首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Lignocellulosic biomass is an abundant renewable feedstock for sustainable production of commodities such as biofuels. The main technological barrier that prevents widespread utilization of this resource for production of commodity products is the lack of low-cost technologies to overcome the recalcitrance of lignocellulose. Organisms that hydrolyse the cellulose and hemicelluloses in biomass and produce a valuable product such as ethanol at a high rate and titre would significantly reduce the costs of current biomass conversion technologies. This would allow steps that are currently accomplished in different reactors, often by different organisms, to be combined in a consolidated bioprocess (CBP). The development of such organisms has focused on engineering naturally cellulolytic microorganisms to improve product-related properties or engineering non-cellulolytic organisms with high product yields to become cellulolytic. The latter is the focus of this review. While there is still no ideal organism to use in one-step biomass conversion, several candidates have been identified. These candidates are in various stages of development for establishment of a cellulolytic system or improvement of product-forming attributes. This review assesses the current state of the art for enabling non-cellulolytic organisms to grow on cellulosic substrates.  相似文献   

2.
Butanol is an important bulk chemical, as well as a promising renewable gasoline substitute, that is commonly produced by solventogenic Clostridia. The main cost of cellulosic butanol fermentation is caused by cellulases that are required to saccharify lignocellulose, since solventogenic Clostridia cannot efficiently secrete cellulases. However, cellulolytic Clostridia can natively degrade lignocellulose and produce ethanol, acetate, butyrate and even butanol. Therefore, cellulolytic Clostridia offer an alternative to develop consolidated bioprocessing (CBP), which combines cellulase production, lignocellulose hydrolysis and co-fermentation of hexose/pentose into butanol in one step. This review focuses on CBP advances for butanol production of cellulolytic Clostridia and various synthetic biotechnologies that drive these advances. Moreover, the efforts to optimize the CBP-enabling cellulolytic Clostridia chassis are also discussed. These include the development of genetic tools, pentose metabolic engineering and the improvement of butanol tolerance. Designer cellulolytic Clostridia or consortium provide a promising approach and resource to accelerate future CBP for butanol production.  相似文献   

3.
Consolidated bioprocessing (CBP) by micro-organisms is desired for efficient conversion of lignocellulosic biomass to bioethanol fuels. Potential candidates have been discovered, including cellulolytic bacteria and filamentous fungi. Genetic and metabolic manipulation of these organisms further promotes their fermentation capacities and the ethanol tolerance. In addition, Saccharomyces cerevisiae and several other yeasts were genetically modified to express recombinant cellulases in media or display them on the cell surface for CBP of cellulose. To compensate the insufficient capacity of a single strain, various microbial consortia have also been developed. In this article, we reviewed the recent advances in CBP microbes and focused on the efforts in strain improvement employing genetic engineering.  相似文献   

4.
Consolidated bioprocessing (CBP), which integrates enzyme production, saccharification and fermentation into a single process, is a promising strategy for effective ethanol production from lignocellulosic materials because of the resulting reduction in utilities, the substrate and other raw materials and simplification of operation. CBP requires a highly engineered microbial strain capable of hydrolyzing biomass with enzymes produced on its own and producing high-titer ethanol. Recently, heterologous production of cellulolytic enzymes has been pursued with yeast hosts, which has realized direct conversion of cellulose to ethanol. Specifically, the development of cell surface engineering, which provides a display of cellulolytic enzymes on the yeast cell surface, facilitates effective biomass hydrolysis concomitantly with ethanol production. On the other hand, the difference in optimum temperature between saccharification and fermentation is a drawback of efficient ethanol production in the simultaneous saccharification and fermentation (SSF). The application of thermotolerant yeast strains engineered to the SSF process would overcome the drawback by performing hydrolysis and fermentation at elevated temperature. In this review, we focus on the recent advances in the application of thermotolerant yeast to CBP and SSF of lignocellulosic material to ethanol. The development of thermotolerant and ethanologenic yeast strains with the ability to hydrolyze lignocellulosic materials is emphasized for high-temperature CBP.  相似文献   

5.
Cellulose waste biomass is the most attractive substrate for 'biorefinery strategies' producing high-value products (e.g. fuels or plastics) by fermentation. However, traditional biomass bioconversions are economically inefficient multistep processes. Thus far, no microorganisms able to perform single-step fermentation into products (consolidated bioprocessing; CBP) have been isolated. Metabolic engineering is currently employed to develop recombinant microorganisms suitable for CBP. The heterologous expression of extracellular proteins (e.g. cellulases or hemicellulases) is the key feature of recombinant cellulolytic strategies, conferring cellulolytic ability to microorganisms exhibiting high product yields and titers. Although more molecular tools are becoming available, efficient heterologous expression of secreted proteins is still a challenge. The present review summarizes both bottlenecks and solutions of organism engineering for biomass biorefinery strategies.  相似文献   

