首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A reliable and simple method for detecting nucleobase mutations is very important clinically because sequence variations in human DNA cause genetic diseases and genetically influenced traits. A majority of sequence variations are attributed to single nucleotide polymorphisms (SNPs). Here, we developed a method for SNP detection using DNA probes that contained a fluorescent tricyclic base-linked acyclonucleoside N. The type of nucleobases involved in the SNP sites in an RNA target could be determined using four DNA probes containing N. Further, we found that the SNP in the RNA target could be detected by a visible color. Thus, this system would provide a novel and simple method for detecting SNPs in an RNA target.  相似文献   

2.
We developed a rapid and simple method to identify single-nucleotide polymorphisms (SNPs) in the human mitochondrial tRNA genes. This method is based on a universal, functionalized, self-assembled monolayer, XNA on Gold chip platform. A set of probes sharing a given allele-specific sequence with a single base substitution near the middle of the sequence was immobilized on chips and the chips were then hybridized with fluorescence-labeled reference targets produced by asymmetric polymerase chain reaction from patient DNA. The ratio of the hybridization signals from the reference and test targets with each probe was then calculated. A ratio of above 3 indicates the presence of a wild-type sequence and a ratio of below 0.3 indicates a mutant sequence. We tested the sensitivity of the chip for known mutations in tRNA(Leu(UUR)) and tRNA(Lys) genes and found that it can also be used to discriminate multiple mutations and heteroplasmy, two typical features of human mitochondrial DNA. The XNA on Gold biochip method is a simple and rapid microarray method that can be used to test rapidly and reliably any SNP in the mitochondrial genome or elsewhere. It will be particularly useful for detecting SNPs associated with human diseases.  相似文献   

3.
Akey JM  Sosnoski D  Parra E  Dios S  Hiester K  Su B  Bonilla C  Jin L  Shriver MD 《BioTechniques》2001,30(2):358-62, 364, 366-7
High-throughput methods for assaying DNA variation require two important steps: (i) discriminating the variation and (ii) detecting the signal. In this report, we describe a novel SNP genotyping method that we refer to as melting curve analysis of SNPs (McSNP). McSNP combines a classic approach for discriminating alleles, restriction enzyme digestion, with a more recent method for detecting DNA fragments, melting curve analysis. Melting curve analysis is performed by slowly heating DNA fragments in the presence of the dsDNA-specific fluorescent dye SYBR Green I. As the sample is heated, fluorescence rapidly decreases when the melting temperature of a particular fragment is reached. We show that it is possible to determine the composition of simple mixtures of DNA fragments, such as those that result from restriction enzyme digestions of short PCR products. McSNP is well suited for high-throughput genotyping because 96 samples can be analyzed and automatically scored in 20 min. Our results clearly demonstrate that McSNP is a simple, inexpensive, and accurate means of genotyping SNP variation.  相似文献   

4.
目的:应用基于适配器连接介导的等位基因特异性扩增法(Adapter Ligation—mediated Allele-specific Amplification,简称ALM-ASA)技术,检测与帕金森病(PD)发病相关的LRRK2基因中的4个SNP位点(6055G〉A,7153G〉A,4321C〉T和2264C〉T),探讨该法用于筛查帕金森病相关SNP位点的可行性,研究多个SNP住点同时检测的准确性和可靠性。方法:运用ALM—ASA法原理,改进使用多重PCR法代替单一预扩增法,使用4对引物在单管中预扩增含所待测SNP位点的四段片段,通过酶切、酶连和PCR特异性扩增检测判断SNP的类型。经PCR体外定点突变实验制备的相应位点的突变阳性片段,检验方法的准确性和可靠性。结果:采用该法成功测定了20名PD病人和20名健康中国人的LRRK2基因中最受关注的4个SNP位点的多态性。并随机对其中10分样本的检测结果以测序法检测进行验证,结果完全一致。结论:ALM-ASA法极大提高了PCR反应的特异性,是一种准确、可靠,且费用低廉的SNP筛查方法,可推广应用于临床和实验室进行与PD有关的单核苷酸多态性的筛查检测。  相似文献   

