共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Subterranean clover (Trifolium subterraneum L.) cv. Woogenellup swards were grown at 10, 15, 20 and 25 Cwith a 12 h photoperiod of 500 or 1000 µmol m2s1 [low and high photosynthetic photon flux density (PPFD)].Nitrogen-fixing swards received nutrient solution lacking combinednitrogen while control swards received a complete nutrient solution.Growth was measured by infra-red analysis of carbon dioxideexchange and by accumulation of dry matter. Swards were harvestedat intervals between 95 and 570 g d. wt m2 for estimationof nitrogenase activity by acetylene reduction and hydrogenevolution assays. Nitrogen fixation was also measured by increasein organic nitrogen. The growth rate was highest at 10 C at low PPFD, and at 1015C at high PPFD. Nitrogen-fixing swards grew slower than thosereceiving combined nitrogen. Nitrogen fixation measured by increasein organic nitrogen responded similarly to the growth rate,as did acetylene reduction between 10 and 20 C. At 25 C therelationship between acetylene reduction and nitrogen fixationwas distrupted. The difference between the rates of acetylenereduction and hydrogen evolution, theoretically proportionalto nitrogen fixation, was not a reliable indicator of nitrogenfixation because hydrogen uptake developed. Trifolium subterraneum L, subterranean clover, growth, nitrogen fixation, temperature, acetylene reduction 相似文献
3.
Relationships Between Nitrate and Oxygen Supply in Symbiotic Nitrogen Fixation by White Clover 总被引:2,自引:1,他引:2
MINCHIN F. R.; MINGUEZ M. INES; SHEEHY J. E.; WITTY J. F.; SKOT L. 《Journal of experimental botany》1986,37(8):1103-1113
Exposure of mature, nodulated plants of white clover (Trifoliumrepens) cv. Blanca to 330 mg dm3 NO3-N for 8 d causednitrogenase activity per plant to decrease by 80%. Total nodulatedroot respiration was not significantly affected but analysisof its components showed an 81% decrease in nitrogenase-linkedrespiration and a 340% increase in growth and maintenance respiration.Carbon costs of nitrogenase activity (mol CO2 respired per molC2H4 produced) increased by 45% over the exposure period. Sucrosecontent of the nodules decreased, but the pattern of decreasedid not correlate with that of nitrogenase activity. The oxygendiffusion resistance of the nodules was increased by a factorof five. Characterization of this resistance increase suggestsan abnormal modification of the diffusion barrier and it isconcluded that alteration in the oxygen supply to the bacteroidsis involved in the effect of nitrate on nitrogenase activity. Key words: Nitrogenase activity, nitrate, oxygen 相似文献
4.
Nodulated white clover plants (Trifolium repens L. cv. Huia)were grown as simulated swards for 71 d in flowing nutrientsolutions with roots at 11 C and shoots at 20/15 C, day/night,under natural illumination. Root temperatures were then changedto 3, 5, 7, 11, 13, 17 or 25 C and the total N2, fixation over21 d was measured in the absence of a supply mineral N. Alltreatments were subsequently supplied with 10 mmol m2NO2 in the flowing solutions for 14 d, and the relativeuptake of N by N2, fixation and NO3 uptake was compared.Net uptake of K+ was measured on a daily basis. Root temperature had little effect on root d. wt over the 35-dexperimental period, but shoot d. wt increased by a factor of3.5 between 3 and 25 C, with the sharpest increase occurringat 711 C. Shoot: root d. wt ratios increased from 25to 68 with increasing temperature at 725 C. N2-fixationper plant (in the absence of NO2 ) increased with roottemperature at 313C, but showed little change above13 C. The ratios of N2 fixation: NO2 uptake over 14d (mol N: mol N) were 0.470.77 at 37 C, 092154at 1117 C, and 046 at 25 C, reflecting the dominanceof NO3 uptake over N2 fixation at extremes of high andlow root temperature. The total uptake of N varied only slightlyat 1125 C (095110 mmol N plant1),the decline in N2 fixation as root temperature increased above11 C was compensated for by the increase in NO 3 uptake.The % N in shoot dry matter declined with decreasing root temperature,from 32% at 13 C to 15% at 3 C. In contrast, concentrationsof N expressed on a shoot water content basis showed a modestdecrease with increasing temperature, from 345 mol m3at 3 C to 290 mol m3 at 25 C. Trifolium repens L, white clover, root temperature, N2 fixation, potassium uptake, nitrate uptake, flowing solution culture 相似文献
5.
