首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spondylothoracic dysostosis (STD), also known as Jarcho-Levin syndrome (JLS), is an autosomal-recessive disorder characterized by abnormal vertebral segmentation and defects affecting spine formation, with complete bilateral fusion of the ribs at the costovertebral junction producing a "crab-like" configuration of the thorax. The shortened spine and trunk can severely affect respiratory function during early childhood. The condition is prevalent in the Puerto Rican population, although it is a panethnic disorder. By sequencing a set of candidate genes involved in mouse segmentation, we identified a recessive E103X nonsense mutation in the mesoderm posterior 2 homolog (MESP2) gene in a patient, of Puerto Rican origin and from the Boston area, who had been diagnosed with STD/JLS. We then analyzed 12 Puerto Rican families with STD probands for the MESP2 E103X mutation. Ten patients were homozygous for the E103X mutation, three patients were compound heterozygous for a second nonsense mutation, E230X, or a missense mutation, L125V, which affects a conserved leucine residue within the bHLH region. Thus, all affected probands harbored the E103X mutation. Our findings suggest a founder-effect mutation in the MESP2 gene as a major cause of the classical Puerto Rican form of STD/JLS.  相似文献   

2.
CHIME syndrome is characterized by colobomas, heart defects, ichthyosiform dermatosis, mental retardation (intellectual disability), and ear anomalies, including conductive hearing loss. Whole-exome sequencing on five previously reported cases identified PIGL, the de-N-acetylase required for glycosylphosphatidylinositol (GPI) anchor formation, as a strong candidate. Furthermore, cell lines derived from these cases had significantly reduced levels of the two GPI anchor markers, CD59 and a GPI-binding toxin, aerolysin (FLAER), confirming the pathogenicity of the mutations.  相似文献   

3.
Craniofrontonasal syndrome (CFNS) is an X-linked craniofacial disorder with an unusual manifestation pattern, in which affected females show multiple skeletal malformations, whereas the genetic defect causes no or only mild abnormalities in male carriers. Recently, we have mapped a gene for CFNS in the pericentromeric region of the X chromosome that contains the EFNB1 gene, which encodes the ephrin-B1 ligand for Eph receptors. Since Efnb1 mutant mice display a spectrum of malformations and an unusual inheritance reminiscent of CFNS, we analyzed the EFNB1 gene in three families with CFNS. In one family, a deletion of exons 2-5 was identified in an obligate carrier male, his mildly affected brother, and in the affected females. In the two other families, missense mutations in EFNB1 were detected that lead to amino acid exchanges P54L and T111I. Both mutations are located in multimerization and receptor-interaction motifs found within the ephrin-B1 extracellular domain. In all cases, mutations were found consistently in obligate male carriers, clinically affected males, and affected heterozygous females. We conclude that mutations in EFNB1 cause CFNS.  相似文献   

4.
5.
6.
Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delayed osseous maturation, expressive-language deficits, and a distinctive facial appearance. Occurrence is generally sporadic, although parent-to-child transmission has been reported on occasion. Employing whole-exome sequencing, we identified heterozygous truncating mutations in SRCAP in five unrelated individuals with sporadic FHS. Sanger sequencing identified mutations in SRCAP in eight more affected persons. Mutations were de novo in all six instances in which parental DNA was available. SRCAP is an SNF2-related chromatin-remodeling factor that serves as a coactivator for CREB-binding protein (CREBBP, better known as CBP, the major cause of Rubinstein-Taybi syndrome [RTS]). Five SRCAP mutations, two of which are recurrent, were identified; all are tightly clustered within a small (111 codon) region of the final exon. These mutations are predicted to abolish three C-terminal AT-hook DNA-binding motifs while leaving the CBP-binding and ATPase domains intact. Our findings show that SRCAP mutations are the major cause of FHS and offer an explanation for the clinical overlap between FHS and RTS.  相似文献   

