首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Certain oxysterols, when added to cultured cells, are potent regulators of cholesterol homeostasis, decreasing cholesterol synthesis and uptake and increasing cholesterol efflux. However, very little is known about whether or not endogenous oxysterol(s) plays a significant role in cholesterol homeostasis. 24(S),25-Epoxycholesterol (24,25EC) is unique among oxysterols in that it is produced in a shunt of the mevalonate pathway which also produces cholesterol. We investigated the role of endogenously produced 24,25EC using a novel strategy of overexpressing the enzyme 2,3-oxidosqualene cyclase in Chinese hamster ovary cells to selectively inhibit the synthesis of this oxysterol. First, loss of 24,25EC decreased expression of the LXR target gene, ABCA1, substantiating its role as an endogenous ligand for LXR. Second, loss of 24,25EC increased acute cholesterol synthesis, which was rationalized by a concomitant increase in HMG-CoA reductase gene expression at the level of SREBP-2 processing. Therefore, in the absence of 24,25EC, fine-tuning of the acute regulation of cholesterol homeostasis is lost, supporting the hypothesis that 24,25EC functions to protect the cell against the accumulation of newly synthesized cholesterol.  相似文献   

3.
Pedretti A  Bocci E  Maggi R  Vistoli G 《Steroids》2008,73(7):708-719
Recent biochemical and clinical evidences unveiled that DHCR24 enzyme (3-beta-hydoxysterol-Delta(24)-reductase, also named seladin-1), which catalyzes the last step of the cholesterol biosynthesis, is implicated in relevant neuroprotective processes by modulating the level of cholesterol in membrane. The present study was undertaken with a view to model the DHCR24 enzyme and its catalytic site, analyzing the substrate recognition at an atomic level. A homology model of the enzyme was obtained based on plant Cytokinin Dehydrogenase, and its active site was found to bind the desmosterol plus a set of post-squalenic intermediates of the cholesterol biosynthesis in a binding mode conducive to catalysis, even if the docking results suggested that the enzyme has a clear preference for the last intermediates of such biosynthetic pathway. Since DHCR24 possesses a putative transmembrane segment, the enzyme was, then, inserted in a suitable membrane model and the membrane-anchored structure in complex with desmosterol and cholesterol underwent 10ns MD simulations. Such simulations evidenced a clearly different behavior between substrate and product since the product only completely leaves the catalytic cavity whereas desmosterol firmly conserves its pivotal interactions during all simulation time. This is one of the first reports documenting the enzymatic product egress using simple MD simulations in which all atoms are free to move.  相似文献   

4.
Cholesterol is an essential component of the CNS and its metabolism in the brain has been implicated in various neurodegenerative diseases. The oxysterol produced from cholesterol, 24( S )-hydroxycholesterol, is known to be an important regulator of brain cholesterol homeostasis. In this study, we focussed on another oxysterol, 24( S ),25-epoxycholesterol (24,25EC), which has not been studied before in a neurological context. 24,25EC is unique in that it is synthesized in a shunt in the mevalonate pathway, parallel to cholesterol and utilizing the same enzymes. Considering that all the cholesterol present in the brain is derived from de novo synthesis, we investigated whether or not primary human neurons and astrocytes can produce 24,25EC. We found that astrocytes produced more 24,25EC than neurons under basal conditions, but both cell types had the capacity to synthesize this oxysterol when the enzyme 2,3-oxidosqualene cyclase was partially inhibited. Furthermore, both added 24,25EC and stimulated cellular production of 24,25EC (by partial inhibition of 2,3-oxidosqualene cyclase) modulated expression of key cholesterol-homeostatic genes regulated by the liver X receptor and the sterol regulatory element-binding protein-2. Moreover, we found that 24,25EC synthesized in astrocytes can be taken up by neurons and exert downstream effects on gene regulation. In summary, we have identified 24,25EC as a novel neurosterol which plays a likely role in brain cholesterol homeostasis.  相似文献   

