首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contaminated touch surfaces have been implicated in the spread of hospital-acquired infections, and the use of biocidal surfaces could help to reduce this cross-contamination. In a previous study we reported the death of aqueous inocula of pathogenic Enterococcus faecalis or Enterococcus faecium isolates, simulating fomite surface contamination, in 1 h on copper alloys, compared to survival for months on stainless steel. In our current study we observed an even faster kill of over a 6-log reduction of viable enterococci in less than 10 min on copper alloys with a "dry" inoculum equivalent to touch contamination. We investigated the effect of copper(I) and copper(II) chelation and the quenching of reactive oxygen species on cell viability assessed by culture and their effects on genomic DNA, membrane potential, and respiration in situ on metal surfaces. We propose that copper surface toxicity for enterococci involves the direct or indirect action of released copper ionic species and the generation of superoxide, resulting in arrested respiration and DNA breakdown as the first stages of cell death. The generation of hydroxyl radicals by the Fenton reaction does not appear to be the dominant instrument of DNA damage. The bacterial membrane potential is unaffected in the early stages of wet and dry surface contact, suggesting that the membrane is not compromised until after cell death. These results also highlight the importance of correct surface cleaning protocols to perpetuate copper ion release and prevent the chelation of ions by contaminants, which could reduce the efficacy of the surface.  相似文献   

2.
Infections by Enterobacter species are common and are multidrug resistant. The use of bactericidal surface materials such as copper has lately gained attention as an effective antimicrobial agent due to its deadly effects on bacteria, yeast, and viruses. The aim of the current study was to assess the antibacterial activity of copper surfaces against Enterobacter species. The antibacterial activity of copper surfaces was tested by overlying 5×10(6) CFU/ml suspensions of representative Enterobacter strains and comparing bacterial survival counts on copper surfaces at room temperature. Iron, stainless steel, and polyvinylchloride (PVC) were used as controls. The mechanisms responsible for bacterial killing on copper surfaces were investigated by a mutagenicity assay of the D-cycloserin (cyclA gene), single cell gel electrophoresis, a staining technique, and inductively coupled plasma mass spectroscopy. Copper yielded a significant decrease in the viable bacterial counts at 2 h exposure and a highly significant decrease at 4 h. Loss of cell integrity and a significantly higher influx of copper into bacterial cells exposed to copper surfaces, as compared to those exposed to the controls, were documented. There was no increase in mutation rate and DNA damage indicating that copper contributes to bacterial killing by adversely affecting cellular structure without directly targeting the genomic DNA. These findings suggest that copper's antibacterial activity against Enterobacter species could be utilized in health care facilities and in food processing plants to reduce the bioburden, which would increase protection for susceptible members of the community.  相似文献   

3.
Aims: Studies to date have shown rapid killing of bacterial cells when exposed to copper surfaces. The mechanistic action of copper on bacterial cells is so far unknown. Methods and Results: To investigate potential mechanisms involved, meticillin‐resistant Staphylococcus aureus (MRSA) cells (107 CFU) were inoculated onto coupons of copper or stainless steel and stained with either the viability fluorophore 5‐cyano‐2,3‐ditolyl tetrazolium (CTC), to detect respiration, or BacLight? (SYTO9/propidium iodide), to determine cell wall integrity. Coupons were then observed in‐situ using epifluorescence microscopy. In addition, DNA from cells inoculated onto either copper or stainless steel surfaces was isolated and analysed by agarose gel electrophoresis. An effect on cellular respiration with CTC reduction was evident but no effect on cell membrane integrity (BacLight?) was observed. Results from the DNA isolation indicated a copper‐induced detrimental effect on MRSA genomic material as no bands were observed after exposure to copper surface. Conclusions: The results indicate that exposure to copper surfaces rapidly kills MRSA by compromising cellular respiration and damaging DNA, with little effect on cell membrane integrity. Significance and Impact of the study: This research provides a mechanistic explanation in support of previous suggestions that although copper surfaces do not affect membrane integrity of cells, there is still a rapid antimicrobial effect.  相似文献   

