首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文旨在建立适合国境口岸现场应用的生物恐怖防控快速检测方法,从而保障口岸安全.针对生物恐怖炭疽芽胞杆菌,选择目标菌种特异性基因片段,设计引物,运用环介导等温扩增(LAMP)技术建立一套简便、高效的检测方法,并模拟生物恐怖炭疽芽胞杆菌可能存在的基质条件,评价LAMP技术在快速筛查中的适用性.结果显示,LAMP技术排查生物恐怖炭疽芽胞杆菌简便、快速、特异,检测灵敏度为102~103 CFU/ml;且能有效检出在偏酸、偏碱及黏稠基质中的炭疽芽胞杆菌.而高盐环境对该反应影响较大,有必要采用能有效去除盐分的核酸抽提方法.  相似文献   

2.
Ethidium bromide monoazide (EMA) was utilized to selectively allow conventional PCR amplification of target DNA from viable but not dead cells from a broth culture of bacterial mixed flora derived from cod fillets. The universal primers designated DG74 and RW01 that amplify a 370-bp sequence of a highly conserved region of all eubacterial 16S rDNA were used for the PCR. The use of 10 microg/ml or less of EMA did not inhibit the PCR amplification of DNA derived from viable bacteria. The minimum amount of EMA to completely inhibit the PCR amplification of DNA derived from dead bacterial cells was 0.8 microg/ml. Amplification of target DNA from only viable cells in a suspension with dead cells was selectively accomplished by first treating the cells with 1 microg/ml of EMA. A standard curve was generated relating the intensity of fluorescence of DNA bands to the log of CFU of mixed bacterial cultures for rapidly assessing the number of genomic targets per PCR derived from the number of CFU. A linear range of DNA amplification was exhibited from 1 x 10(2) to 1 x 10(5) genomic targets per PCR. The viable/dead cell discrimination with the EMA-PCR method was evaluated by comparison with plate counts following freezing and thawing. Thawing frozen cell suspensions initially containing 1 x 10(5) CFU/ml at 4, 20, and 37 degrees C yielded a 0.8 log reduction in the number of viable cells determined by both plate counts and EMA-PCR. In contrast, thawing for 5 min at 70 degrees C resulted in a 5 log reduction in CFU derived from plate counts (no CFU detected) whereas the EMA-PCR procedure resulted in only a 2.8 log reduction in genomic targets, possibly reflecting greater damage to enzymes or ribosomes at 70 degrees C to a minority of the mixed population compared to membrane damage.  相似文献   

3.
Recent outbreaks linked to Salmonella-contaminated produce heightened the need to develop simple, rapid, and accurate detection methods, particularly those capable of determining cell viability. In this study, we examined a novel strategy for the rapid detection and quantification of viable salmonellae in produce by coupling a simple propidium monoazide sample treatment with loop-mediated isothermal amplification (PMA-LAMP). We first designed and optimized a LAMP assay targeting Salmonella. Second, the performance of PMA-LAMP for detecting and quantifying viable salmonellae was determined. Finally, the assay was evaluated in experimentally contaminated produce items (cantaloupe, spinach, and tomato). Under the optimized condition, PMA-LAMP consistently gave negative results for heat-killed Salmonella cells with concentrations up to 10(8) CFU/ml (or CFU/g in produce). The detection limits of PMA-LAMP were 3.4 to 34 viable Salmonella cells in pure culture and 6.1 × 10(3) to 6.1 × 10(4) CFU/g in spiked produce samples. In comparison, PMA-PCR was up to 100-fold less sensitive. The correlation between LAMP time threshold (T(T)) values and viable Salmonella cell numbers was high (R(2) = 0.949 to 0.993), with a quantification range (10(2) to 10(5) CFU/reaction in pure culture and 10(4) to 10(7) CFU/g in produce) comparable to that of PMA in combination with quantitative real-time PCR (PMA-qPCR). The complete PMA-LAMP assay took about 3 h to complete when testing produce samples. In conclusion, this rapid, accurate, and simple method to detect and quantify viable Salmonella cells in produce may present a useful tool for the produce industry to better control potential microbial hazards in produce.  相似文献   