7.
8.
The autosomal-recessive form of popliteal pterygium syndrome, also known as Bartsocas-Papas syndrome, is a rare, but frequently lethal disorder characterized by marked popliteal pterygium associated with multiple congenital malformations. Using Affymetrix 250K SNP array genotyping and homozygosity mapping, we mapped this malformation syndrome to chromosomal region 21q22.3. Direct sequencing of RIPK4 (receptor-interacting serine/threonine kinase protein 4) showed a homozygous transversion (c.362T>A) that causes substitution of a conserved isoleucine with asparagine at amino acid position 121 (p.Ile121Asn) in the serine/threonine kinase domain of the protein. Additional pathogenic mutations-a homozygous transition (c.551C>T) that leads to a missense substitution (p.Thr184Ile) at a conserved position and a homozygous one base-pair insertion mutation (c.777_778insA) predicted to lead to a premature stop codon (p.Arg260ThrfsX14) within the kinase domain-were observed in two families. Molecular modeling of the kinase domain showed that both the Ile121 and Thr184 positions are critical for the protein's stability and kinase activity. Luciferase reporter assays also demonstrated that these mutations are critical for the catalytic activity of RIPK4. RIPK4 mediates activation of the nuclear factor-κB (NF-κB) signaling pathway and is required for keratinocyte differentiation and craniofacial and limb development. The phenotype of Ripk4(-/-) mice is consistent with the human phenotype presented herein. Additionally, the spectrum of malformations observed in the presented families is similar, but less severe than the conserved helix-loop-helix ubiquitous kinase (CHUK)-deficient human fetus phenotype; known as Cocoon syndrome; this similarity indicates that RIPK4 and CHUK might function via closely related pathways to promote keratinocyte differentiation and epithelial growth.  相似文献   

9.
Mutations in ANKH cause chondrocalcinosis   总被引:2,自引:0,他引:2       下载免费PDF全文
Chondrocalcinosis (CC) is a common cause of joint pain and arthritis that is caused by the deposition of calcium-containing crystals within articular cartilage. Although most cases are sporadic, rare familial forms have been linked to human chromosomes 8 (CCAL1) or 5p (CCAL2) (Baldwin et al. 1995; Hughes et al. 1995; Andrew et al. 1999). Here, we show that two previously described families with CCAL2 have mutations in the human homolog of the mouse progressive ankylosis gene (ANKH). One of the human mutations results in the substitution of a highly conserved amino acid residue within a predicted transmembrane segment. The other creates a new ATG start site that adds four additional residues to the ANKH protein. Both mutations segregate completely with disease status and are not found in control subjects. In addition, 1 of 95 U.K. patients with sporadic CC showed a deletion of a single codon in the ANKH gene. The same change was found in a sister who had bilateral knee replacement for osteoarthritis. Each of the three human mutations was reconstructed in a full-length ANK expression construct previously shown to regulate pyrophosphate levels in cultured cells in vitro. All three of the human mutations showed significantly more activity than a previously described nonsense mutation that causes severe hydroxyapatite mineral deposition and widespread joint ankylosis in mice. These results suggest that small sequence changes in ANKH are one cause of CC and joint disease in humans. Increased ANK activity may explain the different types of crystals commonly deposited in human CCAL2 families and mutant mice and may provide a useful pharmacological target for treating some forms of human CC.  相似文献   

10.
Ellis-van Creveld syndrome (EvC) is an autosomal recessive skeletal dysplasia. Elsewhere, we described mutations in EVC in patients with this condition (Ruiz-Perez et al. 2000). We now report that mutations in EVC2 also cause EvC. These two genes lie in a head-to-head configuration that is conserved from fish to man. Affected individuals with mutations in EVC and EVC2 have the typical spectrum of features and are phenotypically indistinguishable.  相似文献   