5.
Desmosterolosis is a rare autosomal recessive disorder characterized by multiple congenital anomalies. Patients with desmosterolosis have elevated levels of the cholesterol precursor desmosterol, in plasma, tissue, and cultured cells; this abnormality suggests a deficiency of the enzyme 3beta-hydroxysterol Delta24-reductase (DHCR24), which, in cholesterol biosynthesis, catalyzes the reduction of the Delta24 double bond of sterol intermediates. We identified the human DHCR24 cDNA, by the similarity between the encoded protein and a recently characterized plant enzyme--DWF1/DIM, from Arabidopsis thaliana--catalyzing a different but partially similar reaction in steroid/sterol biosynthesis in plants. Heterologous expression, in the yeast Saccharomyces cerevisiae, of the DHCR24 cDNA, followed by enzyme-activity measurements, confirmed that it encodes DHCR24. The encoded DHCR24 protein has a calculated molecular weight of 60.1 kD, contains a potential N-terminal secretory-signal sequence as well as at least one putative transmembrane helix, and is a member of a recently defined family of flavin adenine dinucleotide (FAD)-dependent oxidoreductases. Conversion of desmosterol to cholesterol by DHCR24 in vitro is strictly dependent on reduced nicotinamide adenine dinucleotide phosphate and is increased twofold by the addition of FAD to the assay. The corresponding gene, DHCR24, was identified by database searching, spans approximately 46.4 kb, is localized to chromosome 1p31.1-p33, and comprises nine exons and eight introns. Sequence analysis of DHCR24 in two patients with desmosterolosis revealed four different missense mutations, which were shown, by functional expression, in yeast, of the patient alleles, to be disease causing. Our data demonstrate that desmosterolosis is a cholesterol-biosynthesis disorder caused by mutations in DHCR24.  相似文献   

6.
7.
DHCR24 encodes 3β-hydroxysterol-Δ24-reductase (DHCR24) catalyzing the cholesterol synthesis from desmosterol using the flavin adenine dinucleotide (FAD) as a co-factor. It is generally accepted that U18666a inhibits the reductase activity of DHCR24, but the detailed mechanism remains elusive. To explore the mechanism of the inhibitory effect of U18666a on DHCR24, we performed molecular dynamics (MD) simulations of two complexes including complexes of DHCR24-FAD-desmosterol enzymatic reactive components with and without the inhibitor U18666a. We found that the U18666a bound into the hydrophobic package near the FAD package of DHCR24. Furthermore, binding free energy of DHCR24 and desmosterol without U18666a is ?54.86 kcal/mol, while the system with U18666a is ?62.23 kcal/mol, suggesting that the affinity of the substrate desmosterol to DHCR24 was increased in response to the U18666a. In addition, U18666a interacts with FAD by newly forming three hydrogen bonds with Lys292, Lys367, and Gly438 of DHCR24. Finally, secondary structural analysis data obtained from the surrounding hot spots showed that U18666a induced dramatic secondary structural changes around the key residues in the interaction of DHCR24, FAD, and desmosterol. Taken together, these results for the first time demonstrate at the molecular structure level that U18666a blocks DHCR24 activity through an allosteric inhibiting mechanism, which may provide new insight into the development of a new type of cholesterol-lowering drug targeting to block the activity of DHCR24.  相似文献   

8.
Cholesterol is essential to human health, and its levels are tightly regulated by a balance of synthesis, uptake, and efflux. Cholesterol synthesis requires the actions of more than twenty enzymes to reach the final product, through two alternate pathways. Here we describe a physical and functional interaction between the two terminal enzymes. 24-Dehydrocholesterol reductase (DHCR24) and 7-dehydrocholesterol reductase (DHCR7) coimmunoprecipitate, and when the DHCR24 gene is knocked down by siRNA, DHCR7 activity is also ablated. Conversely, overexpression of DHCR24 enhances DHCR7 activity, but only when a functional form of DHCR24 is used. DHCR7 is important for both cholesterol and vitamin D synthesis, and we have identified a novel layer of regulation, whereby its activity is controlled by DHCR24. This suggests the existence of a cholesterol “metabolon”, where enzymes from the same metabolic pathway interact with each other to provide a substrate channeling benefit. We predict that other enzymes in cholesterol synthesis may similarly interact, and this should be explored in future studies.  相似文献   