4.
Brucella spp. are facultative intracellular bacteria that infect humans and animals. In this study, the loop-mediated isothermal amplification (LAMP) was used to detect the Brucella-specific gene omp25. Reaction conditions were optimized as temperature 65°C, reaction time 60 min, Mg(2+) concentration 8.0 mmol/L, polymerase content Bst DNA, 0.5 μL, deoxyribonucleotide concentration 1.6 mmol/L, and inner/outer primer ratio 1:8. The LAMP method was evaluated with 4 Brucella species and 29 non-Brucella bacteria species. Positive reactions were observed on all the 4 Brucella species but not on any non-Brucella species. The limit of detection of the LAMP method was 3.81 CFU Brucella spp. Using the LAMP method, 7 of 110 raw milk samples and 5 of 59 sheep blood samples were detected positive of Brucella spp. Results indicated that LAMP is a fast, specific, sensitive, inexpensive, and suitable method for diagnosis of Brucella spp. infection.  相似文献   

5.
DNA环介导恒温扩增技术快速检测霍乱弧菌   总被引:1,自引:0,他引:1  
霍乱弧菌是一种重要的食源性致病菌,主要引起急性肠道传染病,其快速检测具有重要意义。根据霍乱弧菌的mdh管家基因序列,设计2对特异性检测引物,利用DNA环介导恒温扩增技术(Loop-mediated isothermal amplification,LAMP),经反应体系优化,成功建立了霍乱弧菌的LAMP快速检测方法。该方法最佳反应温度为65℃,60min完成检测,对培养菌的检测限为25CFU/mL,污染食品中霍乱弧菌的检测限为32CFU/g。对33株同种或近源细菌进行LAMP检测,仅霍乱弧菌得到阳性扩增。LAMP方法实践应用结果表明,对1057份虾、蟹、牡蛎、肉类、人腹泻物等样本进行检测,共检出85份阳性,与国际标准(ISO TS21872-1-2007)检测结果的符合率为100%。结果表明,本研究建立的霍乱弧菌LAMP检测方法特异性强、灵敏度高、操作简便,有利于霍乱弧菌疫情的监测。  相似文献   

6.
We developed a novel quantitative real-time PCR (Q-PCR) method for the soil actinomycete Rhodococcus equi, an important horse pathogen and emerging human pathogen. Species-specific quantification was achieved by targeting the chromosomal monocopy gene choE, universally conserved in R. equi. The choE Q-PCR included an internal amplification control (IAC) for identification of false negatives. A second Q-PCR targeted the virulence plasmid gene vapA, carried by most horse isolates but infrequently found in isolates from other sources. The choE-IAC and vapA assays were 100% sensitive and specific as determined using 178 R. equi isolates, 77 nontarget bacteria, and a panel of 60 R. equi isolates with known vapA+ and vapA-negative (including vapB+) plasmid genotypes. The vapA+ frequency among isolate types was as follows: horse, 85%; human, 20%; bovine and pig, 0%; others, 27%. The choE-IAC Q-PCR could detect up to one genome equivalent using R. equi DNA or 100 bacteria/ml using DNA extracted from artificially contaminated horse bronchoalveolar lavage (BAL) fluid. Quantification was linear over a 6-log dynamic range down to approximately 10 target molecules (or 1,000 CFU/ml BAL fluid) with PCR efficiency E of >0.94. The vapA assay had similar performance but appeared unsuitable for accurate (vapA+) R. equi quantification due to variability in target gene or plasmid copy number (1 to 9). The dual-reaction Q-PCR system here reported offers a useful tool to both medical and veterinary diagnostic laboratories for the quantitative detection of R. equi and (optional) vapA+ "horse-pathogenic" genotype determination.  相似文献   