11.
We have previously linked families with autosomal-dominant, late-onset parkinsonism to chromosome 12p11.2-q13.1 (PARK8). By high-resolution recombination mapping and candidate gene sequencing in 46 families, we have found six disease-segregating mutations (five missense and one putative splice site mutation) in a gene encoding a large, multifunctional protein, LRRK2 (leucine-rich repeat kinase 2). It belongs to the ROCO protein family and includes a protein kinase domain of the MAPKKK class and several other major functional domains. Within affected carriers of families A and D, six post mortem diagnoses reveal brainstem dopaminergic degeneration accompanied by strikingly diverse pathologies. These include abnormalities consistent with Lewy body Parkinson's disease, diffuse Lewy body disease, nigral degeneration without distinctive histopathology, and progressive supranuclear palsy-like pathology. Clinical diagnoses of Parkinsonism with dementia or amyotrophy or both, with their associated pathologies, are also noted. Hence, LRRK2 may be central to the pathogenesis of several major neurodegenerative disorders associated with parkinsonism.  相似文献   

12.
Mutations in LRRK2 as a cause of Parkinson's disease   总被引:1,自引:0,他引:1  
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common known cause of late-onset Parkinson's disease (PD). Clinical and pathological studies have demonstrated that in the majority of cases LRRK2 mutations lead to PD with classical clinical and pathological features. However, in some patients the pathological features can be distinct and/or more extensive than typically seen in PD. Collectively, these findings provide important clues into the mechanisms by which LRRK2 mutations can lead to demise of dopaminergic neurons. The understanding of LRRK2 protein function and its gene regulation and the consequences of mutations are still at their infancy, but scientific findings are progressing at a rapid pace. Although more detailed information on LRRK2 is still needed in the quest for therapeutic intervention that could halt or slow the progression of disease, here we summarize the current information on the biological and pathological properties of LRRK2.  相似文献   

13.
Mucopolysaccharidosis IIIC (MPS IIIC, or Sanfilippo C syndrome) is a lysosomal storage disorder caused by the inherited deficiency of the lysosomal membrane enzyme acetyl-coenzyme A: alpha -glucosaminide N-acetyltransferase (N-acetyltransferase), which leads to impaired degradation of heparan sulfate. We report the narrowing of the candidate region to a 2.6-cM interval between D8S1051 and D8S1831 and the identification of the transmembrane protein 76 gene (TMEM76), which encodes a 73-kDa protein with predicted multiple transmembrane domains and glycosylation sites, as the gene that causes MPS IIIC when it is mutated. Four nonsense mutations, 3 frameshift mutations due to deletions or a duplication, 6 splice-site mutations, and 14 missense mutations were identified among 30 probands with MPS IIIC. Functional expression of human TMEM76 and the mouse ortholog demonstrates that it is the gene that encodes the lysosomal N-acetyltransferase and suggests that this enzyme belongs to a new structural class of proteins that transport the activated acetyl residues across the cell membrane.  相似文献   

14.
Congenital myasthenic syndromes are a heterogeneous group of inherited disorders that arise from impaired signal transmission at the neuromuscular synapse. They are characterized by fatigable muscle weakness. We performed whole-exome sequencing to determine the underlying defect in a group of individuals with an inherited limb-girdle pattern of myasthenic weakness. We identify DPAGT1 as a gene in which mutations cause a congenital myasthenic syndrome. We describe seven different mutations found in five individuals with DPAGT1 mutations. The affected individuals share a number of common clinical features, including involvement of proximal limb muscles, response to treatment with cholinesterase inhibitors and 3,4-diaminopyridine, and the presence of tubular aggregates in muscle biopsies. Analyses of motor endplates from two of the individuals demonstrate a severe reduction of endplate acetylcholine receptors. DPAGT1 is an essential enzyme catalyzing the first committed step of N-linked protein glycosylation. Our findings underscore the importance of N-linked protein glycosylation for proper functioning of the neuromuscular junction. Using the DPAGT1-specific inhibitor tunicamycin, we show that DPAGT1 is required for efficient glycosylation of acetylcholine-receptor subunits and for efficient export of acetylcholine receptors to the cell surface. We suggest that the primary pathogenic mechanism of DPAGT1 mutations is reduced levels of acetylcholine receptors at the endplate region. These individuals share clinical features similar to those of congenital myasthenic syndrome due to GFPT1 mutations, and their disorder might be part of a larger subgroup comprising the congenital myasthenic syndromes that result from defects in the N-linked glycosylation pathway and that manifest through impaired neuromuscular transmission.  相似文献   