5.
Single nucleotide polymorphisms (SNPs) comprise the most abundant source of genetic variation in the human genome. SNPs may be linked to genetic predispositions, frank disorders or adverse drug responses, or they may serve as genetic markers in linkage disequilibrium analysis. Thus far, established SNP detection techniques have utilized enzymes to meet the sensitivity and specificity requirements needed to overcome the high complexity of the human genome. Herein, we present for the first time a microarray-based method that allows multiplex SNP genotyping in total human genomic DNA without the need for target amplification or complexity reduction. This direct SNP genotyping methodology requires no enzymes and relies on the high sensitivity of the gold nanoparticle probes. Specificity is derived from two sequential oligonucleotide hybridizations to the target by allele-specific surface-immobilized capture probes and gene-specific oligonucleotide-functionalized gold nanoparticle probes. Reproducible multiplex SNP detection is demonstrated with unamplified human genomic DNA samples representing all possible genotypes for three genes involved in thrombotic disorders. The assay format is simple, rapid and robust pointing to its suitability for multiplex SNP profiling at the ‘point of care’.  相似文献   

6.
BACKGROUND: We have developed a rapid, high throughput method for single nucleotide polymorphism (SNP) genotyping that employs an oligonucleotide ligation assay (OLA) and flow cytometric analysis of fluorescent microspheres. METHODS: A fluoresceinated oligonucleotide reporter sequence is added to a "capture" probe by OLA. Capture probes are designed to hybridize both to genomic "targets" amplified by polymerase chain reaction and to a separate complementary DNA sequence that has been coupled to a microsphere. These sequences on the capture probes are called "ZipCodes". The OLA-modified capture probes are hybridized to ZipCode complement-coupled microspheres. The use of microspheres with different ratios of red and orange fluorescence makes a multiplexed format possible where many SNPs may be analyzed in a single tube. Flow cytometric analysis of the microspheres simultaneously identifies both the microsphere type and the fluorescent green signal associated with the SNP genotype. RESULTS: Application of this methodology is demonstrated by the multiplexed genotyping of seven CEPH DNA samples for nine SNP markers located near the ApoE locus on chromosome 19. The microsphere-based SNP analysis agreed with genotyping by sequencing in all cases. CONCLUSIONS: Multiplexed SNP genotyping by OLA with flow cytometric analysis of fluorescent microspheres is an accurate and rapid method for the analysis of SNPs.  相似文献   

7.
Single nucleotide polymorphisms (SNPs) are the most abundant form of genetic variation. SNPs are important markers that link sequence variations to phenotypic changes. Because of the importance of SNPs in the life and medical sciences, a great deal of effort has been devoted to developing accurate, rapid, and cost-effective technologies for SNP analysis. In this article, we describe a novel method for SNP genotyping based on differential fluorescence emission due to cleavage by Thermus thermophilus RNase HII (TthRNase HII) of DNA heteroduplexes containing an SNP site-specific chimeric DNA-rN1-DNA molecular beacon (cMB). We constructed a loop sequence for a cMB that contains a single SNP-specific ribonucleotide at the central site. When the cMB probe is hybridized to a target double-stranded DNA (dsDNA), a perfect match of the cMB/DNA duplex permits efficient cleavage with TthRNase HII, whereas a mismatch in the duplex due to an SNP greatly reduces efficiency. Cleavage efficiency is measured by the incremental difference of fluorescence emission of the beacon. We show that the genotypes of 10 individuals at 12 SNP sites across a series of human leukocyte antigen (HLA) can be determined correctly with respect to conventional DNA sequencing. This novel TthRNase HII-based method offers a platform for easy and accurate SNP analysis.  相似文献   

8.
Cancer-related genes harbored in the loss regions containing a high frequency of hepatocellular carcinoma (HCC) were selected.Related information was gathered and the coding single nucleotide polymorphism (cSNP) sequences were obtained from the single nucleotide polymorphism (SNP) database.The appropriate primers and oligonucleotide probes were then designed in accordance with the SNP sites,and subsequently,the gene chips for detecting SNPs were constructed.Genomic DNA was extracted from blood samples of healthy controls and from patients with HBV infection.The sequences,including the SNPs,were amplified via polymerase chain reaction (PCR) and labeled using digoxigenin deoxyuridine tri-phosphate (Dig-dUTP).The labeled products were then hybridized with the SNP chips.Results confirmed that the differences in allele frequencies of three SNPs EGFL3 (rs947345),Caspase9 (rs2308950),and E2F2 (rs3218171) were distinct between HBV-infected patients and controls,suggesting that these SNPs ocuring in high frequency in HBV-infected individuals may be associated with susceptibility to HCC.  相似文献   