7.
Multiple displacement amplification (MDA) is an isothermal, sequence-independent method for the amplification of high molecular weight DNA that is driven by φ29 DNA polymerase (DNAP). Here we report digital MDA (dMDA), an ultrasensitive method for quantifying nucleic acid fragments of unknown sequence. We use the new assay to show that our custom φ29 DNAP preparation is free of contamination at the limit of detection of the dMDA assay (1 contaminating molecule per assay microliter). Contamination in commercially available preparations is also investigated. The results of the dMDA assay provide strong evidence that the so-called 'template-independent' MDA background can be attributed to high-molecular weight contaminants and is not primer-derived in the commercial kits tested. dMDA is orders of magnitude more sensitive than PCR-based techniques for detection of microbial genomic DNA fragments and opens up new possibilities for the ultrasensitive quantification of DNA fragments in a wide variety of application areas using MDA chemistry and off-the-shelf hardware developed for digital PCR.  相似文献   

8.
A limit of detection of 200 CFU/mL of Salmonella typhi spiked in various sample matrices were achieved in 30 min. The sample matrices were raw/unprocessed milk, commercially available milk, juice from packed bottles, fresh juice from carts, potable water, turbid water and calf serum. The complete protocol comprised of three steps: (a) cell lysis (b) nucleic acid amplification and (c) an in situ optical detection. The cell lysis was carried out using a simple heating based protocol, while the loop-mediated isothermal amplification of DNA was carried out by an in-house designed and fabricated system. The developed system consists of an aluminum block fitted with two cartridge heaters along with a thermocouple. The system was coupled to a light source and spectrometer for a simultaneous in situ detection. Primers specific for STY2879 gene were used to amplify the nucleic acid sequence, isolated from S. typhi cells. The protocol involves 15 min of cell lysis and DNA isolation followed by 15 min for isothermal amplification and simultaneous detection. No cross-reactivity of the primers were observed at 106 CFU/mL of Escherichia coli, Vibrio cholerae, Salmonella typhimurium, Salmonella paratyphi A, Pseudomonas aeruginosa, Bacillus cereus, Lysteria monocytogenes, Clostridium botulinum, Staphylococcus aureus and Salmonella havana. In addition, the system was able to detect S. typhi of 200 CFU/mL in a concoction of 106 CFU/mL of E. coli, 106 CFU/mL of V. cholerae, and 106 CFU/mL of hepatocyte-derived cellular carcinoma HUH7 cells. The proposed rapid diagnostic system shows a promising future in the field of food and medical diagnostics.  相似文献   

9.
Loop-mediated isothermal amplification (LAMP) of DNA is a novel technique that rapidly amplifies target DNA under isothermal conditions. In the present study, a LAMP test was designed from the serum resistance-associated (SRA) gene of Trypanosoma brucei rhodesiense, the cause of the acute form of African sleeping sickness, and used to detect parasite DNA from processed and heat-treated infected blood samples. The SRA gene is specific to T. b. rhodesiense and has been shown to confer resistance to lysis by normal human serum. The assay was performed at 62 degrees C for 1 h, using six primers that recognised eight targets. The template was varying concentrations of trypanosome DNA and supernatant from heat-treated infected blood samples. The resulting amplicons were detected using SYTO-9 fluorescence dye in a real-time thermocycler, visual observation after the addition of SYBR Green I, and gel electrophoresis. DNA amplification was detected within 35 min. The SRA LAMP test had an unequivocal detection limit of one pg of purified DNA (equivalent to 10 trypanosomes/ml) and 0.1 pg (1 trypanosome/ml) using heat-treated buffy coat, while the detection limit for conventional SRA PCR was approximately 1,000 trypanosomes/ml. The expected LAMP amplicon was confirmed through restriction enzyme RsaI digestion, identical melt curves, and sequence analysis. The reproducibility of the SRA LAMP assay using water bath and heat-processed template, and the ease in results readout show great potential for the diagnosis of T. b. rhodesiense in endemic regions.  相似文献   