Effect of Root/Leaf Temperature Differentials on Root/Shoot Ratios in Some Pasture Grasses and Clover 总被引:16,自引:1,他引:16
Twelve pasture species were grown in the same aerial environment,but with five constant soil temperatures ranging from 5 to 35°C, to determine the influence of root temperature on theweight of roots per unit weight of foliage (R/S ratio). Thisratio varied by a factor of 2 to 8 within species. Using maximum yield of foliage to indicate the optimum soiltemperature for each species, it was found that the R/S ratiowas lowest at the optimum soil temperature, and was progressivelyhigher at soil temperatures above and below the optimum withonly slight exceptions. This experimental manipulation of R/Sratios suggests that the partitioning of photosynthate is controlledby the relative rates of photosynthesis and root absorption,by inverse proportion: Root mass x rate(abeorption) 相似文献
6.
Single clonal plants of white clover (Trifolium repens L) grownfrom explants in a Perlite rooting medium, and dependent fornitrogen on N2 fixation in root nodules, were grown for severalweeks in controlled environments which provided two regimesof CO2, and temperature 23/18 °C day/night temperaturesat 680 µmol mol1 CO2, (C680), and 20/15 °Cday/night temperatures at 340 µmol mol1 CO2 (C340)After 34 weeks of growth, when the plants were acclimatedto the environmental regimes, leaf and whole-plant photosynthesisand respiration were measured using conventional infra-red gasanalysis techniques Elevated CO2 and temperature increased ratesof photosynthesis of young, fully expanded leaves at the growthirradiance by 1729%, despite decreased stomatal conductancesand transpiration rates Water use efficiency (mol CO2 mol H2O1)was also significantly increased Plants acclimated to elevatedCO2, and temperature exhibited rates of leaf photosynthesisvery similar to those of C340 leaves instantaneouslyexposed to the C680 regime However, leaves developed in theC680 regime photosynthesised less rapidly than C340 leaves whenboth were exposed to a normal CO2, and temperature environmentIn measurements where irradiance was varied, the enhancementof photosynthesis in elevated CO2 at 23 °C increased graduallyfrom approx 10 % at 100 µmol m1 s1 to >27 % at 1170 µmol m2 s1 In parallel, wateruse efficiency increased by 2040 % at 315 µmolm2 s1 In parallel, water use efficiency increasedby 2040 % at 315 µmol m2 s1 In parallel,water use efficiency increased by 2040 % at 315 µmolm2 s1 In parallel, water use efficiency increasedby 2040 % at 315 µmol m2 s1 to approx100 % at the highest irradiance Elevated CO2, and temperatureincreased whole-plant photosynthesis by > 40 %, when expressedin terms of shoot surface area or shoot weight No effects ofelevated CO2 and temperature on rate of tissue respiration,either during growth or measurement, were established for singleleaves or for whole plants Dependence on N2, fixation in rootnodules appeared to have no detrimental effect on photosyntheticperformance in elevated CO2, and temperature Trifolium repens, white clover, photosynthesis, respiration, elevated CO2, elevated temperature, water use efficiency, N2 fixation 相似文献
7.
Jarvis, S. C. and Hatch, D. J. 1985. The effects of aluminiumon the growth of white clover dependent upon fixation of atmosphericnitrogen.J. exp. Bot. 36: 10751086. The effects of aluminium (Al3 +) on the growth of white cloverdependent upon symbiotic fixation of atmospheric nitrogen wereexamined at concentrations that may be encountered in solutionsfrom soils of low pH. Well established plants were grown inflowing solution culture with carefully maintained concentrationsof Al and of P and with pH held constant at a value (4.5) atwhich insoluble precipitates are unlikely to form. After 3 weeksof treatment, there were major visual differences between treatmentsin both shoots and roots. Although added Al at 25, 50 and 100mmol m3 reduced dry weight, the differences between theplants were not significant. There were, however, some considerabledifferences in P and Ca contents between the treatments. Muchof the Al held by the roots was displaced when plants were transferredto solutions containing either scandium or gallium. As wellas the effects on the plant, Al had a considerable influenceon the fixation of atmospheric nitrogen. At concentrations of50 and 100 mmol m3 Al3+ nodule initiation was reducedand there was a much reduced nodule nitrogenase activity perunit of root. Even at 25 mmol m3 Al3+, when nodule numberswere not reduced, nitrogenase activity was adversely affected. Key words: Aluminium, Trifolium repens, nitrogen fixation 相似文献
8.