6.
7.
Consolidated bioprocessing (CBP) of cellulosic biomass is a promising source of ethanol. This process uses anaerobic bacteria, their own cellulolytic enzymes and fermentation pathways that convert the products of cellulose hydrolysis to ethanol in a single reactor. However, the engineering and economics of the process remain questionable. The ruminal fermentation is a very highly developed natural cellulose-degrading system. We propose that breakthroughs developed by cattle and other ruminant animals in cellulosic biomass conversion can guide future improvements in engineered CBP systems. These breakthroughs include, among others, an elegant and effective physical pretreatment; operation at high solids loading under non-aseptic conditions; minimal nutrient requirements beyond the plant biomass itself; efficient fermentation of nearly all plant components; efficient recovery of primary fermentation end-products; and production of useful co-products. Ruminal fermentation does not produce significant amounts of ethanol, but it produces volatile fatty acids and methane at a rapid rate. Because these alternative products have a high energy content, efforts should be made to recover these products and convert them to other organic compounds, particularly transportation fuels.  相似文献   

8.
Consolidated bioprocessing of cellulosic biomass: an update   总被引:30,自引:0,他引:30  
Biologically mediated processes seem promising for energy conversion, in particular for the conversion of lignocellulosic biomass into fuels. Although processes featuring a step dedicated to the production of cellulase enzymes have been the focus of most research efforts to date, consolidated bioprocessing (CBP)--featuring cellulase production, cellulose hydrolysis and fermentation in one step--is an alternative approach with outstanding potential. Progress in developing CBP-enabling microorganisms is being made through two strategies: engineering naturally occurring cellulolytic microorganisms to improve product-related properties, such as yield and titer, and engineering non-cellulolytic organisms that exhibit high product yields and titers to express a heterologous cellulase system enabling cellulose utilization. Recent studies of the fundamental principles of microbial cellulose utilization support the feasibility of CBP.  相似文献   

9.
The realization of a sustainable bioeconomy requires our ability to understand and engineer complex design principles for the development of platform organisms capable of efficient conversion of cheap and sustainable feedstocks (e.g., sunlight, CO2, and nonfood biomass) into biofuels and bioproducts at sufficient titers and costs. For model microbes, such as Escherichia coli, advances in DNA reading and writing technologies are driving the adoption of new paradigms for engineering biological systems. Unfortunately, microbes with properties of interest for the utilization of cheap and renewable feedstocks, such as photosynthesis, autotrophic growth, and cellulose degradation, have very few, if any, genetic tools for metabolic engineering. Therefore, it is important to develop “design rules” for building a genetic toolbox for novel microbes. Here, we present an overview of our current understanding of these rules for the genetic manipulation of prokaryotic microbes and the available genetic tools to expand our ability to genetically engineer nonmodel systems.  相似文献   

10.
In view of rising prices of crude oil due to increasing fuel demands, the need for alternative sources of bioenergy is expected to increase sharply in the coming years. Among potential alternative bioenergy resources, lignocellulosics have been identified as the prime source of biofuels and other value-added products. Lignocelluloses as agricultural, industrial and forest residuals account for the majority of the total biomass present in the world. To initiate the production of industrially important products from cellulosic biomass, bioconversion of the cellulosic components into fermentable sugars is necessary. A variety of microorganisms including bacteria and fungi may have the ability to degrade the cellulosic biomass to glucose monomers. Bacterial cellulases exist as discrete multi-enzyme complexes, called cellulosomes that consist of multiple subunits. Cellulolytic enzyme systems from the filamentous fungi, especially Trichoderma reesei, contain two exoglucanases or cellobiohydrolases (CBH1 and CBH2), at least four endoglucanases (EG1, EG2, EG3, EG5), and one β-glucosidase. These enzymes act synergistically to catalyse the hydrolysis of cellulose. Different physical parameters such as pH, temperature, adsorption, chemical factors like nitrogen, phosphorus, presence of phenolic compounds and other inhibitors can critically influence the bioconversion of lignocellulose. The production of cellulases by microbial cells is governed by genetic and biochemical controls including induction, catabolite repression, or end product inhibition. Several efforts have been made to increase the production of cellulases through strain improvement by mutagenesis. Various physical and chemical methods have been used to develop bacterial and fungal strains producing higher amounts of cellulase, all with limited success. Cellulosic bioconversion is a complex process and requires the synergistic action of the three enzymatic components consisting of endoglucanases, exoglucanases and β-glucosidases. The co-cultivation of microbes in fermentation can increase the quantity of the desirable components of the cellulase complex. An understanding of the molecular mechanism leading to biodegradation of lignocelluloses and the development of the bioprocessing potential of cellulolytic microorganisms might effectively be accomplished with recombinant DNA technology. For instance, cloning and sequencing of the various cellulolytic genes could economize the cellulase production process. Apart from that, metabolic engineering and genomics approaches have great potential for enhancing our understanding of the molecular mechanism of bioconversion of lignocelluloses to value added economically significant products in the future. JIMB 2008: BioEnergy - Special issue.  相似文献   