10.
Zhao  Xihong  Wang  Li  Li  Yanmei  Xu  Zhenbo  Li  Lin  He  Xiaowei  Liu  Yao  Wang  Jihua  Yang  Liansheng 《World journal of microbiology & biotechnology》2011,27(1):181-184
We developed and evaluated the specificity and sensitivity of a simple loop-mediated isothermal amplification (LAMP) method for rapid detection of P. aeruginosa strains. The optimal reaction condition was found to be 65°C for 45 min, with the detection limit as 100 fg DNA/tube and 10 CFU/reaction. Application of LAMP assays were performed 426 clinical samples (including 252 P. aeruginosa and 174 non- P. aeruginosa isolates) using a rapid procedure and easy result confirmation. Sensitivity of LAMP and PCR assays was found to be 97.6% (246/252) and 90.5% (228/252), respectively; with a 100% specificity for both assays.  相似文献   

11.
We developed a technique for detecting the heat-labile I (LTI) and heat-stable I (STI) genes of enterotoxigenic Escherichia coli (ETEC) using a novel DNA amplification procedure designated Loop-Mediated Isothermal Amplification (LAMP). The detection limit of accelerated LAMP utilizing loop primers was 4 CFU/test for LTI and was 40 CFU/test for STI, which are 10-fold higher than those of conventional PCR assay (detection limit, 40 CFU/test and 400 CFU/test, respectively). No DNA amplification was observed in LT and ST non-producing E. coli or other bacterial strains; thus, high specificity was verified. The specificity of LAMP assay was also confirmed by digestion of LAMP products using restriction enzymes and DNA sequence analysis. In the accelerated LAMP assay, DNA amplification was detected within 35 min, and thus LAMP is superior to conventional PCR in terms of rapidity. It was confirmed that increased concentrations of primers and Bst DNA polymerase could further facilitate the reaction. Furthermore, with the high amplification efficiency of the LAMP assay, amplification can be visually observed by the turbidity caused by magnesium pyrophosphate, a byproduct of the reaction. Detection of LTI and STI in ETEC by LAMP is thus an extremely rapid procedure with high sensitivity and specificity that requires no specialized equipment. This assay is expected to become a valuable tool for rapid diagnosis in ETEC infection.  相似文献   

12.
Xanthomonas fragariae is a bacterium that causes angular leaf spot of strawberry. Asymptomatic infection is common and contributes to the difficulties in disease management. The aim of this study was to develop a loop-mediated isothermal amplification (LAMP) assay as an efficient method for detection of asymptomatic infections of X. fragariae. In addition, a new method of sample preparation was developed that allows sampling of a larger amount of plant tissue, hence increasing the detection rate in real-life samples. The sample preparation procedure includes an overnight incubation of strawberry tissues in phosphate-buffered saline (PBS), followed by a quick sample concentration and a boiling step to extract DNA for amplification. The detection limit of the LAMP assay was approximately 2×103 CFU/mL for pure bacteria culture and 300 CFU/mL for bacteria spiked strawberry leaf and petiole samples. LAMP provided a 2–3 fold lower detection limit than the standard qPCR assay but was faster, and more user-friendly. The LAMP assay should serve as a rapid, sensitive and cost-effective tool for detecting asymptomatic infections of X. fragariae in strawberry nursery stock and contribute to improved disease management.  相似文献   