Maize (Zea mays L.) and spring wheat (Triticum aestivum L.)were grown in nutrient solution at uniformly high air temperature(20 °C), but different root zone temperatures (RZT 20, 16,12 °C). To manipulate the ratio of shoot activity to rootactivity, the plants were grown with their shoot base includingthe apical meristem either above (i.e. at 20 °C) or withinthe nutrient solution (i.e. at 20, 16 or 12 °C). In wheat, the ratio of shoot:root dry matter partitioning decreasedat low RZT, whereas the opposite was true for maize. In bothspecies, dry matter partitioning to the shoot was one-sidedlyincreased when the shoot base temperature, and thus shoot activity,were increased at low RZT. The concentrations of non-structuralcarbohydrates (NSC) in the shoots and roots were higher at lowin comparison to high RZT in both species, irrespective of theshoot base temperature. The concentrations of nitrogen (N) inthe shoot and root fresh matter also increased at low RZT withthe exception of maize grown at 12 °C RZT and 20 °Cshoot base temperature. The ratio of NSC:N was increased inboth species at low RZT. However this ratio was negatively correlatedwith the ratio of shoot:root dry matter partitioning in wheat,but positively correlated in maize. It is suggested that dry matter partitioning between shoot androots at low RZT is not causally related to the internal nitrogenor carbohydrate status of the plants. Furthermore, balancedactivity between shoot and roots is maintained by adaptationsin specific shoot and root activity, rather than by an alteredratio of biomass allocation between shoot and roots.Copyright1994, 1999 Academic Press Wheat, Triticum aestivum, maize, Zea mays, root temperature, shoot meristem temperature, biomass allocation, shoot:root ratio, carbohydrate status, nitrogen status, functional equilibrium 相似文献
9.
RYLE G. J. A.; POWELL C. E.; TIMBRELL M. K.; GORDON A. J. 《Journal of experimental botany》1989,40(7):733-739
Single, clonal plants of white clover were grown without inorganicnitrogen in four contrasting day/night temperature regimes,with a 12 h photoperiod, in controlled environments. Root andnodule respiration and acetylene reduction activity were measuredin a flow-through system during both day and night for plantsacclimated to day/night regimes of 23/18, 15/10 and 10/5 ?C.Similar measurements were made on plants acclimated to 20/15?C and stepwise at temperatures from 4 to 33 ?C. Peak rate of ethylene production, nitrogenase-linked respirationand basal root + nodule respiration increased approximatelylinearly from 5 to 23 ?C both in temperature-acclimated plantsand in plants exposed to varying measurement temperatures. Themeasured attributes did not vary significantly between day andnight. Temperatures above 2325 ?C did not further enhancethe rate of ethylene production, which remained essentiallythe same up to the maximum measured temperature of 33 ?C. The measurements of nitrogenase-linked respiration between 5and 23 ?C, during both day and night, demonstrated a constantenergetic cost of acetylene reduction of 2.9 µmolCO2 µmol C2H41,. Over the same temperature range,the approximate activation energy of acetylene reduction was60 kJ mol1. The integrated day plus night nitrogenase-linkedrespiration accounted for 13.416% of the plantsnet shoot photosynthesis in a single diurnal period: there wasno significant effect of temperature between 5 and 23 ?C. Key words: Trifolium repens, white clover, temperature, N2 fixation, respiration 相似文献
10.