9.
10.
3β-Hydroxysterol Δ24-reductase (DHCR24) catalyzes the conversion of desmosterol to cholesterol. This ultimate step of cholesterol biosynthesis appears to be remarkable in its diverse functions and the number of diseases it is implicated in from vascular disease to Hepatitis C virus (HCV) infection to cancer to Alzheimer’s disease. This review summarizes the present knowledge on the DHCR24 gene, sterol Δ24-reductase protein and the regulation of both. In addition, the functions of desmosterol, DHCR24 and their roles in human diseases are discussed. It is apparent that DHCR24 exerts more complex effects than what would be expected based on the enzymatic activity of sterol Δ24-reduction alone, such as its influence in modulating oxidative stress. Increasing information about DHCR24 membrane association, processing, enzymatic regulation and interaction partners will provide further fundamental insights into DHCR24 and its many and varied biological roles.  相似文献   

11.
Larvae of Manduca sexta were used to obtain a cell-free sterol 24,25-reductase. From the midgut of fifth instar larvae fed a mixture of sitosterol and campesterol a microsome-bound 24,25-sterol reductase was prepared that transformed desmosterol (Km, 3 μM), lanosterol (Km, 18 μM), and cycloartenol (Km, 33 μM), to cholesterol, 24,25-dihydrolanosterol, and cycloartanol, respectively. With desmosterol as substrate, the microsome-bound enzyme was found to incorporate tritium into cholesterol from 4S-tritium labelled NADPH. [24-2H]lanosterol was transformed by larvae to [24-2H]24,25-dihydrolanosterol (structure confirmed by mass spectroscopy (MS) and 1H-nuclear magnetic resonance spectroscopy. A rationally designed inhibitor of 24,25-reductase activity, 24(R,S),25-epimino-lanosterol (IL), was assayed and found to be inhibitory with an I50 of 2 μM. IL was supplemented in the diet of M. sexta with either sitosterol or stigmasterol and found to inhibit development (I50 60 ppm). The major sterol which accumulated in the IL-treated larvae was desmosterol, confirming the site of inhibition was reduction of the 24,25-bond. IL was converted to [2-3H]IL when fed to the larvae. [2-3H]lanosterol was recovered from fifth instar larvae and its structure confirmed by MS and radiochemical techniques. © 1996 Wiley-Liss, Inc.  相似文献   

12.
A procedure for the synthesis of [24,25-3H]cholesterol from the nonradioactive precursor desmosterol is described. The intermediate, isodesmosterol, which was purified by column chromatography, was formed to protect the original double bond (delta 5-6) from hydrogenation. Tritium was introduced into the side chain by catalytic reduction of the double bond (delta 24-25) of the isodesmosterol in the presence of carrier-free tritium. After ring rearrangement of the iso-[24,25-3H]cholesterol acetate, the acetate was hydrolyzed to form the free labeled cholesterol. Hepatic oxidation of the [24,25-3H]cholesterol side chain release tritium into water which freely equilibrates with cell and body water pools. Thus, the rate of 3H2O appearance corresponds to the rate of cholesterol side chain oxidation. Applications of this method to in vivo, isolated perfused liver, and isolated hepatocyte preparations of the rat are discussed.  相似文献   

13.
14.
Herpes simplex virus 1 (HSV-1) required cholesterol or desmosterol for virion-induced membrane fusion. HSV successfully entered DHCR24−/− cells, which lack a desmosterol-to-cholesterol conversion enzyme, indicating that entry can occur independently of cholesterol. Depletion of desmosterol from these cells resulted in diminished HSV-1 entry, suggesting a general sterol requirement for HSV-1 entry and that desmosterol can operate in virus entry. Cholesterol functioned more effectively than desmosterol, suggesting that the hydrocarbon tail of cholesterol influences viral entry.  相似文献   

15.
The syntheses of (24S)-24,25-epoxycholesterol, (24S)-hydroxycholesterol, and 24-ketocholesterol are described. The compounds belong to oxysterols, which can be considered to be the modulators of cholesterol metabolism. The asymmetric hydroxylation of desmosterol acetate according to Sharpless was used as the key reaction in the stereoselective introduction of functionality in position 24.  相似文献   