13.
A highly sensitive and specific RNA biosensor was developed for the rapid detection of viable Escherichia coli as an indicator organism in water. The biosensor is coupled with protocols developed earlier for the extraction and amplification of mRNA molecules from E. coli [Anal. Biochem. 303 (2002) 186]. However, in contrast to earlier detection methods, the biosensor allows the rapid detection and quantification of E. coli mRNA in only 15-20 min. In addition, the biosensor is portable, inexpensive and very easy to use, which makes it an ideal detection system for field applications. Viable E. coli are identified and quantified via a 200 nt-long target sequence from mRNA (clpB) coding for a heat shock protein. For sample preparation, a heat shock is applied to the cells prior to disruption. Then, mRNA is extracted, purified and finally amplified using the isothermal amplification technique Nucleic acid sequence-based amplification (NASBA). The amplified RNA is then quantified with the biosensor. The biosensor is a membrane-based DNA/RNA hybridization system using liposome amplification. The various biosensor components such as DNA probe sequences and concentration, buffers, incubation times have been optimized, and using a synthetic target sequence, a detection limit of 5 fmol per sample was determined. An excellent correlation to a much more elaborate and expensive laboratory based detection system was demonstrated, which can detect as few as 40 E. coli cfu/ml. Finally, the assay was tested regarding its specificity; no false positive signals were obtained from other microorganisms or from nonviable E. coli cells.  相似文献   

14.
A bead-based assay was developed for highly sensitive single molecule DNA detection. Rolling circle amplification (RCA), an isothermal amplification technique that creates tandem repeated sequences, was used in combination with a fluorescent complementary DNA to create dense clusters of fluorescence. These clusters, each corresponding to a single target molecule, can be detected unambiguously due to their high signal/noise ratios. The limit of detection of this assay is approximately 1 amol. This simple single molecule assay allows high detection sensitivity without the use of complex equipment.  相似文献   

15.
AIMS: Brettanomyces bruxellensis is a well-known wine spoilage yeast that causes undesirable off-flavours. Likewise, glucan-producing strains of ropy Pediococcus damnosus are considered as spoilage micro-organisms because the synthesis of glucan leads to an unacceptable viscosity of wine. METHODS AND RESULTS: We developed a real-time PCR method to detect and quantify these two spoilage micro-organisms in wine. It is based on specific primer pairs for amplification of target DNA, and includes a melting-curve analysis of PCR products as a confirmatory test. CONCLUSIONS: The detection limit in wine was 10(4) CFU ml(-1) for B. bruxellensis and 40 CFU ml(-1) for ropy Pediococcus damnosus. The real-time PCR proved to be reliable for the early, sensitive detection and quantification of B. bruxellensis and ropy P. damnosus in wine. SIGNIFICANCE AND IMPACT OF THE STUDY: The real-time PCR-based method described in this study provides a new tool for monitoring spoilage micro-organisms in wine. Time-consuming culture and colony isolation steps are no longer needed, so winemakers can intervene before spoilage occurs.  相似文献   

16.
免疫胶体金法提取环境标本中细菌DNA技术   总被引:1,自引:0,他引:1  
将抗-DNA单克隆抗体标记在胶体金颗粒上制成免疫胶体金试剂,提取标本中DNA,直接用于PCR检测,从而建立一种简单、快速、高效的免疫胶体金方法提取环境标本中的DNA。结果表明:应用免疫胶体金试剂可有效去除环境标本中PCR抑制剂,浓缩模板,提高PCR检测敏感度3~4个数量级。操作步骤简单,无需使用有机溶剂,避免环境污染,吸附了DNA的免疫胶体金可直接用于PCR扩增。研制了免疫胶体金试剂并确定其最佳反应条件,有效提高PCR技术在检测现场环境标本中的敏感性和实用性。  相似文献   