Nodulated white clover plants (Trifolium repens L. cv. Huia)were grown for 71 d in flowing nutrient solutions containingN as 10 mmol m3 NH4NO3, under artificial illumination,with shoots at 20/15°C day/night temperatures and root temperaturereduced decrementally from 20 to 5°C. Root temperatureswere then changed to 3, 7, 9, 11, 13, 17 or 25°C, and theacquisition of N by N2 fixation, NH4+ and NO3 uptakewas measured over 14 d. Shoot specific growth rates (d. wt)doubled with increasing temperature between 7 and 17°C,whilst root specific growth rates showed little response; shoot:root ratios increased with root temperature, and over time at11°C. Net uptake of total N per plant (N2 fixation + NH4++ NO3) over 14 d increased three-fold between 3 and 17°C.The proportion contributed by N2 fixation decreased with increasingtemperature from 51% at 5°C to 18% at 25°C. Uptake ofNH4+ as a proportion of NH4+ + NO3 uptake over 14 d variedlittle (5562%) with root temperature between 3 and 25°C,although it increased with time at most temperatures. Mean ratesof total N uptake per unit shoot f. wt over 14 d changed littlebetween 9 and 25°C, but decreased progressively with temperaturebelow 9°C, due to the decline in the rates of NH4+ and NO3uptake, even though N2 fixation increased. The results suggestthat N2 fixation in the presence of sustained low concentrationsof NH4+ and NO4 is less sensitive to low root temperaturethan are either NH4+ or NO3 uptake systems. White clover, Trifolium repens L. cv. Huia, root temperature, nitrogen fixation, ammonium, nitrate 相似文献
11.
Single plants of white clover, grown in a controlled environmentand dependent for nitrogen on fixation in their root nodules,were defoliated once by removing approximately half their shoottissue. Their regrowth was compared with the growth of comparableundefoliated plants. Two similar experiments were carried out:in the first, plants were defoliated at 2.5 g, and in the secondat 1.2 g total plant d. wt. Defoliation reduced rate of N2 fixation by > 70 per cent,rate of photosynthesis by 8396 per cent, and rate ofplant respiration by 3040 per cent. Nodule weights initiallydeclined following defoliation as a result of loss of carbohydratesand other unidentified components. No immediate shedding ofnodules was observed but nodules on the most severely defoliatedplants exhibited accelerated senescence. The original rates of N2 fixation were re-attained after 56or 9 d regrowth, with increase in plant size at defoliation.In general, the rate of recovery of N2 fixation was relatedto the re-establishment and increase of the plant's photosyntheticcapacity. Throughout the growth of both defoliated and undefoliatedplants nodule respiration (metabolism) accounted for at least23 ± 2 per cent of gross photosynthesis. The unit costof fixing N2 in root nodules, in terms of photosynthate, appearedto be unaffected by defoliation, except perhaps for plants veryrecently defoliated. Similarly, the percentage nitrogen contentsof shoot, root and nodules of defoliated plants became adaptedwithin a few days to those characteristic of undefoliated plants. Trifolium repens, white clover, N2 fixation, defoliation, photosynthesis, respiration 相似文献
12.
Simulated mixed swards of perennial ryegrass (Lolium perenneL. cv. S23) and white clover (Trifolium repens L. cv. S100)were grown from seed under a constant 10°C day/8°C nighttemperature regime and their growth, and carbon and nitrogeneconomies examined. The swards received a nutrient solution,every second day, which contained either high (220 µgg1) or low (40 µg g1) nitrate N. The High-N swards had rates of canopy photosynthesis and drymatter production (over the linear phase of growth) similarto those previously shown by mixed swards at high temperature.The Low-N swards grew more slowly; canopy photosynthesis, ata given LAI, was similar to that at High-N but lower LAI's weresustained. Clover increased its contribution to total carbonuptake and total dry weight throughout the period in the Low-Ntreatment and, despite the fact that grass took up most of theavailable nitrate, clover maintained a consistently higher Ncontent by virtue of N2-fixation. At High-N, grass dominated throughout the measurement period.Earlier, when plants grew as spaced individuals, clover grewless well than grass, but once the canopy was closed it hada similar relative growth rate and thus maintained a steadyproportion of total sward dry weight. It is proposed that earlyin the development of the crop, leaf area production is thelimiting factor for growth, and that in this respect cloveris adversely affected by low temperature relative to grass.Later, as the LAI of the crop builds up, and the canopy becomesfully light intercepting, net canopy photosynthesis plays amore dominant role and here the higher photosynthetic rate perunit leaf area of the clover is crucial. Trifolium repens, white clover, Lolium perenne, perennial ryegrass, low temperature, nitrogen, photosynthesis 相似文献
13.