9.
Single nucleotide polymorphisms (SNPs) are abundant in genomes of all species and represent informative DNA markers extensively used to analyze phylogenetic relationships between strains. Medium to high throughput, open methodologies able to test many SNPs in a minimum time are therefore in great need. By using the versatile Luminex® xTAG technology, we developed an efficient multiplexed SNP genotyping assay to score 13 phylogenetically informative SNPs within the genome of Bacillus anthracis. The Multiplex Oligonucleotide Ligation-PCR procedure (MOL-PCR) described by Deshpande et al., 2010 has been modified and adapted for simultaneous interrogation of 13 biallelic canonical SNPs in a 13-plex assay. Changes made to the originally published method include the design of allele-specific dual-priming-oligonucleotides (DPOs) as competing detection probes (MOLigo probes) and use of asymmetric PCR reaction for signal amplification and labeling of ligation products carrying SNP targets. These innovations significantly reduce cross-reactivity observed when initial MOLigo probes were used and enhance hybridization efficiency onto the microsphere array, respectively. When evaluated on 73 representative samples, the 13-plex assay yielded unambiguous SNP calls and lineage affiliation. Assay limit of detection was determined to be 2 ng of genomic DNA. The reproducibility, robustness and easy-of-use of the present method were validated by a small-scale proficiency testing performed between four European laboratories. While cost-effective compared to other singleplex methods, the present MOL-PCR method offers a high degree of flexibility and scalability. It can easily accommodate newly identified SNPs to increase resolving power to the canSNP typing of B. anthracis.  相似文献   

10.
目的:建立一种快速、简单的SNP(Single Nucleotide Polymorphisms)检测方法。方法:设计带生物素标记的扩增引物对检测用具有单碱基差异的野生型和突变型靶序列分别进行扩增,然后通过紫外交联的方式将相应检测靶序列的探针固定在硝酸纤维素膜上,借助Taq酶完成膜上单引物延伸,从而对探针捕获的靶序列进行延伸固定在膜上,最后使用生物素.亲和素酶联显色(ABs-ELISA)反应肉眼观察结果。结果:阳性和阴性对照探针显示正常。野生型探针和突变型探针能够分别特异性结合靶序列,并通过生物素和亲和索显色系统放大为一种肉眼可判断结果的检测形式。结论:建立了一种基于硝酸纤维素膜载体上进行核酸扩增的SNP检测方法。  相似文献   

11.
目的:建立一种快速、简单的SNP(Single Nucleotide Polymorphisms)检测方法。方法:设计带生物素标记的扩增引物对检测用具有单碱基差异的野生型和突变型靶序列分别进行扩增,然后通过紫外交联的方式将相应检测靶序列的探针固定在硝酸纤维素膜上,借助Taq酶完成膜上单引物延伸,从而对探针捕获的靶序列进行延伸固定在膜上,最后使用生物素-亲和素酶联显色(ABS-ELISA)反应肉眼观察结果。结果:阳性和阴性对照探针显示正常。野生型探针和突变型探针能够分别特异性结合靶序列,并通过生物素和亲和素显色系统放大为一种肉眼可判断结果的检测形式。结论:建立了一种基于硝酸纤维素膜载体上进行核酸扩增的SNP检测方法。  相似文献   

