首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Experiments were performed to determine whether activation of the coagulation cascade was required for pulmonary vascular permeability to increase during microembolization of the lung. For 30-45 min air microemboli were intravenously infused (0.05-0.10 ml X kg-1 X min-1) into awake sheep with chronic lung-lymph fistulas and anesthetized mongrel dogs. During embolization the pulmonary arterial pressure increased, and O2 partial pressure (PaO2) fell by more than 20 Torr (P less than 0.01). Subsequently lymph flow nearly tripled without a change in the lymph-to-plasma protein concentration ratio. Partial thromboplastin and prothrombin times, biological activity of antithrombin III, and circulating concentration of 125I-labeled dog or sheep fibrinogen did not change during or following air infusion. In two additional sheep an intravenous infusion of thrombin at 0.6 U X kg-1 X min-1 for 15 min resulted in a 20% decrease in 125I-labeled sheep fibrinogen concentration without a change in pulmonary arterial pressure or PaO2. We conclude that air microembolization can increase permeability to water and protein without a detectable activation of the coagulation cascade in the sheep or dog.  相似文献   

2.
We determined in anesthetized sheep whether isoproterenol, a beta-adrenergic agonist, prevents the increases in pulmonary fluid and protein exchange produced by thrombin-induced intravascular coagulation. Seven sheep were infused intravenously with 0.05 micrograms X kg-1 X min-1 isoproterenol before infusion of alpha-thrombin, and six sheep were infused with alpha-thrombin only and served as control subjects. The marked increases in pulmonary lymph flow and lymph protein clearance in the control thrombin group were attenuated (P less than 0.05) in the isoproterenol group in association with a higher pulmonary blood flow (P less than 0.05) and a lower pulmonary vascular resistance (P less than 0.05) in the isoproterenol group and with similar increases in pulmonary arterial and pulmonary arterial wedge pressures in both groups. The decreases in fluid and protein fluxes produced by isoproterenol are related to its beta-adrenergic properties because propranolol, a beta-adrenergic antagonist, blocked the protective effects of isoproterenol in a second group of sheep infused with propranolol, isoproterenol, and thrombin. Raising left atrial pressure to test for changes in vascular permeability increased protein flux to a much greater extent in the thrombin control group than in the isoproterenol group challenged with thrombin. The data suggest that isoproterenol attenuated the increase in fluid and protein fluxes produced by thrombin-induced intravascular coagulation by a permeability-decreasing mechanism.  相似文献   

3.
Platelet-activating factor increases lung vascular permeability to protein   总被引:2,自引:0,他引:2  
We studied the effects of platelet-activating factor (PAF) on pulmonary hemodynamics and microvascular permeability in unanesthetized sheep prepared with lung-lymph fistulas. Since cyclooxygenase metabolites have been implicated in mediating these responses, we also examined the role of the cyclooxygenase pathway. PAF infusion (4 micrograms X kg-1 X h-1 for 3 h) produced a rapid, transient rise in pulmonary arterial pressure (Ppa), pulmonary vascular resistance (PVR), plasma thromboxane B2 concentration (TxB2), and pulmonary lymph flow (Qlym). The lymph-to-plasma protein concentration ratio (L/P) did not change from base line. Pretreatment with the cyclooxygenase inhibitor, sodium meclofenamate, prevented the generation of TxB2 and the hemodynamic changes but did not prevent the increase in Qlym. The estimated protein reflection coefficient decreased from a control value of 0.66 +/- 0.04 to 0.43 +/- 0.06 after PAF infusion. We also studied the effects of PAF on endothelial permeability in vitro by measuring the flux of 125I-albumin across cultured bovine pulmonary artery endothelial cells (EC) grown to confluency on a gelatinized micropore filter and mounted within a modified Boyden chemotaxis chamber. PAF (10(-8) to 10(-4) M) had no direct effect on EC albumin permeability, suggesting that the increase in permeability in sheep was not the direct lytic effect of PAF. In conclusion, PAF produces pulmonary vasoconstriction mediated by cyclooxygenase metabolites. PAF also increases pulmonary vascular permeability to protein that is independent of cyclooxygenase products and is not the result of a direct effect of PAF on the endothelium.  相似文献   