4.
含铜抗菌不锈钢的抗菌性能研究   总被引:2,自引:0,他引:2  
对铁素体和奥氏体2种含铜抗菌不锈钢的抗菌性能进行了考察.采用覆膜法检测抗菌率,用透射电镜观察与铁素体抗菌不锈钢作用后的大肠埃希菌细胞形态.2种抗菌不锈钢材料对供试的 17 株常见菌,除产气肠杆菌外均显示较强的抗菌性能,抗菌谱广;铁素体和奥氏体对1×107 cfu/mL及以下浓度的大肠埃希菌在 24 h内杀灭率达到99%;铁素体和奥氏体分别在作用 3 h和 9 h时可将1×107 cfu/mL的大肠埃希菌全部杀灭;打磨次数和环境温度的变化不影响2种抗菌不锈钢的杀菌率;透射电镜结果显示,与抗菌不锈钢作用后的大肠埃希菌菌体结构松散,细胞壁和细胞膜破裂,有内容物漏出.铁素体和奥氏体抗菌不锈钢均具优良的抗菌性能,抗菌谱广,与其作用后的细菌菌体破裂,有内容物溶出,最终致菌死亡.  相似文献   

5.
Metallic copper surfaces have strong antimicrobial properties and kill bacteria, such as Escherichia coli, within minutes in a process called contact killing. These bacteria are exposed to acute copper stress under dry conditions which is different from chronic copper stress in growing liquid cultures. Currently, the physiological changes of E. coli during the acute contact killing process are largely unknown. Here, a label-free, quantitative proteomic approach was employed to identify the differential proteome profiles of E. coli cells after sub-lethal and lethal exposure to dry metallic copper. Of the 509 proteins identified, 110 proteins were differentially expressed after sub-lethal exposure, whereas 136 proteins had significant differences in their abundance levels after lethal exposure to copper compared to unexposed cells. A total of 210 proteins were identified only in copper-responsive proteomes. Copper surface stress coincided with increased abundance of proteins involved in secondary metabolite biosynthesis, transport and catabolism, including efflux proteins and multidrug resistance proteins. Proteins involved in translation, ribosomal structure and biogenesis functions were down-regulated after contact to metallic copper. The set of changes invoked by copper surface-exposure was diverse without a clear connection to copper ion stress but was different from that caused by exposure to stainless steel. Oxidative posttranslational modifications of proteins were observed in cells exposed to copper but also from stainless steel surfaces. However, proteins from copper stressed cells exhibited a higher degree of oxidative proline and threonine modifications.  相似文献   

6.
Aims:  To evaluate the killing of Pseudomonas aeruginosa PAO1 on copper cast alloys and the influence of genes on survival on copper containing medium and surfaces.
Methods and Results:  Different strains of P. aeruginosa were inoculated on copper containing medium or different copper cast alloys and the survival rate determined. The survival rates were compared with rates on copper-free medium and stainless steel as control. In addition, the effect of temperature on survival was examined.
Conclusions:  Copper cast alloys had been previously shown to be bactericidal to various bacteria, but the mechanism of copper-mediated killing is still not known. In this report, we demonstrate that P. aeruginosa PAO1 is rapidly killed on different copper cast alloys and that genes involved in conferring copper resistance in copper-containing medium also influenced survival on copper cast alloys. We also show that the rate of killing is influenced by temperature.
Significance and Impact of the Study:  To use copper surfaces more widely as bactericidal agents in various settings, it is important to understand how genes influence survival on these surfaces. Here we show that genes shown to be involved in copper resistance in P. aeruginosa PAO1 can have an impact on the length of survival time on copper cast alloys under certain conditions. This is an important first step for evaluation of future use of copper surfaces as bactericidal agents.  相似文献   