15.
Joubert syndrome (JBTS) is an autosomal-recessive disorder characterized by a distinctive mid-hindbrain malformation, developmental delay with hypotonia, ocular-motor apraxia, and breathing abnormalities. Although JBTS was first described more than 40 years ago in French Canadian siblings, the causal mutations have not yet been identified in this family nor in most French Canadian individuals subsequently described. We ascertained a cluster of 16 JBTS-affected individuals from 11 families living in the Lower St. Lawrence region. SNP genotyping excluded the presence of a common homozygous mutation that would explain the clustering of these individuals. Exome sequencing performed on 15 subjects showed that nine affected individuals from seven families (including the original JBTS family) carried rare compound-heterozygous mutations in C5ORF42. Two missense variants (c.4006C>T [p.Arg1336Trp] and c.4690G>A [p.Ala1564Thr]) and a splicing mutation (c.7400+1G>A), which causes exon skipping, were found in multiple subjects that were not known to be related, whereas three other truncating mutations (c.6407del [p.Pro2136Hisfs*31], c.4804C>T [p.Arg1602*], and c.7477C>T [p.Arg2493*]) were identified in single individuals. None of the unaffected first-degree relatives were compound heterozygous for these mutations. Moreover, none of the six putative mutations were detected among 477 French Canadian controls. Our data suggest that mutations in C5ORF42 explain a large portion of French Canadian individuals with JBTS.  相似文献   

16.
d-2-hydroxyglutaric aciduria is a neurometabolic disorder with both a mild and a severe phenotype and with unknown etiology. Recently, a novel enzyme, d-2-hydroxyglutarate dehydrogenase, which converts d-2-hydroxyglutarate into 2-ketoglutarate, and its gene were identified. In the genes of two unrelated patients affected with d-2-hydroxyglutaric aciduria, we identified disease-causing mutations. One patient was homozygous for a missense mutation (c.1331T-->C; p.Val444Ala). The other patient was compound heterozygous for a missense mutation (c.440T-->G; p.Ile147Ser) and a splice-site mutation (IVS1-23A-->G) that resulted in a null allele. Overexpression studies in HEK-293 cells of proteins containing the missense mutations showed a marked reduction of d-2-hydroxyglutarate dehydrogenase activity, proving that mutations in the d-2-hydroxyglutarate dehydrogenase gene cause d-2-hydroxyglutaric aciduria.  相似文献   

17.
18.
19.
Andersen's syndrome is characterized by periodic paralysis, cardiac arrhythmias, and dysmorphic features. We have mapped an Andersen's locus to chromosome 17q23 near the inward rectifying potassium channel gene KCNJ2. A missense mutation in KCNJ2 (encoding D71V) was identified in the linked family. Eight additional mutations were identified in unrelated patients. Expression of two of these mutations in Xenopus oocytes revealed loss of function and a dominant negative effect in Kir2.1 current as assayed by voltage-clamp. We conclude that mutations in Kir2.1 cause Andersen's syndrome. These findings suggest that Kir2.1 plays an important role in developmental signaling in addition to its previously recognized function in controlling cell excitability in skeletal muscle and heart.  相似文献   

20.
The biogenesis of the proton pump V-ATPase commences with the assembly of the proton pore sector V0 in the endoplasmic reticulum (ER). This process occurs under the control of a group of assembly factors whose mutations have recently been shown to cause glycosylation disorders with overlapping phenotypes in humans. Using whole exome sequencing, we demonstrate that mutations of the accessory V-ATPase subunit ATP6AP2 cause a similar disease characterized by hepatosteatosis, lipid abnormalities, immunodeficiency and cognitive impairment. ATP6AP2 interacts with members of the V0 assembly complex, and its ER localization is crucial for V-ATPase activity. Moreover, ATP6AP2 mutations can cause developmental defects and steatotic phenotypes when introduced into Drosophila. Altogether, our data suggest that these phenotypes are the result of a pathogenetic cascade that includes impaired V-ATPase assembly, defective lysosomal acidification, reduced MTOR signaling and autophagic misregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号