The rate of photosynthesis of leaves of perennial ryegrass (Loliumperenne L.) and white clover (Trifollum pratense L.) grown atdifferent temperatures was measured at a range of temperatures.There was a small effect of the temperature at which a leafhad grown on its photosynthetic rate, but a large effect ofmeasurement temperature, especially in bright light, where photosyntheticrates at 15°C were about twice those at 5°C. It appearsthat temperature could affect sward photosynthesis in the field.Ryegrass and clover had similar photosynthetic rates which respondedsimilarly to temperature. Lolium perenne L., ryegrass, Trifolium pratense L., white clover, photosynthesis, temperature, irradiance 相似文献
14.
Single plants of white clover grown in controlled environments,and dependent for nitrogen on N, fixation, were defoliated at1 or 2 d intervals to 3, 2 and 1 expanded leaves per stolon(Expt 1), and to 1,0.5 (1 leaf on every alternate stolon) and0 expanded leaves per stolon (Expt 2), for 4350 days Plants adapted to severe defoliation by developing much smallerleaves with a slightly reduced specific leaf area, more stolons,a smaller proportion of weight in leaf, root and nodules anda greater proportion of weight in stolons. The daily yield (materialremoved by defoliation) of d. wt and nitrogen generally decreasedwith severity of defoliation, as did the residual plant weight.However, the efficiency of yield (daily yield/residualweight x 100) of dry matter and nitrogen was greater in themost severely defoliated treatments, attaining a maximum of56 % All plants adapted to the imposed defoliation regimes, howeversevere, with the result that even plants maintained withoutany fully expanded leaves invested a similar fraction of theirmetabolic resources in shoot and root as less severely defoliatedplants, and continued to grow and fix N2, albeit at a very reducedrate of 12 mg Nd11. The energetic cost of N2 fixation(acetylene reduction) remained constant in all treatments at31 mole CO2 mole C2H41, but there was some evidence thatrate of N2 fixation per unit of nodule weight declined in themost harshly defoliated treatment. Trifolium repens, white clover, continous defolation, growth, N2 fixation 相似文献
15.
Current Nitrogen Fixation Is Involved in the Regulation of Nitrogenase Activity in White Clover (Trifolium repens L.)
下载免费PDF全文

Previous studies have shown that nitrogenase activity decreases dramatically after defoliation, presumably because of an increase in the O2 diffusion resistance in the infected nodules. It is not known how this O2 diffusion resistance is regulated. The aim of this study was to test the hypothesis that current N2 fixation (ongoing flux of N2 through nitrogenase) is involved in the regulation of nitrogenase activity in white clover (Trifolium repens L. cv Ladino) nodules. We compared the nitrogenase activity of plants that were prevented from fixing N2 (by continuous exposure of their nodulated root system to an Ar:O2 [80:20] atmosphere) with that of plants allowed to fix N2 (those exposed to N2:O2, 80:20). Nitrogenase activity was determined as the amount of H2 evolved under Ar:O2. An open flow system was used. In experiment I, 6 h after complete defoliation and the continuous prevention of N2 fixation, nitrogenase activity was higher by a factor of 2 compared with that in plants allowed to fix N2 after leaf removal. This higher nitrogenase activity was associated with a lower O2 limitation (measured as the partial pressure of O2 required for highest nitrogenase activity). In experiment II, the nitrogenase activity of plants prevented from fixing N2 for 2 h before leaf removal showed no response to defoliation. The extent to which nitrogenase activity responded to defoliation was different in plants allowed to fix N2 and those that were prevented from doing so in both experiments. This leads to the conclusion that current N2 fixation is directly involved in the regulation of nitrogenase activity. It is suggested that an N feedback mechanism triggers such a response as a result of the loss of the plant's N sink strength after defoliation. This concept offers an alternative to other hypotheses (e.g. interruption of current photosynthesis, carbohydrate deprivation) that have been proposed to explain the immediate decrease in nitrogenase activity after defoliation. 相似文献
16.
