首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In microbiology, and in particular in virus research, electron microscopy (EM) is an important tool, offering a broad approach for investigating viral structure throughout their intracellular and extracellular life cycles. Currently, molecular tools and rapid developments in advanced light microscopy dominate the field and supply an enormous amount of information concerning virus biology. In recent years, numerous fascinating high-resolution EM structures obtained by single-particle electron cryo microscopy (cryo-EM) were revealed for viral particles that possess icosahedral symmetry. However, no comprehensive three-dimensional analysis of complex viruses or viruses within cells has yet been achieved using EM. Recent developments in electron cryo-tomography render this a proficient tool for the analysis of complex viruses and viruses within cells in greater detail.  相似文献   

2.
The structure of immature and mature HIV-1 particles has been analyzed in detail by cryo electron microscopy, while no such studies have been reported for cellular HIV-1 budding sites. Here, we established a system for studying HIV-1 virus-like particle assembly and release by cryo electron tomography of intact human cells. The lattice of the structural Gag protein in budding sites was indistinguishable from that of the released immature virion, suggesting that its organization is determined at the assembly site without major subsequent rearrangements. Besides the immature lattice, a previously not described Gag lattice was detected in some budding sites and released particles; this lattice was found at high frequencies in a subset of infected T-cells. It displays the same hexagonal symmetry and spacing in the MA-CA layer as the immature lattice, but lacks density corresponding to NC-RNA-p6. Buds and released particles carrying this lattice consistently lacked the viral ribonucleoprotein complex, suggesting that they correspond to aberrant products due to premature proteolytic activation. We hypothesize that cellular and/or viral factors normally control the onset of proteolytic maturation during assembly and release, and that this control has been lost in a subset of infected T-cells leading to formation of aberrant particles.  相似文献   

3.
Nucleocytoplasmic large DNA viruses are a steadily growing group of viruses that infect a wide range of hosts and are characterized by large particle dimensions and genome sizes. Understanding how they enter into the host cell and deliver their genome in the cytoplasm is therefore particularly intriguing. Here, we review the current knowledge on the entry of two of the best-characterized nucleocytoplasmic large DNA viruses: the poxvirus Vaccinia virus (VACV) and the giant virus Mimivirus. While previous studies on VACV had proposed both direct fusion at the plasma membrane and endocytosis as entry routes, more recent biochemical and morphological data argue for macropinocytosis as well. Notably, direct imaging by electron microscopy (EM) also supported the existence of parallel ways of entry for VACV. Instead, all the giant viruses studied so far only enter cells by phagocytosis as observed by EM, and we discuss the mechanisms for opening of the particle, fusion of the viral and phagosomal membranes and genome delivery via a unique portal, specific for each giant virus. VACV core uncoating, in contrast, remains a morphologically ill-defined process. We argue that correlated light and electron microscopy methods are required to study VACV entry and uncoating in a direct and systematic manner. Such EM studies should also address whether entry of single particles and viral aggregates is different and thus provide an explanation for the different modes of entry described in the literature.  相似文献   

4.
We present a method for automatic full-precision alignment of the images in a tomographic tilt series. Full-precision automatic alignment of cryo electron microscopy images has remained a difficult challenge to date, due to the limited electron dose and low image contrast. These facts lead to poor signal to noise ratio (SNR) in the images, which causes automatic feature trackers to generate errors, even with high contrast gold particles as fiducial features. To enable fully automatic alignment for full-precision reconstructions, we frame the problem probabilistically as finding the most likely particle tracks given a set of noisy images, using contextual information to make the solution more robust to the noise in each image. To solve this maximum likelihood problem, we use Markov Random Fields (MRF) to establish the correspondence of features in alignment and robust optimization for projection model estimation. The resulting algorithm, called Robust Alignment and Projection Estimation for Tomographic Reconstruction, or RAPTOR, has not needed any manual intervention for the difficult datasets we have tried, and has provided sub-pixel alignment that is as good as the manual approach by an expert user. We are able to automatically map complete and partial marker trajectories and thus obtain highly accurate image alignment. Our method has been applied to challenging cryo electron tomographic datasets with low SNR from intact bacterial cells, as well as several plastic section and X-ray datasets.  相似文献   