4.
The toxicity of various monosaccharide and disaccharide endotoxin precursors has now been studied in sheep. We measured the early pulmonary arterial pressure responses after injections of the monosaccharides lipid X (2,3-diacylglucosamine 1-phosphate) and MAGP (2-monoacylglucosamine 1-phosphate), of the tetraacyl disaccharide diphosphate precursor of lipid A, IV-A (Federation Proc. 43: 1567, 1984), and of Escherichia coli bacterial endotoxin (lipopolysaccharide). We also measured the response of lipid X after prior administration of indomethacin and MAGP. Lipid X, at a total cumulative dose of 40 micrograms/kg, produced an immediate, but transient dose-dependent pulmonary arterial vasoconstrictive response. MAGP, at a total dose of 40 micrograms/kg, had no pulmonary pressure activity but did increase extravascular lung water and produce some histological changes in the lung. Disaccharide precursor IV-A, at a total dose of 40 micrograms/kg, produced an immediate dose-dependent pulmonary arterial vasoconstrictive response that was prolonged for greater than 2 h. E. coli endotoxin caused a delayed (15-min) increase in the pulmonary arterial pressure but one that also persisted for greater than 2 h. Prior administration of indomethacin blocked the pulmonary pressor activity of lipid X, whereas prior administration of MAGP increased both the magnitude and the duration of the pulmonary pressure response of lipid X. We conclude that the initial pulmonary hypertension seen after lipid X injection may involve cyclooxygenase-dependent formation of prostaglandins and that the genesis of this pulmonary pressor activity is at least in part dependent on the ester-linked hydroxymyristoyl moiety at position 3 of the lipid X molecule.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We examined the pulmonary vascular response to an intravenous leukotriene D4 (LTD4) injection of (1 microgram X kg-1 X min-1 for 2 min) immediately followed by infusion of 0.133 microgram X kg-1 X min-1 for 15 min in awake sheep prepared with lung lymph fistulas. LTD4 resulted in rapid generation of thromboxane A2 as measured by an increase in plasma thromboxane B2 concentration. The thromboxane B2 generation was associated with increases in pulmonary arterial and pulmonary arterial wedge pressures while left atrial pressure did not change significantly. Pulmonary lymph flow (Qlym) increased (P less than 0.05) transiently from base line 6.87 +/- 1.88 (SE) ml/h to maximum value of 9.77 +/- 1.27 at 15 min following the LTD4 infusion. The maximum increase in Qlym was associated with an increase in the estimated pulmonary capillary pressure. The increase in Qlym was not associated with a change in the lymph-to-plasma protein concentration (L/P) ratio. Thromboxane synthetase inhibition with dazoxiben (an imidazole derivative) prevented thromboxane B2 generation after LTD4 and also prevented the increases in pulmonary vascular pressures and Qlym. We conclude that LTD4 in awake sheep increases resistance of large pulmonary veins. The small transient increase in Qlym can be explained by the increase in pulmonary capillary pressure. Thromboxane appears to mediate both the pulmonary hemodynamic and lymph responses to LTD4 in sheep.  相似文献   