7.
Bacterial contamination of touch surfaces poses a serious threat for public health. The use of bactericidal surface materials, such as copper and its alloys, might constitute a way to aid the use of antibiotics and disinfectants, thus minimizing the risk of emergence and spread of multiresistant germs. The survival of Escherichia coli on metallic copper surfaces has been studied previously; however, the mechanisms underlying bacterial inactivation on copper surfaces have not been elucidated. Data presented in this study suggest that bacteria are killed rapidly on dry copper surfaces. Several factors, such as copper ion toxicity, copper chelators, cold, osmotic stress, and reactive oxygen species, but not anaerobiosis, influenced killing rates. Strains deleted in copper detoxification systems were slightly more sensitive than was the wild type. Preadaptation to copper enhanced survival rates upon copper surface exposure. This study constitutes a first step toward understanding the reasons for metallic copper surface-mediated killing of bacteria.  相似文献   

8.
A new method for assessing bactericidal properties of metallic materials, soiled by aerosol, was developed and applied to stainless steel in conditions close to reality. The airborne bacteria survival on different stainless steel grades and massive copper is presented here. The investigating bacterium was Enterococcus faecalis, which is a well-known contaminant strain in the indoor environments. It was observed that the bacterial aerosol lethality increased proportionally with the relative humidity (RH) of the environment. A significant difference in survival rate was measured depending on the tested supports, the greatest lethality being observed on clean massive copper. Moreover, the addition of nutrients on metallic surfaces, even in small quantities, was enough to ensure the revival of quiescent microorganisms.  相似文献   

9.
Bacteria are rapidly killed on copper surfaces. However, the mechanism of this process remains unclear. Using Enterococcus hirae, the effect of inactivation of copper homeostatic genes and of medium compositions on survival and copper dissolution was tested. The results support a role for dissolved copper ions in killing.The rapid killing of bacteria by solid copper surfaces is receiving rapidly growing attention. In laboratory experiments, it has been shown that many bacterial species, such as Escherichia coli O157, Staphylococcus aureus, Salmonella enterica, Campylobacter jejuni, Clostridium difficile, and Mycobacterium tuberculosis, are efficiently killed on copper or copper alloy surfaces (1, 3, 4, 6, 7, 12-14). In contrast, on stainless steel, living cells could be recovered even after 28 days. The antimicrobial activity of copper and copper alloys is now well established, and copper has recently been registered at the U.S. Environmental Protection Agency as the first solid antimicrobial material. A key focus is the use of copper in health care facilities, food processing plants, and other areas where clean or aseptic working procedures are required (2). In this connection, it has become important to understand the mechanism of bacterial killing, as it may bear on the possibility of the emergence of resistant organisms, cleaning procedures, and material and object engineering. We here used wild-type and mutant strains of Enterococcus hirae to investigate the influence of copper resistance genes on killing rates. We also evaluated copper dissolution by various media and its relation to killing efficiency. Our findings provide support for a prominent role for dissolved copper in the killing process.  相似文献   

10.
Despite a wealth of experimental evidence concerning the efficacy of the biocidal action associated with the TiO(2) photocatalytic reaction, our understanding of the photochemical mechanism of this particular biocidal action remains largely unclear. It is generally accepted that the hydroxyl radical (.OH), which is generated on the surface of UV-illuminated TiO(2), plays the main role. However, our understanding of the exact mode of action of the hydroxyl radical in killing microorganisms is far from complete, and some studies report that other reactive oxygen species (ROS) (H(2)O(2) and O(2).(-), etc.) also play significant roles. In particular, whether hydroxyl radicals remain bound to the surface or diffuse into the solution bulk is under active debate. In order to examine the exact mode of action of ROS in inactivating the microorganism, we tested and compared the levels of photocatalytic inactivation of MS-2 phage and Escherichia coli as representative species of viruses and bacteria, respectively. To compare photocatalytic microbial inactivation with the photocatalytic chemical degradation reaction, para-chlorobenzoic acid, which rapidly reacts with a hydroxyl radical with a diffusion-limited rate, was used as a probe compound. Two different hydroxyl radical scavengers, tert-butanol and methanol, and an activator of the bulk phase hydroxyl radical generation, Fe(2+), were used to investigate their effects on the photocatalytic mode of action of the hydroxyl radical in inactivating the microorganism. The results show that the biocidal modes of action of ROS are very different depending on the specific microorganism involved, although the reason for this is not clear. It seems that MS-2 phage is inactivated mainly by the free hydroxyl radical in the solution bulk but that E. coli is inactivated by both the free and the surface-bound hydroxyl radicals. E. coli might also be inactivated by other ROS, such as O(2).(-) and H(2)O(2), according to the present results.  相似文献   