5.
Background information. VACV (vaccinia virus) is one of the most complex viruses, with a size exceeding 300 nm and more than 100 structural proteins. Its assembly involves sequential interactions and important rearrangements of its structural components. Results. We have used electron tomography of sections of VACV‐infected cells to follow, in three dimensions, the remodelling of the membrane components of the virus during envelope maturation. The tomograms obtained suggest that a number of independent ‘crescents’ interact with each other to enclose the volume of an incomplete ellipsoid in the viral factory area, attaining the overall shape and size characteristic of the first immature form of the virus [IV (immature virus)]. The incorporation of the DNA into these forms leads to particles with a nucleoid [IVN (IV with nucleoid)] that results in local disorganization of the envelope in regions near the condensed DNA. These particles suffer the progressive disappearance of the membrane outer spikes with a change in the shape of the membrane, becoming locally curled. The transformation of the IVN into the mature virus involves an extreme rearrangement of the particle envelope, which becomes fragmented and undulated. During this process, we also observed connections between the outer membranes with internal ones, suggesting that the latter originate from internalization of the IV envelope. Conclusions. The main features observed for VACV membrane maturation during morphogenesis resemble the breakdown and reassembly of cellular endomembranes.  相似文献   

6.
Vaccinia virus l1 protein is required for cell entry and membrane fusion   总被引:1,自引:1,他引:0  
Genetic and biochemical studies have provided evidence for an entry/fusion complex (EFC) comprised of at least eight viral proteins (A16, A21, A28, G3, G9, H2, J5, and L5) that together with an associated protein (F9) participates in entry of vaccinia virus (VACV) into cells. The genes encoding these proteins are conserved in all poxviruses, are expressed late in infection, and are components of the mature virion membrane but are not required for viral morphogenesis. In addition, all but one component has intramolecular disulfides that are formed by the poxvirus cytoplasmic redox system. The L1 protein has each of the characteristics enumerated above except that it has been reported to be essential for virus assembly. To further investigate the role of L1, we constructed a recombinant VACV (vL1Ri) that inducibly expresses L1. In the absence of inducer, L1 synthesis was repressed and vL1Ri was unable to form plaques or produce infectious progeny. Unexpectedly, assembly and morphogenesis appeared normal and the noninfectious virus particles were indistinguishable from wild-type VACV as determined by transmission electron microscopy and analysis of the component polypeptides. Notably, the L1-deficient virions were able to attach to cells but the cores failed to penetrate into the cytoplasm. In addition, cells infected with vL1Ri in the absence of inducer did not form syncytia following brief low-pH treatment even though extracellular virus was produced. Coimmunoprecipitation experiments demonstrated that L1 interacted with the EFC and indirectly with F9, suggesting that L1 is an additional component of the viral entry apparatus.  相似文献   