6.
Thrombin-induced alterations in lung fluid balance in awake sheep   总被引:5,自引:0,他引:5  
We examined the effect of fibrinolysis depression on thrombin-induced pulmonary microembolism in awake sheep prepared with chronic lung lymph fistulas. Fibrinolysis was depressed by an intravenous infusion (100 mg) of tranexamic acid [trans-4-(Aminomethyl)cyclohexanecarboxylic acid]. Pulmonary microembolism was induced by an intravenous infusion of alpha-thrombin (80 NIH U/kg) in normal (n = 7) and in tranexamic acid-treated (n = 6) sheep. Thrombin immediately increased pulmonary lymph flow (Qlym) in both groups. The increased Qlym was not associated with a change in the lymph-to-plasma protein concentration (L/P) ratio in the control group and with a small decrease in the tranexamic acid-treated group. The increases in Qlym and pulmonary transvascular protein clearance (Qlym X L/P ratio) in the tranexamic acid-treated group were greater and sustained at four- to fivefold above base line for 10 h after the thrombin and remained elevated at twofold above base line even at 24 h. In contrast, Qlym and protein clearance were transiently increased in the control group. The mean pulmonary arterial pressure (Ppa) and pulmonary vascular resistance (PVR) increased after thrombin in tranexamic acid-treated group; the increases in Ppa and PVR in the control group were transient. Protein reflection coefficient as determined by the filtration independent method decreased after thrombin in tranexamic acid-treated sheep (n = 5), indicating an increased vascular permeability to proteins. We conclude that prolongation of microthrombi retention in the pulmonary circulation results in an increased vascular permeability to proteins. Both increased vascular permeability and vascular hydrostatic pressure are important determinants of the increases in Qlym and transvascular protein clearance after thrombin-induced pulmonary microembolism.  相似文献   

7.
We investigated whether platelet-activating factor (PAF) mediates endotoxin-induced systemic and pulmonary vascular derangements by studying the effects of a selective PAF receptor antagonist, SRI 63-441, during endotoxemia in sheep. Endotoxin infusion (1.3 micrograms/kg over 0.5 h) caused a rapid, transient rise in pulmonary arterial pressure (Ppa) from 16 +/- 3 to 36 +/- 10 mmHg (P less than 0.001) and pulmonary vascular resistance (PVR) from 187 +/- 84 to 682 +/- 340 dyn.s.cm-5 (P less than 0.05) at 0.5 h, followed by a persistent elevation in Ppa to 22 +/- 3 mmHg and in PVR to 522 +/- 285 dyn.s.cm-5 at 5 h in anesthetized sheep. Arterial PO2 (PaO2) decreased from 341 +/- 79 to 198 +/- 97 (P less than 0.01) and 202 +/- 161 Torr at 0.5 and 5 h, respectively (inspired O2 fraction = 1.0). SRI 63-441, 20 mg.kg-1.h-1 infused for 5 h, blocked the early rise in Ppa and PVR and fall in PaO2, but had no effect on the late phase pulmonary hypertension or hypoxemia. Endotoxin caused a gradual decrease in mean aortic pressure, which was unaffected by SRI 63-441. Infusion of SRI 63-441 alone caused no hemodynamic alterations. In follow-up studies, endotoxin caused an increase in lung lymph flow (QL) from 3.8 +/- 1.1 to 14.1 +/- 8.0 (P less than 0.05) and 12.7 +/- 8.6 ml/h at 1 and 4 h, respectively. SRI 63-441 abolished the early and attenuated the late increase in QL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Diethylcarbamazine (DEC) is an inhibitor of lipoxygenase, with protective effects in several experimental models of anaphylaxis and lung dysfunction. The hypothesis of this study was that DEC would alter the pulmonary response to endotoxin infusion, especially the prolonged pulmonary hypertension, leukopenia, hypoxemia, and high flow of protein-rich lung lymph. We prepared sheep for chronic measurements of hemodynamics and collection of lung lymph. In paired studies we gave six sheep endotoxin (0.5 micrograms/kg iv) either with or without DEC. DEC was given (80-100 mg/kg iv) over 30 min followed by a continuous infusion at 1 mg X kg-1 X min-1. Endotoxin was given after the loading infusion of DEC, and variables were monitored for 4 h. The response to endotoxin was characterized by pulmonary hypertension, leukopenia, hypoxemia, and elevations of thromboxane B2 and 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha). Lymph flow and protein content reflected hemodynamic and permeability changes in the pulmonary circulation. DEC did not significantly modify the response to endotoxin by any measured variable, including pulmonary arterial and left atrial pressures, cardiac output, lymph flow and protein content, alveolar-to-arterial PO2 difference, blood leukocyte count, and lymph thromboxane B2 and 6-keto-PGF1 alpha. We could not find evidence of release of leukotriene C4/D4 by radioimmunoassay in lung lymph after endotoxin infusion with or without DEC treatment. We conclude that lipoxygenase products of arachidonic acid may not be a major component of the pulmonary vascular response to endotoxin.  相似文献   