11.
Basic chemistry of copper is responsible for its Janus-faced feature: on one hand, copper is an essential trace element required to interact efficiently with molecular oxygen. On the other hand, interaction with reactive oxygen species in undesired Fenton-like reactions leads to the production of hydroxyl radicals, which rapidly damage cellular macromolecules. Moreover, copper cations strongly bind to thiol compounds disturbing redox-homeostasis and may also remove cations of other transition metals from their native binding sites in enzymes. Nature has learned during evolution to deal with the dangerous yet important copper cations. Bacterial cells use different efflux systems to detoxify the metal from the cytoplasm or periplasm. Despite this ability, bacteria are rapidly killed on dry metallic copper surfaces. The mode of killing likely involves copper cations being released from the metallic copper and reactive oxygen species. With all this knowledge about the interaction of copper and its cations with cellular macromolecules in mind, experiments were moved to the next level, and the antimicrobial properties of copper-containing alloys in an “everyday” hospital setting were investigated. The alloys tested decreased the number of colony-forming units on metallic copper-containing surfaces by one third compared to control aluminum or plastic surfaces. Moreover, after disinfection, repopulation of the surfaces was delayed on copper alloys. This study bridges a gap between basic research concerning cellular copper homeostasis and application of this knowledge. It demonstrates that the use of copper-containing alloys may limit the spread of multiple drug-resistant bacteria in hospitals.  相似文献   

12.
The rapid killing of various bacteria in contact with metallic copper is thought to be influenced by the influx of copper ions into the cells, but the exact mechanism is not fully understood. This study showed that the kinetics of contact killing of copper surfaces depended greatly on the amount of moisture present, copper content of alloys, type of medium used, and type of bacteria. We examined antibiotic- and copper ion-resistant strains of Escherichia coli and Enterococcus faecium isolated from pig farms following the use of copper sulfate as feed supplement. The results showed rapid killing of both copper ion-resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions, while E. faecium strains were less affected. Electroplated copper surface corrosion rates were determined from electrochemical polarization tests using the Stern–Geary method and revealed decreased corrosion rates with benzotriazole and thermal oxide coating. Copper ion-resistant E. coli and E. faecium cells suspended in 0.8% NaCl showed prolonged survival rates on electroplated copper surfaces with benzotriazole coating and thermal oxide coating compared to surfaces without anti-corrosion treatment. Control of surface corrosion affected the level of copper ion influx into bacterial cells, which contributed directly to bacterial killing.  相似文献   

13.
Because copper catalyzes the conversion of H(2)O(2) to hydroxyl radicals in vitro, it has been proposed that oxidative DNA damage may be an important component of copper toxicity. Elimination of the copper export genes, copA, cueO, and cusCFBA, rendered Escherichia coli sensitive to growth inhibition by copper and provided forcing circumstances in which this hypothesis could be tested. When the cells were grown in medium supplemented with copper, the intracellular copper content increased 20-fold. However, the copper-loaded mutants were actually less sensitive to killing by H(2)O(2) than cells grown without copper supplementation. The kinetics of cell death showed that excessive intracellular copper eliminated iron-mediated oxidative killing without contributing a copper-mediated component. Measurements of mutagenesis and quantitative PCR analysis confirmed that copper decreased the rate at which H(2)O(2) damaged DNA. Electron paramagnetic resonance (EPR) spin trapping showed that the copper-dependent H(2)O(2) resistance was not caused by inhibition of the Fenton reaction, for copper-supplemented cells exhibited substantial hydroxyl radical formation. However, copper EPR spectroscopy suggested that the majority of H(2)O(2)-oxidizable copper is located in the periplasm; therefore, most of the copper-mediated hydroxyl radical formation occurs in this compartment and away from the DNA. Indeed, while E. coli responds to H(2)O(2) stress by inducing iron sequestration proteins, H(2)O(2)-stressed cells do not induce proteins that control copper levels. These observations do not explain how copper suppresses iron-mediated damage. However, it is clear that copper does not catalyze significant oxidative DNA damage in vivo; therefore, copper toxicity must occur by a different mechanism.  相似文献   