11.
Consolidated bioprocessing (CBP) is believed to be a potentially cost-efficient and commercially viable way to produce cellulosic biofuels. In this study, we have evaluated the performance of the CBP organism Clostridium phytofermentans (ATCC 700394) on AFEX-treated corn stover (AFEX-CS). Fermentation conditions including temperature, inoculation size, nutrients, and initial pH were investigated. At optimal conditions with 0.5% (w/w) glucan loading of AFEX-CS, C. phytofermentans hydrolyzed 76% of glucan and 88.6% of xylan in 10 days. These values reached 87% and 102% of those obtained by simultaneous saccharification and co-fermentation (SSCF) using commercial enzymes and S. cerevisiae 424A. Ethanol titer for CBP was found to be 2.8 g/L which was 71.8% of that yielded by SSCF (3.9 g/L). Decomposition products from AFEX-CS helped to increase ethanol yield somewhat during CBP. Particle size played a crucial role in the enhancement of sugar conversion by CBP.  相似文献   

12.
For direct and efficient ethanol production from cellulosic materials, we screened optimal cellulases from symbiotic protists of termites through heterologous expression with Saccharomyces cerevisiae. 11 cellulases, belonging to glycoside hydrolase families 5, 7, and 45 endoglucanases (EGs), were confirmed to produce with S. cerevisiae for the first time. A recombinant yeast expressing SM2042B24 EG I was more efficient at degrading carboxylmethyl cellulose than was Trichoderma reesei EG I, a major EG with high cellulolytic activity.  相似文献   

13.
Fermentation of cellulosic materials to mycoprotein foods   总被引:2,自引:0,他引:2  
A new bioprocess is described in which a cellulolytic, food-grade fungus Neurospora sitophila converts cellulosic materials to protein-rich products for food and fodder. The optimal conditions for the conversion are identified: 35-37 degrees C temperature, pH 5.5, 2.35 ms(-1) agitator tip speed. Scale-up of the production process to 1,300 L is reported. The mycoprotein production data on several types of cellulosic materials (sugarcane bagasse, corn stover, wood cellulose) are presented. The performance of N. sitophila is found to compare favourably with that of Chaetomium cellulolyticum, another cellulolytic organism previously reported on by us.  相似文献   

14.
15.
Modern methods to develop microbe-based biomass conversion processes require a system-level understanding of the microbes involved. Clostridium species have long been recognized as ideal candidates for processes involving biomass conversion and production of various biofuels and other industrial products. To expand the knowledge base for clostridial species relevant to current biofuel production efforts, we have sequenced the genomes of 20 species spanning multiple genera. The majority of species sequenced fall within the class III cellulosome-encoding Clostridium and the class V saccharolytic Thermoanaerobacteraceae. Species were chosen based on representation in the experimental literature as model organisms, ability to degrade cellulosic biomass either by free enzymes or by cellulosomes, ability to rapidly ferment hexose and pentose sugars to ethanol, and ability to ferment synthesis gas to ethanol. The sequenced strains significantly increase the number of noncommensal/nonpathogenic clostridial species and provide a key foundation for future studies of biomass conversion, cellulosome composition, and clostridial systems biology.  相似文献   