9.
Infusion of Escherichia coli endotoxin (0.12-1.5 micrograms/kg) into unanesthetized sheep causes transient pulmonary hypertension and several hours of increased lung vascular permeability, after which sheep recover. To produce enough lung injury to result in pulmonary edema with respiratory failure, we infused larger doses of E. coli endotoxin (2.0-5.0 micrograms/kg) into 11 chronically instrumented unanesthetized sheep and continuously measured pulmonary arterial, left atrial and aortic pressures, dynamic lung compliance, lung resistance, and lung lymph flow. We intermittently measured arterial blood gas tensions and pH, made interval chest radiographs, and calculated postmortem extravascular bloodless lung water-to-dry lung weight ratio (EVLW/DLW). Of 11 sheep 8 developed respiratory failure; 7 died spontaneously 6.3 +/- 1.1 h, and one was killed 10 h after endotoxin infusion. All sheep that had a premortem room air alveolar-arterial gradient in partial pressure of O2 (PAo2-Pao2) greater than 42 Torr (58 +/- 5 (SE) Torr) died. Of eight sheep that had radiographs made, six developed radiographically evident interstitial or interstitial and alveolar edema. Pulmonary artery pressure rose from base line 22 +/- 2 to 73 +/- 3 cmH2O and remained elevated above baseline levels until death. There was an initial fourfold decrease in dynamic compliance and sixfold increase in pulmonary resistance; both variables remained abnormal until death. EVLW/DLW increased with increasing survival time after endotoxin infusion, suggesting that pulmonary edema accumulated at the same rate in all fatally injured sheep, regardless of other variables. The best predictor of death was a high PAo2-Pao2. The marked increase in pulmonary resistance and decrease in dynamic compliance occurred too early after endotoxin infusion (15-30 min) to be due to pulmonary edema. The response to high-dose endotoxin in sheep closely resembles acute respiratory failure in humans following gram-negative septicemia. Respiratory failure and death in this model were not due to pulmonary edema alone.  相似文献   