14.
Metallic copper alloys have recently attracted attention as a new antimicrobial weapon for areas where surface hygiene is paramount. Currently it is not understood on a molecular level how metallic copper kills microbes, but previous studies have demonstrated that a wide variety of bacteria, including Escherichia coli, Staphylococcus aureus, and Clostridium difficile, are inactivated within minutes or a few hours of exposure. In this study, we show that bacteria isolated from copper alloy coins comprise strains that are especially resistant against the toxic properties exerted by dry metallic copper surfaces. The most resistant of 294 isolates were Gram-positive staphylococci and micrococci, Kocuria palustris, and Brachybacterium conglomeratum but also included the proteobacterial species Sphingomonas panni and Pseudomonas oleovorans. Cells of some of these bacterial strains survived on copper surfaces for 48 h or more. Remarkably, when these dry-surface-resistant strains were exposed to moist copper surfaces, resistance levels were close to those of control strains and MICs for copper ions were at or below control strain levels. This suggests that mechanisms conferring resistance against dry metallic copper surfaces in these newly isolated bacterial strains are different from well-characterized copper ion detoxification systems. Furthermore, staphylococci on coins did not exhibit increased levels of resistance to antibiotics, arguing against coselection with copper surface resistance traits.Copper in its ionic form is a required trace element for most pro- and eukaryotic organisms, including humans. While needed in small amounts, copper can easily become toxic when in surplus. This toxicity is caused mainly by the intrinsic properties of copper, as free copper ions undergo redox cycling reactions alternating between Cu(I) and Cu(II). This also results in the transfer of electrons to hydrogen peroxide and the concomitant generation of hydroxyl radicals that readily attack and damage cellular biomolecules. Recently, it was found that the majority of copper stress in Escherichia coli, as indicated by hydroxyl radical formation, occurs within the periplasm, away from the cytoplasmic DNA, and is thus copper-mediated oxidative stress (25). The cytoplasm might thus be better protected from copper-mediated oxidative stress, and indeed cells usually prevent accumulation of significant intracellular concentrations of free copper ions either by producing copper-binding chaperones (26, 36) or unspecific chelators such as glutathione (20, 30) or by efflux (14, 35). Nevertheless, copper ions within the cytoplasm also cause damage. Surprisingly, this damage is not related to oxidative stress but is exerted directly by the metal ions. It seems that copper ions attack and displace iron atoms from enzymes with solvent-exposed iron sulfur clusters such as those of hydratases (24). Thus, the presence of oxygen is not needed for this reaction, and there is no copper-mediated oxidative stress involved in this damage (24).While we are now gaining a more detailed picture of why copper ions are toxic to cells, we do not understand why metallic copper surfaces kill single-celled organisms such as bacteria and yeasts. Earlier studies have demonstrated that metallic copper surfaces efficiently inactivate microbes upon contact (9, 11, 32), especially when exposed to dry surfaces (10). These beneficial properties led to the official registration of copper alloys as antimicrobials through the U.S. Environmental Protection Agency in 2008. There is now great hope that metallic copper surfaces will be able to help control hospital-acquired (nosocomial) infections. Indeed, there are ongoing trials in which dry touch surfaces in hospitals around the world are replaced by copper alloys. Results from a German hospital trial indicate that copper surfaces such as door knobs, light switches, and push plates diminished the bacterial load by up to 30% compared to stainless steel control surfaces (A. Mikolay et al., unpublished data). Similar studies in Great Britain and South Africa found that the numbers of bacteria on the surfaces of copper-containing items such as trolleys, desks, toilet seats, tap handles, or push plates were 71% (28) or 90% to 100% (5) lower than those on their stainless steel, wood, or tile control equivalents.A potential challenge when applying metallic copper might be the probable emergence and spread of resistant bacteria, similar to what was observed after the introduction of antibiotics. The goal of this study was to investigate if bacteria that can withstand dry metallic copper surfaces can be isolated and if there is a link to multiple drug resistance. Where can potentially pathogenic bacteria that are in contact with both humans and metallic copper surfaces be found? Actually, people handle copper surfaces every day. Most coins around the world are made from copper or copper alloys. This includes the U.S. penny, which is composed of copper plated over a zinc core, and the nickel, dime, and quarter, which are cupronickel alloys (www.usmint.gov/). Coins of the European Union, such as the 50-cent coin, are made from an 89% copper alloy, as are the bicolored one- and two-Euro coins, which consist of different copper alloys (http://www.copperinfo.co.uk/coins/).In the present study we isolated and initiated characterization of aerobic heterotrophic bacteria from copper alloy coins as an example of heavily used copper surfaces and person-to-person vectors. We believe that knowledge of the physiology and resistance mechanisms of these microbes will help us to adapt our strategies for using metallic copper surfaces in hygiene-sensitive areas. This might not only diminish total bacterial numbers but also prevent the emergence and spread of multiple-drug-resistant strains in hospitals equipped with copper surfaces.  相似文献   

