrifugation following solubilisation with the zwitterionic detergent, CHAPS. The functional state of the receptor complex has been assessed by quantification of [3H]ryanodine binding and by characterisation of single-channel conductance and gating properties following reconstitution into unilamellar proteo-liposomes and incorporation into planar phospholipid bilayers. A method of solubilisation is described which yields a receptor displaying high-affinity [3H]ryanodine binding (Kd 2.8 nM, Bmax 352 pmol/mg protein) and which functions as a cation-selective, ligand-regulated channel under voltage clamp conditions. Previous reports of channel activity of purified rabbit skeletal and canine cardiac muscle ryanodine receptors describe a range of sub- or variable-conductance events. In contrast, the sheep cardiac ryanodine receptor-channels isolated using the optimal conditions described in this report consistently display a single open state conductance with either Ca2+ or K+ as the charge carrying species.  相似文献   

20.
We have purified putative L-type Ca2+ channels from chick heart by virtue of their associated high affinity receptors for the Ca2+ channel effectors, dihydropyridines (DHPs), and phenylalkylamines (PAAs). A peptide of 185,000-190,000 daltons was found to comigrate with the peak of DHP binding activity during purification through two successive cycles of lectin affinity chromatography and sucrose density gradient centrifugation. A previously described peptide of 140,000 daltons, whose Mr was increased to approximately 180,000 under nonreducing conditions, also copurified with the 185-kDa peptide and dihydropyridine binding activity. When cardiac membranes were photolabeled with either the dihydropyridine [3H]azidopine or the PAA [3H]azidopamil prior to purification, a single, specifically labeled component of 185,000-190,000 daltons was present in the purified fractions. The properties of this 185-kDa cardiac DHP/PAA receptor were compared to the smaller 165-kDa DHP/PAA receptor previously purified from skeletal muscle. Antibodies raised against the 165-kDa skeletal muscle DHP/PAA receptor reacted with both rabbit and chick skeletal muscle receptors, but only poorly recognized, if at all, the cardiac 185-190 kDa component. The 185-kDa peptide present in the purified fractions obtained from cardiac muscle did not undergo substantial phosphorylation by cAMP-dependent protein kinase, while the purified 165-kDa peptide from rabbit and chick skeletal muscle was a good substrate for this kinase. The results show that the DHP and PAA receptors in cardiac muscle are contained in a 185-190-kDa peptide that is significantly larger than, and structurally and immunologically different from, it skeletal muscle counterpart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号