10.
Our objectives were to investigate the pulmonary vascular effects of exogenously administered bradykinin at normal and reduced levels of cardiac index in intact conscious dogs and to assess the extent to which the pulmonary vascular response to bradykinin is the result of either cyclooxygenase pathway activation or reflex activation of sympathetic beta-adrenergic and -cholinergic receptors. Multipoint pulmonary vascular pressure-cardiac index (P/Q) plots were constructed during normoxia in conscious dogs by step-wise constriction of the thoracic inferior vena cava to reduce Q. In intact dogs, bradykinin (2 micrograms X kg-1 X min-1 iv) caused systemic vasodilation, i.e., systemic arterial pressure was slightly decreased (P less than 0.05), Q was markedly increased (P less than 0.01), and mixed venous PO2 and oxygen saturation (SO2) were increased (P less than 0.01). Bradykinin decreased (P less than 0.01) the pulmonary vascular pressure gradient (pulmonary arterial pressure-pulmonary capillary wedge pressure) over the entire range of Q studied (140-60 ml X min-1 X kg-1) in intact dogs. During cyclooxygenase pathway inhibition with indomethacin, bradykinin again decreased (P less than 0.05) pulmonary arterial pressure-pulmonary capillary wedge pressure at every level of Q, although the magnitude of the vasodilator response was diminished at lower levels of Q (60 ml X min-1 X kg-1). Following combined administration of sympathetic beta-adrenergic and -cholinergic receptor antagonists, bradykinin still decreased (P less than 0.01) pulmonary arterial pressure-pulmonary capillary wedge pressure over the range of Q from 160 to 60 ml X min-1 X kg-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Pulmonary microcirculatory responses to leukotrienes B4, C4 and D4 in sheep   总被引:1,自引:0,他引:1  
The pulmonary microvascular responses to leukotrienes B4, C4, and D4 (total dosage of 4 micrograms/kg i.v.) were examined in acutely-prepared halothane anesthetized and awake sheep prepared with lung lymph fistulas. In anesthetized as well as unanesthetized sheep, LTB4 caused a marked and transient decrease in the circulating leukocyte count. Pulmonary transvascular protein clearance (pulmonary lymph flow X lymph-to-plasma protein concentration ratio) increased transiently in awake sheep, suggesting a small increase in pulmonary vascular permeability. The mean pulmonary artery pressure (Ppa) also increased. In the acutely-prepared sheep, the LTB4-induced pulmonary hemodynamic and lymph flow responses were damped. Leukotriene C4 increased Ppa to a greater extent in awake sheep than in anesthetized sheep, but did not significantly affect the pulmonary lymph flow rate (Qlym) and lymph-to-plasma protein concentration (L/P) ratio in either group. LTD4 increased Ppa and Qlym in both acute and awake sheep; Qlym increased without a significant change in the L/P ratio. The LTD4-induced rise in Ppa occurred in association with an increase in plasma thromboxane B2 (TxB2) concentration. The relatively small increase in Qlym with LTD4 suggests that the increase in the transvascular fluid filtration rate is the result of a rise in the pulmonary capillary hydrostatic pressure. In conclusion, LTB4 induces a marked neutropenia, pulmonary hypertension, and may transiently increase lung vascular permeability. Both LTC4 and LTD4 cause a similar degree of pulmonary hypertension in awake sheep, but had different lymph flow responses which may be due to pulmonary vasoconstriction at different sites, i.e. greater precapillary constriction with LTC4 because Qlym did not change and greater postcapillary constriction with LTD4 because Qlym increased with the same rise in Ppa.  相似文献   

12.
Lowered pulmonary arterial pressure prevents edema after endotoxin in sheep   总被引:3,自引:0,他引:3  
Escherichia coli endotoxin causes increased capillary membrane permeability and increased pulmonary arterial pressure (PAP) in sheep. If the pulmonary hypertension extends to the level of the microvasculature, then the increased microvascular pressure may contribute to the pulmonary edema caused by endotoxin. We tested the hypothesis that reducing the pulmonary hypertension would reduce the amount of edema caused by endotoxin. Twelve sheep were chronically instrumented with catheters to measure PAP, left atrial pressure, and central venous pressure. The sheep were divided into two groups. One group (E) of six sheep received an intravenous infusion of 4 micrograms/kg of E. coli endotoxin. The second group (E + SNP) received the same dose of endotoxin as well as a continuous infusion of sodium nitroprusside (SNP) to reduce PAP. Three hours after the endotoxin infusions, the sheep were terminated and the extravascular fluid-to-blood-free dry weight ratios of the lungs were determined (EVF). The base-line PAP was 17.5 +/- 2.7 mmHg. A two-way analysis of variance demonstrated a significant difference (P less than 0.01) in PAP between the E and E + SNP groups. Although PAP in each group varied as a function of time, the difference between the two groups did not. The mean PAP for the E + SNP group (20.9 +/- 1.5 mmHg) was lower than the E group PAP of 27.3 +/- 2.1 mmHg after the endotoxin spike. Furthermore, the E + SNP group EVF (3.9 +/- 0.2) was significantly less than the EVF of the E group (4.7 +/- 0.5).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Acute lung injury with smoke inhalation results in significant morbidity and mortality. Previously we have shown that synthetic smoke composed of carbon and acrolein, a common component of smoke, causes delayed-onset noncardiogenic pulmonary edema. To study the possible role of the vasoactive and edemagenic sulfidopeptide leukotrienes (SPLT) in smoke inhalation injury, we measured pulmonary hemodynamics, lung lymph flow, and SPLT and leukotriene (LT) B4 in lung lymph before and after 10 min of synthetic acrolein smoke exposure. After smoke exposure there was a significant rise in pulmonary vascular resistance caused by a rise in pulmonary arterial pressure, a fall in cardiac output, and no change in pulmonary capillary wedge pressure. This was accompanied by an increase in total systemic vascular resistance (P less than 0.05), lung lymph flow (P less than 0.05), and extravascular lung water-to-lung dry weight ratio (P less than 0.05). Both SPLT and LTB4 clearance rose significantly (P less than 0.05), but there was a 10-fold increase in SPLT over LTB4 clearance. In sheep pretreated with FPL55712, a SPLT antagonist, the early rise in pulmonary vascular resistance was attenuated, and the rise in systemic vascular resistance was blocked. This was associated with an attenuated and delayed fall in cardiac output. FPL55712 had no effect on lung lymph flow or extravascular lung water-to-dry weight ratio. SPLT, and especially LTD4, may have a role in increased pulmonary and systemic vascular resistance after smoke inhalation injury but does not appear to affect vascular permeability.  相似文献   