15.
N-Acetyl-L-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants. Using 10 different bacterial strains isolated from a paper mill, we found that the mode of action of NAC is chemical, as well as biological, in the case of bacterial adhesion to stainless steel surfaces. The initial adhesion of bacteria is dependent on the wettability of the substratum. NAC was shown to bind to stainless steel, increasing the wettability of the surface. Moreover, NAC decreased bacterial adhesion and even detached bacteria that were adhering to stainless steel surfaces. Growth of various bacteria, as monocultures or in a multispecies community, was inhibited at different concentrations of NAC. We also found that there was no detectable degradation of extracellular polysaccharides (EPS) by NAC, indicating that NAC reduced the production of EPS, in most bacteria tested, even at concentrations at which growth was not affected. Altogether, the presence of NAC changes the texture of the biofilm formed and makes NAC an interesting candidate for use as a general inhibitor of formation of bacterial biofilms on stainless steel surfaces.  相似文献   

16.
Aims:  Preconditioning of stainless steel with aqueous cod muscle extract significantly impedes subsequent bacterial adhesion most likely due to repelling effects of fish tropomyosin. The purpose of this study was to determine if other food conditioning films decrease or enhance bacterial adhesion to stainless steel.
Methods and Results:  Attachment of Pseudomonas fluorescens AH2 to stainless steel coated with water-soluble coatings of animal origin was significantly reduced as compared with noncoated stainless steel or stainless steel coated with laboratory substrate or extracts of plant origin. Coating with animal extracts also decreases adhesion of other food-relevant bacteria. The manipulation of adhesion was not attributable to growth inhibitory effects. Chemical analysis revealed that the stainless steels were covered by homogenous layers of adsorbed proteins. The presence of tropomyocin was indicated by appearance of proteins with similar molecular weight based in sodium dodecyl sulfate–polyacrylamide gel electrophoresis, in several extracts that reduced adhesion but also extracts not containing this protein reduced bacterial adhesion, indicating that several molecular species may be involved in the phenomenon.
Conclusions:  It is a common perception that food materials facilitate bacterial adhesion to surfaces; however, this study demonstrates that aqueous coatings of food origin may actually reduce bacterial adhesion.
Significance and Impact of the Study:  Compounds from food extracts may potentially be used as nontoxic coatings to reduce bacterial attachment to inert surfaces.  相似文献   