17.
Pasteurized milk is a complex food that contains various inhibitors of polymerase chain reaction (PCR) and may contain a large number of dead bacteria, depending on the milking conditions and environment. Ethidium monoazide bromide (EMA)-PCR is occasionally used to distinguish between viable and dead bacteria in foods other than pasteurized milk. EMA is a DNA-intercalating dye that selectively permeates the compromised cell membranes of dead bacteria and cleaves DNA. Usually, EMA-PCR techniques reduce the detection of dead bacteria by up to 3.5 logs compared with techniques that do not use EMA. However, this difference may still be insufficient to suppress the amplification of DNA from dead Gram-negative bacteria (e.g., total coliform bacteria) if they are present in pasteurized milk in large numbers. Thus, false positives may result. We developed a new method that uses real-time PCR targeting of a long DNA template (16S-23S rRNA gene, principally 2,451?bp) following EMA treatment to completely suppress the amplification of DNA of up to 7?logs (10(7)?cells) of dead total coliforms. Furthermore, we found that a low dose of proteinase K (25?U/ml) removed PCR inhibitors and simultaneously increased the signal from viable coliform bacteria. In conclusion, our simple protocol specifically detects viable total coliforms in pasteurized milk at an initial count of ≥1?colony forming unit (CFU)/2.22?ml within 7.5?h of total testing time. This detection limit for viable cells complies with the requirements for the analysis of total coliforms in pasteurized milk set by the Japanese Sanitation Act (which specifies <1?CFU/2.22?ml).  相似文献   

18.
[目的]采用改良环介导等温扩增(LAMP)技术,快速检测婴儿配方奶粉中的阪崎肠杆菌.[方法]以阪崎肠杆菌(ATCC29544)的16S-23S rRNA间区序列作为靶序列,设计内、外引物和环引物,通过肉眼观察白色沉淀,判断检测结果.[结果]LAMP检测阪崎肠杆菌的灵敏度为0.101 CFU/mL,人工污染阪崎肠杆菌的婴儿配方奶粉的检出限为1.1 CFU/g.采用试剂盒提取DNA,从样品处理到报告结果,耗时1 h.而对照,PCR检测阪崎肠杆菌的灵敏度为101 CFU/mL,人工污染阪崎肠杆菌的婴儿配方奶粉的检出限为1100 CFU/g.采用同样方法提取DNA,从样品处理到报告结果,耗时3 h.[结论]因此,LAMP检测婴儿配方奶粉中的阪崎肠杆菌灵敏度高,耗时短,方法简便.  相似文献   

19.
针对大肠杆菌O157:H7(Escherichia coli O157:H7,E.coli O157:H7)传统检测方法检测周期长的问题,建立了肉类中的E.coli O157:H7的改良环介导等温扩增(LAMP)快速检测方法。以E.coli O157:H7的O157特异性抗原rfbE基因、鞭毛H7特异性抗原fliC基因序列作为靶序列,分别设计2套增加了环引物的改良LAMP引物序列,单管同时检测,通过肉眼观察白色沉淀,判断检测结果。采用36株细菌验证了该改良LAMP引物的特异性。热裂解法提取的DNA经改良LAMP体系扩增20 min,检测E.coli O157:H7的灵敏度为1.4 CFU/mL,人工污染肉中的E.coli O157:H7检出限为1.8 CFU/g。137份实样中,检测出1份E.coli O157:H7假阳性,与行业标准SNT0973-2000符合率达到99.3%。  相似文献   

20.
We have devised a sensitive and rapid method for the detection of several bacterial pathogens in clinical specimens using PCR. This method has been named Direct Labeling and Detection Procedure (DLDP) and is based on the direct incorporation of a nonradioactive digoxigenin label (DIG-11-dUTP) into a microbial species-specific gene fragment during amplification. Following amplification, the resulting PCR products are cleansed of nonincorporated DIG-11-dUTP, spotted onto a nylon membrane, fixed by UV-crosslinking and the labeled DNA is visualized by digoxigenin detection reagents. Using cultivated reference bacteria (Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa) we were able to demonstrate a rapid and sensitive detection of < 20 CFU of bacteria in human secretions (sputum, urine, mucous). The present study suggests that DLDP can be used as a reliable method for indication of bacteria in clinical or environmental specimens with the proviso that the selected corresponding oligonucleotide primers provide amplification of strong species-specific genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号