16.
Protein engineering in the context of metabolic engineering is increasingly important to the field of industrial biotechnology. As the demand for biologically produced food, fuels, chemicals, food additives, and pharmaceuticals continues to grow, the ability to design and modify proteins to accomplish new functions will be required to meet the high productivity demands for the metabolism of engineered organisms. We review advances in selecting, modeling, and engineering proteins to improve or alter their activity. Some of the methods have only recently been developed for general use and are just beginning to find greater application in the metabolic engineering community. We also discuss methods of generating random and targeted diversity in proteins to generate mutant libraries for analysis. Recent uses of these techniques to alter cofactor use; produce non-natural amino acids, alcohols, and carboxylic acids; and alter organism phenotypes are presented and discussed as examples of the successful engineering of proteins for metabolic engineering purposes.  相似文献   

17.
The genus Trichoderma comprises a group of filamentous ascomycetes that are now widely used in industrial applications because of their ability to produce extracellular hydrolases in large amounts. In addition, strong inducible promoters together with high secretory capacity have made Trichoderma an attractive host for heterologous protein production. Several promoters of genes encoding hydrolytic enzymes have been investigated in detail regarding their cis-acting elements and trans-acting factors. Potent inducer molecules, for both xylanolytic and cellulolytic enzyme systems, have been identified and characterized. Furthermore, models for the recognition of the insoluble substrates cellulose and xylan have been developed based on a large set of experiments. This mini-review summarises the considerable amount of data accumulated over the past three decades.  相似文献   

18.
Next to cellulose, starch is the most abundant hexose polymer in plants, an import food and feed source and a preferred substrate for the production of many industrial products. Efficient starch hydrolysis requires the activities of both α-1,4 and α-1,6-debranching hydrolases, such as endo-amylases, exo-amylases, debranching enzymes, and transferases. Although amylases are widely distributed in nature, only about 10?% of amylolytic enzymes are able to hydrolyse raw or unmodified starch, with a combination of α-amylases and glucoamylases as minimum requirement for the complete hydrolysis of raw starch. The cost-effective conversion of raw starch for the production of biofuels and other important by-products requires the expression of starch-hydrolysing enzymes in a fermenting yeast strain to achieve liquefaction, hydrolysis, and fermentation (Consolidated Bioprocessing, CBP) by a single organism. The status of engineering amylolytic activities into Saccharomyces cerevisiae as fermentative host is highlighted and progress as well as challenges towards a true CBP organism for raw starch is discussed. Conversion of raw starch by yeast secreting or displaying α-amylases and glucoamylases on their surface has been demonstrated, although not at high starch loading or conversion rates that will be economically viable on industrial scale. Once efficient conversion of raw starch can be demonstrated at commercial level, engineering of yeast to utilize alternative substrates and produce alternative chemicals as part of a sustainable biorefinery can be pursued to ensure the rightful place of starch converting yeasts in the envisaged bio-economy of the future.  相似文献   

19.
For direct and efficient ethanol production from cellulosic materials, we screened optimal cellulases from symbiotic protists of termites through heterologous expression with Saccharomyces cerevisiae. 11 cellulases, belonging to glycoside hydrolase families 5, 7, and 45 endoglucanases (EGs), were confirmed to produce with S. cerevisiae for the first time. A recombinant yeast expressing SM2042B24 EG I was more efficient at degrading carboxylmethyl cellulose than was Trichoderma reesei EG I, a major EG with high cellulolytic activity.  相似文献   

20.
Microbial conversion of plant biomass into fuels and chemicals offers a practical solution to global concerns over limited natural resources, environmental pollution, and climate change. Pursuant to these goals, researchers have put tremendous efforts and resources toward engineering the yeast Saccharomyces cerevisiae to efficiently convert xylose, the second most abundant sugar in lignocellulosic biomass, into various fuels and chemicals. Here, recent advances in metabolic engineering of yeast is summarized to address bottlenecks on xylose assimilation and to enable simultaneous co-utilization of xylose and other substrates in lignocellulosic hydrolysates. Distinct characteristics of xylose metabolism that can be harnessed to produce advanced biofuels and chemicals are also highlighted. Although many challenges remain, recent research investments have facilitated the efficient fermentation of xylose and simultaneous co-consumption of xylose and glucose. In particular, understanding xylose-induced metabolic rewiring in engineered yeast has encouraged the use of xylose as a carbon source for producing various non-ethanol bioproducts. To boost the lignocellulosic biomass-based bioeconomy, much attention is expected to promote xylose-utilizing efficiency via reprogramming cellular regulatory networks, to attain robust co-fermentation of xylose and other cellulosic carbon sources under industrial conditions, and to exploit the advantageous traits of yeast xylose metabolism for producing diverse fuels and chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号