7.
We studied the maturation of Uukuniemi virus and the localization of the viral surface glycoproteins and nucleocapsid protein in infected cells by electron microscopy, indirect immunofluorescence, and immunoelectron microscopy with specific antisera prepared in rabbits against the two glycoproteins G1 and G2 and the nucleocapsid protein N. Electron microscopy of thin sections from infected cells showed virus particles maturing at smooth-surfaced membranes close to the nucleus. Localization of the G1/G2 and N proteins by indirect immunofluorescence at different stages after infection showed the antigens to be present throughout the cell interior but concentrated in the juxtanuclear region. The G1/G2 antiserum also appeared to stain the nuclear and plasma membranes. Double staining with tetramethylrhodamine isothiocyanate-conjugated wheat germ agglutinin, which preferentially stains the Golgi complex, and fluorescein isothiocyanate-conjugated anti-rabbit immunoglobulin G, which stained the G1/G2 or N proteins, showed that the staining of the juxtanuclear region coincided. Similarly, double staining for thiamine pyrophosphatase, an enzyme activity specific for the Golgi complex, showed the fluorescence and the cytochemical stain to coincide in the juxtanuclear region. Immunoperoxidase electron microscopy of cells permeabilized with saponin revealed that the viral glycoproteins were present in the rough endoplasmic reticulum and the nuclear and Golgi membranes; the latter was heavily stained. With this method, the N protein was localized to the cytoplasm, especially around smooth-surfaced vesicles in the Golgi region. Taken together, the results indicate that Uukuniemi virus and its structural proteins accumulate in the Golgi complex, supporting the idea that this compartment rather than the plasma membrane is the site of virus maturation. This raises the interesting possibility that deficient transport of the glycoproteins to the plasma membrane and hence their accumulation in the Golgi complex determines the site of virus maturation.  相似文献   

8.
Lens-based water-window X-ray microscopy allows two- and three-dimensional (2D and 3D) imaging of intact unstained cells in their near-native state with unprecedented contrast and resolution. Cryofixation is essential to avoid radiation damage to the sample. Present cryo X-ray microscopes rely on synchrotron radiation sources, thereby limiting the accessibility for a wider community of biologists. In the present paper we demonstrate water-window cryo X-ray microscopy with a laboratory-source-based arrangement. The microscope relies on a λ=2.48-nm liquid-jet high-brightness laser-plasma source, normal-incidence multilayer condenser optics, 30-nm zone-plate optics, and a cryo sample chamber. We demonstrate 2D imaging of test patterns, and intact unstained yeast, protozoan parasites and mammalian cells. Overview 3D information is obtained by stereo imaging while complete 3D microscopy is provided by full tomographic reconstruction. The laboratory microscope image quality approaches that of the synchrotron microscopes, but with longer exposure times. The experimental image quality is analyzed from a numerical wave-propagation model of the imaging system and a path to reach synchrotron-like exposure times in laboratory microscopy is outlined.  相似文献   

9.
10.
Human cytomegalovirus (HCMV) replicates in the nuclei of infected cells. Successful replication therefore depends on particle movements between the cell cortex and nucleus during entry and egress. To visualize HCMV particles in living cells, we have generated a recombinant HCMV expressing enhanced green fluorescent protein (EGFP) fused to the C terminus of the capsid-associated tegument protein pUL32 (pp150). The resulting UL32-EGFP-HCMV was analyzed by immunofluorescence, electron microscopy, immunoblotting, confocal microscopy, and time-lapse microscopy to evaluate the growth properties of this virus and the dynamics of particle movements. UL32-EGFP-HCMV replicated similarly to wild-type virus in fibroblast cultures. Green fluorescent virus particles were released from infected cells. The fluorescence stayed associated with particles during viral entry, and fluorescent progeny particles appeared in the nucleus at 44 h after infection. Surprisingly, strict colocalization of pUL32 and the major capsid protein pUL86 within nuclear inclusions indicated that incorporation of pUL32 into nascent HCMV particles occurred simultaneously with or immediately after assembly of the capsid. A slow transport of nuclear particles towards the nuclear margin was demonstrated. Within the cytoplasm, most particles performed irregular short-distance movements, while a smaller fraction of particles performed centripetal and centrifugal long-distance movements. Although numerous particles accumulated in the cytoplasm, release of particles from infected cells was a rare event, consistent with a release rate of about 1 infectious unit per h per cell in HCMV-infected fibroblasts as calculated from single-step growth curves. UL32-EGFP-HCMV will be useful for further investigations into the entry, maturation, and release of this virus.  相似文献   