14.
The polycation protamine sulfate increases microvascular permeability in the kidney by reducing glomerular charge. We have exposed the pulmonary vasculature to protamine sulfate to determine whether electrical charges play a role in protein permeability in lung vascular beds. In anephric rats, protamine sulfate increased hematocrit approximately 25%. With protamine sulfate doses of 0.08 and 0.04 mg/g body wt, lung blood-free wet-to-dry weight ratios were increased (5.24 +/- 0.8 and 4.89 +/- 0.7) compared with control (3.85 +/- 0.3) (P less than 0.05). In isolated, ventilated, and perfused lungs 0.04 mg/g body wt protamine sulfate increased pulmonary arterial pressure from 5.2 +/- 1.4 to 16.3 +/- 3.9 mmHg (P less than 0.01). These lungs gained weight and lung wet-to-dry weight ratios were significantly increased (15.33 +/- 4.26 compared with 6.04 +/- 0.24 for control lungs). Poly-L-lysine, another polycation, also caused significant increases in pulmonary arterial pressure, lung weight, and lung wet-to-dry weight ratios. The addition of diphenhydramine to the perfusate 10 min before the addition of protamine sulfate did not prevent these changes. Heparin (90 U/mg protamine sulfate) reversed the abnormalities. Pulmonary arterial pressure (7.0 +/- 1.1 mmHg) was not significantly different from the control value, lung weight did not increase, and the lung wet-to-dry weight ratio was 6.24 +/- 0.23 (P greater than 0.05). We conclude that polycations have a significant effect on pulmonary vascular resistance and perhaps on permeability.  相似文献   

15.
Endotoxin increases pulmonary vascular protein permeability in the dog   总被引:5,自引:0,他引:5  
Endotoxin increases pulmonary vascular permeability consistently in some species but fails to reliably cause injury in the dog. We wondered whether this phenomenon depended on the method of injury assessment, as others have relied on edema measurement; we quantified injury by monitoring the rate of extravascular protein accumulation. 113mIn-labeled protein and 99mTc-labeled erythrocytes were injected into anesthetized dogs and monitored by an externally placed lung probe. A protein leak index, the rate of extravascular protein accumulation, was derived from the rate of increase in lung protein counts corrected for changes in intravascular protein activity. After administration of Salmonella enteriditis endotoxin (4 micrograms/kg), the protein leak index was elevated 2.5-fold (41.1 +/- 4.6 X 10(-4) min-1) compared with control (16.0 +/- 2.8 X 10(-4) min-1). In contrast, wet-to-dry weight ratios failed to increase after endotoxin (4.6 +/- 0.8 vs. control values of 4.2 +/- 0.5 g/g dry bloodless lung). However, we observed that endotoxin increased lung dry weight (per unit body weight), which may have attenuated the change in wet-to-dry weight ratios. To determine whether low microvascular pressures following endotoxin attenuated edema formation, we increased pulmonary arterial wedge pressures in five dogs by saline infusion, which caused an increase in wet-to-dry weight ratios following endotoxin but no change in the five controls. We conclude that low dose endotoxin causes pulmonary vascular protein leak in the dog while edema formation is minimal or absent.  相似文献   