16.
DHCR24/seladin-1, a crucial enzyme in sterol synthesis, is of lower abundance in brain areas affected by Alzheimer's disease. While high levels of DHCR24/seladin-1 exert antiapoptotic function by conferring resistance against oxidative stress, the molecular mechanism for this protective effect is not fully understood. Here we show that DHCR24/seladin-1 expression is up-regulated in an acute response and down-regulated in a chronic response to oxidative stress. High levels of DHCR24/seladin-1 were associated with elevated cholesterol concentrations and a general increase in cholesterol biosynthesis upon oxidative stress exposure in neuroblastoma SH-SY5Y cells. DHCR24/seladin-1 overexpression conferred resistance to oxidative stress in a cholesterol-dependent manner. Mutating the reductase activity within DHCR24/seladin-1 abolished this protective effect. Conversely, DHCR24/seladin-1 levels diminished upon chronic exposure to oxidative stress. Low levels of DHCR24/seladin-1 were associated with reduced p53 levels, independent of DHCR24 activity and cholesterol concentrations. Additionally, ablation of DHCR24/seladin-1 prevented apoptosis of primary neurons in a p53-dependent manner and reduced the response of critical p53 targets due to deficient stabilization of p53 and therefore elevated p53 ubiquitination and degradation. Our findings reveal a dual capacity of DHCR24/seladin-1, which appears to be involved in two mechanistically independent prosurvival effects, exerting an acute response and a chronic response to oxidative stress.  相似文献   

17.
Cytochrome P450 (P450 or CYP) 46A1 is expressed in brain and has been characterized by its ability to oxidize cholesterol to 24S-hydroxycholesterol. In addition, the same enzyme is known to further oxidize 24S-hydroxycholesterol to the 24,25- and 24,27-dihydroxy products, as well as to catalyze side-chain oxidations of 7α-hydroxycholesterol and cholestanol. As precursors in the biosynthesis of cholesterol, 7-dehydrocholesterol has not been found to be a substrate of P450 46A1 and desmosterol has not been previously tested. However, 24-hydroxy-7-dehydrocholesterol was recently identified in brain tissues, which prompted us to reexamine this enzyme and its potential substrates. Here we report that P450 46A1 oxidizes 7-dehydrocholesterol to 24-hydroxy-7-dehydrocholesterol and 25-hydroxy-7-dehydrocholesterol, as confirmed by LC-MS and GC-MS. Overall, the catalytic rates of formation increased in the order of 24-hydroxy-7-dehydrocholesterol < 24-hydroxycholesterol < 25-hydroxy-7-dehydrocholesterol from their respective precursors, with a ratio of 1:2.5:5. In the case of desmosterol, epoxidation to 24S,25-epoxycholesterol and 27-hydroxylation was observed, at roughly equal rates. The formation of these oxysterols in the brain may be of relevance in Smith-Lemli-Opitz syndrome, desmosterolosis, and other relevant diseases, as well as in signal transduction by lipids.  相似文献   

18.
The syntheses of (24S)-24,25-epoxycholesterol, (24S)-hydroxycholesterol, and 24-ketocholesterol are described. The compounds belong to oxysterols, which can be considered to be the modulators of cholesterol metabolism. The asymmetric hydroxylation of desmosterol acetate according to Sharpless was used as the key reaction in the stereoselective introduction of functionality in position 24.  相似文献   

19.
Cholesterol is a prominent modulator of the integrity and functional activity of physiological membranes and the most abundant sterol in the mammalian brain. DHCR24-knock-out mice lack cholesterol and accumulate desmosterol with age. Here we demonstrate that brain cholesterol deficiency in 3-week-old DHCR24−/− mice was associated with altered membrane composition including disrupted detergent-resistant membrane domain (DRM) structure. Furthermore, membrane-related functions differed extensively in the brains of these mice, resulting in lower plasmin activity, decreased β-secretase activity and diminished Aβ generation. Age-dependent accumulation and integration of desmosterol in brain membranes of 16-week-old DHCR24−/− mice led to the formation of desmosterol-containing DRMs and rescued the observed membrane-related functional deficits. Our data provide evidence that an alternate sterol, desmosterol, can facilitate processes that are normally cholesterol-dependent including formation of DRMs from mouse brain extracts, membrane receptor ligand binding and activation, and regulation of membrane protein proteolytic activity. These data indicate that desmosterol can replace cholesterol in membrane-related functions in the DHCR24−/− mouse. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号