11.
BACKGROUND: Insights in the herpesvirus-cell interactions are of general cell biology interest, especially to studies of intracellular transport, and of considerable significance in the efforts to generate drugs, vaccines, and gene therapy. However, the pathway of virus particle egress and maturation is a contentious issue. MATERIALS AND METHODS: The intracellular transport was inhibited in cultured herpes simplex virus type 1 (HSV-1) infected human fibroblasts by brefeldin A (BFA). The virus-cell interactions including the viral envelopment, transport of HSV-1 virions, and transport of viral glycoprotein D (gD-1) and glycoprotein C (gC-1) were studied by titration assay, immunoblot, immunofluorescence light microscopy, and immunogold electron microscopy of cryosections. RESULTS: gD-1 and gC-1 were synthesized and normally transported to the plasma membranes of untreated HSV-1 infected host cells. BFA (1 microg/ml medium) effectively blocked the transport of the glycoproteins to the plasma membranes and affected the tubulin and vimentin of the cytoskeleton. Viral particles and glycoproteins accumulated in the perinuclear space and the endoplasmic reticulum of BFA treated cells. Withdrawal of BFA influence up to 9 hr resulted in restored tubulin and vimentin, transport of glycoproteins to the plasma membranes, and steady release of infectious viral particles to the extracellular space superior to the cellular assembly of new virions. The ultrastructural data presented support that the primary envelopment of viral particles occur at the nuclear membranes containing immature glycoproteins followed by multiple de-envelopments and re-envelopments of the virions during the transport and maturation in the endoplasmic reticulum and the Golgi complex. CONCLUSIONS: BFA-induced changes include the cytoskeleton with significant effect on HSV-1 maturation and egress. The data support a multiple-step envelopment of HSV-1 in a common pathway of glycoprotein synthesis and virion egress.  相似文献   

12.
Immunoperoxidase Stain of Measles Antigen in Tissue Culture   总被引:6,自引:2,他引:4       下载免费PDF全文
A specific electron microscopy staining technique for measles antigen has been developed by using Vero cells infected with a subacute sclerosing panencephalitis (SSPE) measles virus strain and fixed in glutaraldehyde or formaldehyde. Peroxidase-labeled antibody was prepared according to the method of Avrameas (4). Sera from SSPE patients with high measles antibody titer as well as normal human sera with and without measles antibody were used. With both fixatives, specific labeling was obtained on the surface of infected cells, on the budding site, and on complete viral particles. The cell membrane staining sometimes had a patchy distribution in that the reaction was most intense on the surface projections in front of each nucleocapsid. This suggests modification of the cell membrane in association with the nucleocapsids. In contrast, no label was detected on the membranes of the cells during the latent period from penetration through maturation of the virus. In formaldehyde-fixed cultures, cytoplasmic inclusions were stained, and this label was located on the "fuzzy" material around the nucleocapsids. The smooth type of nucleocapsids, mainly seen in the nucleus, were never labeled. These findings suggest that the antigenic nature of the "fuzzy" nucleocapsids in the cytoplasm may be different from that of the "smooth" nucleocapsids. The immunoperoxidase method gives good resolution of viral antigenic sites at high magnifications under electron microscopy and may be of value in studies on the immunopathogenesis of SSPE and other chronic viral infections.  相似文献   

13.
The Golgi apparatus is the assembly site for a number of complex enveloped viruses. Using high-preservation methods for electron microscopy, we have detected two previously unknown maturation steps in the morphogenesis of Bunyamwera virus in BHK-21 cells. The first maturation takes place inside the Golgi stack, where annular immature particles transform into dense, compact structures. Megalomicin, a drug that disrupts the trans side of the Golgi complex, reversibly blocks transformation, showing that a functional trans-Golgi is needed for maturation. The second structural change seems to take place during the egress of viral particles from cells, when a coat of round-shaped spikes becomes evident. A fourth viral assembly was detected in infected cells: rigid tubular structures assemble in the Golgi region early in infection and frequently connect with mitochondria. In Vero cells, the virus induces an early and spectacular fragmentation of intracellular membranes while productive infection progresses. Assembly occurs in fragmented Golgi stacks and generates tubular structures, as well as the three spherical viral forms. These results, together with our previous studies with nonrelated viruses, show that the Golgi complex contains key factors for the structural transformation of a number of enveloped viruses that assemble intracellularly.  相似文献   