17.
Copper alloy surfaces are passive antimicrobial sanitizing agents that kill bacteria, fungi, and some viruses. Studies of the mechanism of contact killing in Escherichia coli implicate the membrane as the target, yet the specific component and underlying biochemistry remain unknown. This study explores the hypothesis that nonenzymatic peroxidation of membrane phospholipids is responsible for copper alloy-mediated surface killing. Lipid peroxidation was monitored with the thiobarbituric acid-reactive substances (TBARS) assay. Survival, TBARS levels, and DNA degradation were followed in cells exposed to copper alloy surfaces containing 60 to 99.90% copper or in medium containing CuSO(4). In all cases, TBARS levels increased with copper exposure levels. Cells exposed to the highest copper content alloys, C11000 and C24000, exhibited novel characteristics. TBARS increased immediately at a very rapid rate but peaked at about 30 min. This peak was associated with the period of most rapid killing, loss in membrane integrity, and DNA degradation. DNA degradation is not the primary cause of copper-mediated surface killing. Cells exposed to the 60% copper alloy for 60 min had fully intact genomic DNA but no viable cells. In a fabR mutant strain with increased levels of unsaturated fatty acids, sensitivity to copper alloy surface-mediated killing increased, TBARS levels peaked earlier, and genomic DNA degradation occurred sooner than in the isogenic parental strain. Taken together, these results suggest that copper alloy surface-mediated killing of E. coli is triggered by nonenzymatic oxidative damage of membrane phospholipids that ultimately results in the loss of membrane integrity and cell death.  相似文献   

18.
Oxidative stress can be an important contributor to the lethal effect of bactericidal antibiotics in some bacteria, such as Escherichia coli and Staphylococcus aureus. Thus, despite the different target-specific actions of bactericidal antibiotics, they have a common mechanism leading to bacterial self-destruction by internal production of hydroxyl radicals. The purpose of the present study was to determine if a similar mechanism is involved in antibiotic killing of the infectious human pathogen, Listeria monocytogenes. We treated wild-type L. monocytogenes and oxidative stress mutants (Δsod and Δfri) with three different bactericidal antibiotics and found no difference in killing kinetics. In contrast, wild-type E. coli and an oxidative stress mutant (ΔsodA ΔsodB) differed significantly in their sensitivity to bactericidal antibiotics. We conclude that bactericidal antibiotics did not appear to cause oxidative stress in L. monocytogenes and propose that this is caused by its noncyclic tricarboxylic acid (TCA) pathway. Hence, in this noncyclic metabolism, there is a decoupling between the antibiotic-mediated cellular requirement for NADH and the induction of TCA enzyme activity, which is believed to mediate the oxidative stress reaction.  相似文献   

19.
【目的】微生物对可接触表面的污染给公共卫生带来了极大的威胁。利用具有杀菌特性的铜及铜合金代替不锈钢等制品,可以降低消毒剂的使用和细菌的传播。【方法】通过分析3株金黄色葡萄球菌和2株大肠杆菌在铜及铜合金平板上的存活时间,对不同类型铜合金的杀菌特性进行了探索。【结果】铜合金平板的杀菌能力与其铜含量成正比;铜合金对同属细菌的杀菌能力相近,对不同属细菌则有一定差异;铜合金的杀菌效率与细菌对Cu2+抗性没有直接联系;铜合金杀菌的效率与细菌的细胞壁结构可能有很大关联。【结论】铜及铜合金是较好的杀菌材料。  相似文献   

20.
The well-established killing of bacteria by copper surfaces, also called contact killing, is currently believed to be a combined effect of bacterial contact with the copper surface and the dissolution of copper, resulting in lethal bacterial damage. Iron can similarly be released in ionic form from iron surfaces and would thus be expected to also exhibit contact killing, although essentially no contact killing is observed by iron surfaces. However, we show here that the exposure of bacteria to iron surfaces in the presence of copper ions results in efficient contact killing. The process involves reduction of Cu2+ to Cu+ by iron; Cu+ has been shown to be considerably more toxic to cells than Cu2+. The specific Cu+ chelator, bicinchoninic acid, suppresses contact killing by chelating the Cu+ ions. These findings underline the importance of Cu+ ions in the contact killing process and infer that iron-based alloys containing copper could provide novel antimicrobial materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号