The Influence of Carbon Dioxide and Daily Photon-flux Density on Optimal Leaf Nitrogen Concentration and Root: Shoot Ratio 总被引:4,自引:1,他引:4
Using a cost-benefit model, the leaf nitrogen concentrationand root : shoot ratio that maximize whole-plant relative growthrate are determined as a function of the above-ground environment(integrated daily photon flux density and the concentrationof carbon dioxide at the site of fixation within the leaf).The major advantage of this approach is that it determines theadaptive significance of leaf physiology by considering thefunctional integration of leaves and roots. The predicted responseto increasing daily photon flux densities is an increase inoptimal leaf N concentration (Nopt) and a concomitant increasein root: shoot ratio. Increased carbon dioxide concentrations,on the other hand, reduce Nopt and only slightly change root:shoot ratio. The observed increase in leaf nitrogen concentrationfound in plants growing at high altitudes (low CO2 partial pressure)is also predicted. Since these responses to light and CO2 maximizethe whole-plant relative growth rate, the observed adjustmentsthat plants make to light and carbon dioxide concentration appearto be adaptive. We show that the relationship between photosynthesis and leafnitrogen concentration is complex and depends on the light andCO2 levels at which photosynthesis is measured. The shape ofthis function is important in determining Nopt and the oppositeresponse of leaf nitrogen to light and carbon dioxide is shownto be the result of the different effects of light and CO2 onthe photosynthesis-leaf nitrogen curve. Plant growth, photosynthesis, leaf nitrogen, biomass allocation, optimization, carbon dioxide light 相似文献
17.
The Influence of Frequent Defoliation and of Drought on Nitrogen and Sulphur in the Roots of Perennial Ryegrass and White Clover 总被引:2,自引:0,他引:2
Frequent defoliation and drought, imposed individually overa period of 60 days, both reduced substantially the root weightsof white clover grown in the field, while causing no reductionin the root weights of perennial ryegrass. Concentrations ofN and S in the root organic matter of the clover were reducedby between 14 and 25 per cent by both treatments, but with theryegrass concentrations were not reduced. Perennial ryegrass, white clover, roots, nitrogen, sulphur, defoliation, drought 相似文献
18.
A general theoretical approach is developed to analyze the morphologicaland physiological responses of plants to nitrogen availability.The optimal leaf-nitrogen concentration and corresponding optimalroot: shoot ratio which maximize relative growth rate are foundquantitatively as a function of rootspecific activitywhich is assumed to be a function of soil nitrogen availability.The cost of increasing tissue nitrogen concentration is foundto be primarily related to an increase in allocation to roots.Predictions of the analysis are consistent with previous theoriesand general empirical findings, suggesting that plants respondoptimally to soil nitrogen. Relative growth rate is predictedto be a nearly linear function of whole-plant nitrogen concentrationand shoot fraction is a monotonically increasing function oftissue nitrogen concentration when plants respond optimallyto soil nitrogen availability. Plant growth, root:shoot ratios, biomass allocation, nitrogen productivity, optimization 相似文献
19.
Scanning Electron Microscopy of Rhizobium trifolii Infection Sites on Root Hairs of White Clover 总被引:1,自引:3,他引:1
下载免费PDF全文

White clover root hairs which were inoculated with Rhizobium trifolii 4S (infectious strain) contained infection threads which were observed by light microscopy and scanning electron microscopy. Three morphological types of root hairs retaining infection threads were recognized. The bacteria were strongly attached between the surfaces of two plant cell walls as follows: between surfaces of a root hair tip curled back on itself, between a protuberance from a root hair and its cell surface, or between two root hair tips clinging together. An anatomical analysis documented the attachment site of the infection thread sheath from the inside of the root hair cell. 相似文献
20.
The effect of the presence of hydrogen and of carbon monoxideon the fixation of nitrogen in detached root nodules of non-legumeshas been studied, fixation being measured by the use of 15N.Parallel tests on legumes (pea and soya bean) have been included.Fixation in the nodules of Casuarina, Alnus, and Myrica is inhibitedin the presence of substantial proportions of hydrogen, to adegree resembling that shown in legumes. Fixation in Alnus andMyrica is arrested in the presence of small proportions of carbonmonoxide, and here again the sensitiveness is of the same orderas in legumes. 相似文献