14.
The potential of scanning electron microscopy as a tool for the detection of viruses on cell surfaces has been studied using bacteriophage P1 adsorbed to Shigella dysenteriae as a model system. Viral particles were readily detectable by scanning electron microscopy on the surface of infected cells which were fixed with glutaraldehyde followed by postfixation in OsO4 and prepared by critical point drying. The virus-studded surface of the infected cells differed markedly from the relatively smooth surfaces of uninfected control cells. Examination of the same preparations with transmission electron microscopy revealed numerous viral particles adsorbed to the surfaces of infected cells, whereas the control cells were free of viruses as expected. Glutaraldehyde fixation alone did not preserve the surface detail of infected cells: cells adsorbed with viruses were not distinguishable from control cells by scanning electron microscopy although by transmission electron microscopy viruses could be visualized. Air drying from water or absolute alcohol resulted in unsatisfactory preservation as compared to the appearance of infected cells prepared by the critical point method. Thus, scanning electron microscopy is capable of resolving viral particles on cell surfaces, but detection of these particles is completely dependent both on the method of fixation and on the technique of drying used.  相似文献   

15.
We have used tobacco mosaic virus (TMV) as a test specimen, in order to develop techniques for the analysis of high-resolution structural detail in electron micrographs of biological assemblies with helical symmetry. It has previously been shown that internal details of protein structure can be visualized by processing electron micrographs of unstained specimens of extended two-dimensional crystalline arrays. However, the techniques should in principle be applicable to other periodic specimens, such as assemblies with helical symmetry. We show here that data to spacings better than 10 A can be retrieved from electron images of frozen hydrated TMV. The three-dimensional computed map agrees well with that derived from X-ray diffraction and shows the two pairs of alpha-helices forming the core of the coat subunit, the C alpha-helix and the viral RNA. The results demonstrate that it is possible to determine detailed internal structure in helical particles.  相似文献   

16.
The intracellular assembly of the transmissible gastroenteritis coronavirus (TGEV) was studied in infected swine testis (ST) cells at different postinfection times by using ultrathin sections of conventionally embedded infected cells, freeze-substitution, and methods for detecting viral proteins and RNA at the electron microscopy level. This ultrastructural analysis was focused on the identification of the different viral components that assemble in infected cells, in particular the spherical, potentially icosahedral internal core, a new structural element of the extracellular infectious coronavirus recently characterized by our group. Typical budding profiles and two types of virion-related particles were detected in TGEV-infected cells. While large virions with an electron-dense internal periphery and a clear central area are abundant at perinuclear regions, smaller viral particles, with the characteristic morphology of extracellular virions (exhibiting compact internal cores with polygonal contours) accumulate inside secretory vesicles that reach the plasma membrane. The two types of virions coexist in the Golgi complex of infected ST cells. In nocodazole-treated infected cells, the two types of virions coexist in altered Golgi stacks, while the large secretory vesicles filled with virions found in normal infections are not detected in this case. Treatment of infected cells with the Golgi complex-disrupting agent brefeldin A induced the accumulation of large virions in the cisternae that form by fusion of different membranous compartments. These data, together with the distribution of both types of virions in different cellular compartments, strongly suggest that the large virions are the precursors of the small viral particles and that their transport through a functional Golgi complex is necessary for viral maturation.  相似文献   

17.
The hemadsorption (HAD) reaction of chick embryo cells infected with mumps virus was studied by means of light and electron microscopy, with special reference to the plasma membrane of the infected cell. The concomitant observation of membrane-free aggregates of viral nucleocapsid in the cytoplasm and attached red blood cells on the surface of the same cell indicated that only infected cells hemadsorbed and that hemagglutinin is confined within the infected cell. The attachment of red blood cells to morphologically intact cell membrane prior to its differentiation into viral envelope suggested that the HAD phenomenon, dependent on the presence of hemagglutinin, was independent of the viral maturation process. The gap of low electron density normally separating the morphologically intact membrane of the tissue culture cell and that of the red blood cell at the binding site was replaced by newly formed surface projections in HAD involving a segment of differentiated plasma membrane.  相似文献   