16.
We examined the effect of acute complement activation on lung vascular permeability to proteins in awake sheep prepared with lung lymph fistulas. Complement was activated by cobra venom factor (CVF) infusion (400 U/kg for 1 h iv). Studies were made in two groups of sheep: 1) infusion of CVF containing the endogenous phospholipase A2 (PLA2) (n = 6); and 2) infusion of CVF pretreated with bromophenacyl bromide to inhibit PLA2 activity (n = 5). Intravascular complement activation transiently increased mean pulmonary arterial pressure (Ppa) and pulmonary vascular resistance (PVR) in both groups. Pulmonary lymph flow (Qlym) and lymph protein clearance (Qlym X lymph-to-plasma protein concentration ratio) were also transiently increased in both groups. Pulmonary vascular permeability to proteins was assessed by raising left atrial pressure and determining the lymph-to-plasma protein concentration ratio (L/P) at maximal Qlym. In both groups the L/P at maximal Qlym was not different from normal. In a separate group (n = 4), CVF-induced complement activation was associated with 111In-oxine granulocyte sequestration in the lungs. In vitro plasma from CVF-treated animals aggregated neutrophils but did not stimulate neutrophils to produce superoxide anion generation. Therefore, CVF-induced complement activation results in pulmonary neutrophil sequestration and in increases in PVR and lymph protein clearance. The increase in lymph protein clearance is due to increased pulmonary microvascular pressure and not increased vascular permeability to proteins.  相似文献   

17.
Experiments were conducted on five chronically instrumented unanesthetized sheep to determine the effects of verapamil, a calcium channel inhibitor, on the pulmonary hemodynamic and microvascular permeability responses to endotoxemia. Paired control endotoxemia experiments (E) and endotoxemia with verapamil treatment (30-60 micrograms.kg-1.min-1) experiments (V + E) were conducted on each sheep in random order. In the V + E experiments sheep were pretreated with a continuous intravenous infusion of verapamil 1.5-2.0 h before endotoxin infusion (1.0 microgram/kg, given over 15 min). Verapamil significantly increased base-line pulmonary arterial pressure, left atrial pressure, lung lymph flow rate, and circulating blood leukocyte levels and significantly decreased base-line cardiac output. During the endotoxin response, verapamil significantly attenuated both phase I pulmonary arterial hypertension and phase II lung lymph flow rate compared with control endotoxin experiments. The results indicate that verapamil attenuates both the pulmonary hemodynamic and increased lung microvascular permeability response to endotoxin in sheep. In a series of in vitro experiments, verapamil was found to be a potent inhibitor of phorbol myristate acetate-induced superoxide production in isolated sheep granulocytes. These data suggest that the beneficial in vivo effects of verapamil during endotoxemia may in part be due to its inhibition of increased free cytosol calcium concentration and/or inhibition of toxic O2 metabolite production.  相似文献   