12.
Combinatorial fluorescence energy transfer (CFET) tags, constructed by exploiting energy transfer and combinatorial synthesis, allow multiple biological targets to be analyzed simultaneously. We here describe a multiplex single nucleotide polymorphism (SNP) assay based on single base extension (SBE) using CFET tags and biotinylated dideoxynucleotides (biotin-ddNTPs). A library of CFET-labeled oligonucleotide primers was mixed with biotin-ddNTPs, DNA polymerase and the DNA templates containing the SNPs in a single tube. The nucleotide at the 3′-end of each CFET-labeled oligonucleotide primer was complementary to a particular SNP in the template. Only the CFET-labeled primer that is fully complementary to the DNA template was extended by DNA polymerase with a biotin-ddNTP. We isolated the DNA extension fragments that carry a biotin at the 3′-end by capture with streptavidin-coated magnetic beads, while the unextended primers were eliminated. The biotinylated fluorescent DNA fragments were subsequently analyzed in a multicolor fluorescence electrophoresis system. The distinct fluorescence signature and electrophoretic mobility of each DNA extension product in the electropherogram coded the SNPs without the use of a sizing standard. We simultaneously distinguished six nucleotide variations in synthetic DNA templates and a PCR product from the retinoblastoma tumor suppressor gene. The use of CFET-labeled primers and biotin-ddNTPs coupled with the specificity of DNA polymerase in SBE offered a multiplex method for detecting SNPs.  相似文献   

13.
Data on five single-nucleotide polymorphisms (SNPs) per gene are estimated to allow association of disease risks or pharmacogenetic parameters with individual genes. Efficient technologies for rapidly detecting SNPs will therefore facilitate the mining of genomic information. Known methods for SNP analysis include restriction-fragment-length polymorphism polymerase chain reaction (PCR), allele-specific oligomer hybridization, oligomer-specific ligation assays, minisequencing, direct sequencing, fluorescence-detected 5'-exonuclease assays, and hybridization with PNA probes. Detection by mass spectrometry (MS) offers speed and high resolution. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) can detect primer extension products, mass-tagged oligonucleotides, DNA created by restriction endonuclease cleavage, and genomic DNA. We have previously reported MALDI-TOF-monitored nuclease selections of modified oligonucleotides with increased affinity for targets. Here we use nuclease selections for genotyping by treating DNA to be analyzed with oligonucleotide probes representing known genotypes and digesting probes that are not complementary to the DNA. With phosphodiesterase I, the target-bound, complementary probe is largely refractory to nuclease attack and its peak persists in mass spectra (Fig. 1A). In optimized assays, both alleles of a heterozygote were genotyped with six nonamer DNA probes (> or = 125 fmol each) and asymmetrically amplified DNA from exon 10 of the cystic fibrosis transmembrane regulatory gene (CFTR).  相似文献   

14.
Ji M  Hou P  Li S  He N  Lu Z 《Mutation research》2004,548(1-2):97-105
Screening disease-related single nucleotide polymorphism (SNP) markers in the whole genome has great potential in complex disease genetics and pharmacogenetics researches. It has led to a requirement for high-throughput genotyping platforms that can maximize the efficient screening functional SNPs with respect to accuracy, speed and cost. In this study, we attempted to develop a microarray-based method for scoring a number of genomic DNA in parallel for one or more molecular markers on a glass slide. Two SNP markers localized to the methylenetetrahydrofolate reductase gene (MTHFR) were selected as the investigated targets. Amplified PCR products from nine genomic DNA specimens were spotted and immobilized onto a poly-l-lysine coated glass slide to fabricate a microarray, then interrogated by hybridization with dual-color probes to determine the SNP genotype of each sample. The results indicated that the microarray-based method could determine the genotype of 677 and 1298 MTHFR polymorphisms. Sequencing was performed to validate these results. Our experiments successfully demonstrate that PCR products subjected to dual-color hybridization on a microarray could be applied as a useful and a high-throughput tool to analyze molecular markers.  相似文献   

15.
Liu H  Li S  Wang Z  Ji M  Nie L  He N 《Journal of biotechnology》2007,131(3):217-222
Single-nucleotide polymorphisms (SNPs) are one-base variations in DNA sequence that can often be helpful when trying to find genes responsible for inherited diseases. In this paper, a microarray-based method for typing single nucleotide polymorphisms (SNPs) using solid-phase polymerase chain reaction (PCR) on magnetic nanoparticles (MNPs) was developed. One primer with biotin-label was captured by streptavidin coated magnetic nanoparticles (SA-MNPs), and PCR products were directly amplified on the surface of SA-MNPs in a 96-well plate. The samples were interrogated by hybridization with a pair of dual-color probes to determine SNP, and then genotype of each sample can be simultaneously identified by scanning the microarray printed with the denatured fluorescent probes. The C677T polymorphisms of methylenetetrahydrofolate reductase (MTHFR) gene from 126 samples were interrogated using this method. The results showed that three different genotypes were discriminated by three fluorescence patterns on the microarray. Without any purification and reduction procedure, and all reactions can be performed in the same vessel, this approach will be a simple and labor-saving method for SNP genotyping and can be applicable towards the automation system to achieve high-throughput SNP detection.  相似文献   