18.
Meng X  Embry A  Rose L  Yan B  Xu C  Xiang Y 《Journal of virology》2012,86(10):5603-5613
Poxvirus acquires its primary envelope through a process that is distinct from those of other enveloped viruses. The molecular mechanism of this process is poorly understood, but several poxvirus proteins essential for the process have been identified in studies of vaccinia virus (VACV), the prototypical poxvirus. Previously, we identified VACV A6 as an essential factor for virion morphogenesis by studying a temperature-sensitive mutant with a lesion in A6. Here, we further studied A6 by constructing and characterizing an inducible virus (iA6) that could more stringently repress A6 expression. When A6 expression was induced by the inducer isopropyl-β-D-thiogalactoside (IPTG), iA6 replicated normally, and membrane proteins of mature virions (MVs) predominantly localized in viral factories where virions were assembled. However, when A6 expression was repressed, electron microscopy of infected cells showed the accumulation of large viroplasm inclusions containing virion core proteins but no viral membranes. Immunofluorescence and cell fractionation studies showed that the major MV membrane proteins A13, A14, D8, and H3 did not localize to viral factories but instead accumulated in the secretory compartments, including the endoplasmic reticulum. Overall, our results show that A6 is an additional VACV protein that participates in an early step of virion membrane biogenesis. Furthermore, A6 is required for MV membrane protein localization to sites of virion assembly, suggesting that MV membrane proteins or precursors of MV membranes are trafficked to sites of virion assembly through an active, virus-mediated process that requires A6.  相似文献   

19.
Parapoxviruses can be morphologically distinguished from other poxviruses in conventional negative staining electron microscopy (EM) by their ovoid appearance and the spiral tubule surrounding the virion's surface. However, this technique may introduce artifacts. We have examined Orf virus (ORFV; the prototype species of the Parapoxvirus genus) by cryoelectron microscopy (cryo-EM) and cryo-negative staining EM. From these studies we suggest that the shape and unique spiral tubule are authentic features of the parapoxviruses. We also constructed an ORFV mutant deleted of a gene encoding a 10-kDa protein, which is an orthologue of the vaccinia virus (VACV) 14-kDa fusion protein, and investigated its ultrastructure. This mutant virus multiplied slowly in permissive cells and produced infectious but morphologically aberrant particles. Mutant virions lacked the spiral tubule but displayed short disorganized tubules similar to those observed on the surface of VACV. In addition, thin extensions or loop-like structures were appended to the ORFV mutant particles. We suggest that these appended structures arise from a failure of the mutant virus particles to properly seal and that the sealing activity is dependent on the 10-kDa protein.  相似文献   

20.
The study of the virus life cycle in infected cells is a methodological challenge due to the small size and diversity of the viral components. Recent developments on preservation of fine structure and molecular localization have provided a group of powerful methods with wide applications in cell biology and virology. Among the different electron microscopy (EM) techniques available to visualize viral assembly at the intracellular level, we will focus on conventional ultrathin sections, cryosections, and freeze-substitution. For obtaining molecular information associated to ultrastructure we have now a group of methods to detect viral proteins (immunogold labeling), as well as the viral genome, through the different techniques for detection of nucleic acids (the enzyme-gold approach, in situ hybridization, and elemental mapping). We will illustrate the applications of these methods with examples of viruses that exhibit different levels of structural complexity. These new approaches help to detect and identify viruses in clinical samples and to characterize the virus life cycle and the cellular components involved, to obtain data that could help for a therapeutic intervention, and to characterize virus-like particles that can be the basis of new and safe vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号