18.
We analyzed the effects of Escherichia coli endotoxin infusion on pulmonary microvessels in sheep by using a two-pore mathematical model of the microvascular barrier. Five sheep were prepared with lung lymph fistulas and instrumented to measure pulmonary arterial and left atrial pressures. Multiple indicator-dilution curves (with 125I-labeled albumin, 51Cr-labeled erythrocytes, [14C]urea, and 3H2O) were measured at base line and during phases 1 and 2 of the endotoxin response. Alterations in the membrane integrity in response to endotoxin infusion were quantified by using a two-pore theory of the microvascular barrier that incorporated lymph, protein, pressure, and multiple indicator measurements. The modeling results showed a slight change in the size of the pores during phase 1 but a 56% decrease in the number of small pores and a twofold increase in the number of large pores with respect to base-line values. During phase 2 the large pore size increased by 40%, and the total number of pores returned to base-line values. The analysis showed that endotoxin effects on fluid and protein exchange in the lung cannot be explained by hemodynamic and surface area changes alone. An apparent increase in lung microvascular permeability occurs during phases 1 and 2 of the endotoxin reaction, with a substantial decrease in perfused microvascular surface area during phase 1.  相似文献   

19.
Six chronically catheterized sheep were exposed to 1,500-rad whole-lung irradiation and followed for a four-week period. Pulmonary arterial, left atrial and systemic arterial pressures, cardiac output, arterial blood gases, and pH were measured at base line and biweekly following radiation. Pulmonary vasoreactivity to 12% O2, 100% O2, and an analogue of prostaglandin H2 (PGH2-A) was also assessed. Five nonirradiated sheep served as controls. By the 2nd wk following irradiation, pulmonary vascular resistance had doubled. Final pulmonary arterial pressure was increased 50% over the base-line value (base line = 14 +/- 1 cm H2O; final 22 +/- 2; mean +/- SE; P less than 0.05). Arterial PO2 was decreased to approximately 70 Torr throughout the study. In addition, pulmonary vasoreactivity to PGH2-A, but not to breathing 12 or 100% O2, was significantly increased above base line in the irradiated animals (P less than 0.05). Morphometric techniques applied to the lungs in which the pulmonary arterial circulation was distended with barium gelatin mixture, showed extension of muscle into the distal intra-acinar arteries, and a reduction in both the external diameter and the number of barium-filled peripheral arteries in the irradiated animals. Thus thoracic irradiation results in functional and structural changes of chronic pulmonary hypertension and increased pulmonary vasoreactivity to PGH2-A. The structural changes in the peripheral pulmonary arterial bed may contribute to the increased pulmonary vascular reactivity following thoracic irradiation.  相似文献   

20.
We examined the effects of cobra venom factor (CVF) on the changes in pulmonary hemodynamics and transvascular fluid and protein exchange following thrombin-induced pulmonary microembolism. Studies were made in unanesthetized sheep prepared with lung lymph fistulas. The animals received tranexamic acid (100 mg) to suppress fibrinolysis and were then challenged with an intravenous infusion of alpha-thrombin (80 U/kg). Control-thrombin challenged sheep were compared with the CVF-treated sheep challenged with the same thrombin dosage. CVF treatment (187 U X kg-1 X day-1 for 4 days) decreased the total hemolytic complement activity by 45% of control. Thrombin infusion in control sheep increased the mean pulmonary arterial pressure (Ppa), pulmonary vascular resistance (PVR), and lymph protein clearance (pulmonary lymph flow X lymph-to-plasma protein concentration ratio, Clym). Thrombin infusion in CVF-treated sheep produced smaller increments in Ppa, PVR, and Clym. Pulmonary lymph obtained from control-thrombin and CVF-thrombin sheep induced migration of granulocytes obtained from normal unchallenged sheep. The granulocytes obtained from CVF-treated sheep responded relatively less to the migratory and O-2-generating stimuli (i.e., zymosan-treated serum, pulmonary lymph from sheep after thrombin challenge, and plasma from sheep after CVF treatment) compared with normal granulocytes. The attenuation of the thrombin-induced increases in Ppa, PVR, and lung transvascular fluid and protein exchange by CVF treatment may be the result of impaired function of granulocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号