16.
The clinical need for high-throughput typing methods of single-nucleotide polymorphisms (SNPs) has been increasing. Conventional methods do not perform well enough in terms of speed and accuracy to process a large number of samples, as in clinical testing. We report a new DNA microarray method that uses hybridization protection assay (HPA) by acridinium-ester-labeled DNA probes. Probes were immobilized on the bottom of streptavidin-coated microtiter plates by streptavidin-biotin binding. We studied aldehyde dehydrogenase 2 (ALDH2) genotyping using two probes, discriminating A/G polymorphism. We also designed four probes to type the Alzheimer's disease-related gene ApoE, which has three genotypes (ApoE2, 3, and 4) determined by two SNP loci (C/T polymorphism). SNP analysis of the ALDH2 gene or the ApoE gene from human genome samples by solid-phase HPA was successful. Unlike other methods, the microarray by HPA does not require a washing step and can be completed within 30min. It also has advantages in discriminating one-base mismatch in targets. These characteristics make it a good candidate for practical SNP analysis of disease-related genes or drug-metabolizing enzymes in large numbers of samples.  相似文献   

17.
18.
We have developed DNA microarrays containing stem-loop DNA probes with short single-stranded overhangs immobilized on a Packard HydroGel chip, a 3-dimensional porous gel substrate. Microarrays were fabricated by immobilizing self-complementary single-stranded oligonucleotides, which adopt a partially duplex structure upon denaturing and re-annealing. Hybridization of single-stranded DNA targets to such arrays is enhanced by contiguous stacking interactions with stem-loop probes and is highly sequence specific. Subsequent enzymatic ligation of the targets to the probes followed by stringent washing further enhances the mismatched base discrimination. We demonstrate here that these microarrays provide excellent specificity with signal-to-background ratios of from 10- to 300-fold. In a comparative study, we demonstrated that HydroGel arrays display 10-30 times higher hybridization signals than some solid surface DNA microarrays. Using Sanger sequencing reactions, we have also developed a method for preparing nested 3'-deletion sets from a target and evaluated the use of stem-loop DNA arrays for detecting p53 mutations in the deletion set. The stem-loop DNA array format is simple, robust and flexible in design, thus it is potentially useful in various DNA diagnostic tests.  相似文献   

19.
Oligonucleotide arrays capable of detecting single nucleotide polymorphisms (SNPs) from amplified nucleic acid have many applications. The expected SNP is usually placed approximately in the center of the probe to ensure the maximum shift in Tm between complementary and SNP sequences. Unfortunately, different short probes (< 30 bases) selected using widely accepted criteria do not perform consistently in this type of assay. Here we present a systematic study on the effect of secondary structure on the ability of oligonucleotide probes to detect an SNP, using real-time array monitoring of a porous microarray substrate that incorporates a novel intra-array mixing system. These results demonstrate that, although positioning of an SNP in the middle of the probe is highly destabilizing, the effect of stable secondary structure on the signal obtained is so dramatic that such probes may be very insensitive. Therefore, if the SNP flanking sequence contains significant secondary structure, then more sensitive probes with good specificity may be obtained by positioning the mutation towards one end of the probe.  相似文献   

20.
We present an optimized probe design for copy number variation (CNV) and SNP genotyping in the Plasmodium falciparum genome. We demonstrate that variable length and isothermal probes are superior to static length probes. We show that sample preparation and hybridization conditions mitigate the effects of host DNA contamination in field samples. The microarray and workflow presented can be used to identify CNVs and SNPs with 95% accuracy in a single hybridization, in field samples containing up to 92% human DNA contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号