首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Fyn and c-Src are two of the most widely expressed Src-family kinases. Both are strongly implicated in the control of cytoskeletal organization and in the generation of integrin-dependent signalling responses in fibroblasts. These proteins are representative of a large family of tyrosine kinases, the activity of which is tightly controlled by inhibitory phosphorylation of a carboxyterminal tyrosine residue (Tyr527 in chicken c-Src); this phosphorylation induces the kinases to form an inactive conformation. Whereas the identity of such inhibitory Tyr527 kinases has been well established, no corresponding phosphatases have been identified that, under physiological conditions, function as positive regulators of c-Src and Fyn in fibroblasts. RESULTS: Receptor protein tyrosine phosphatase alpha (RPTPalpha) was inactivated by homologous recombination. Fibroblasts derived from these RPTPalpha-/- mice had impaired tyrosine kinase activity of both c-Src and Fyn, and this was accompanied by a concomitant increase in c-Src Tyr527 phosphorylation. RPTPalpha-/- fibroblasts also showed a reduction in the rate of spreading on fibronectin substrates, a trait that is a phenocopy of the effect of inactivation of the c-src gene. In response to adhesion on a fibronectin substrate, RPTPalpha-/- fibroblasts also exhibited characteristic deficiencies in integrin-mediated signalling responses, such as decreased tyrosine phosphorylation of the c-Src substrates Fak and p 130(cas), and reduced activation of extracellular signal regulated (Erk) MAP kinases. CONCLUSIONS: These observations demonstrate that RPTPalpha functions as a physiological upstream activator of Src-family kinases in fibroblasts and establish this tyrosine phosphatase as a newly identified regulator of integrin signalling.  相似文献   

2.
Mechano-transduction was studied in wildtype and focal adhesion (FA) protein-deficient mouse embryonic fibroblasts (MEFs). Using a cell stretcher, we determined the effect of stretch on cell morphology, apoptosis, and phosphorylation of ERK1/2. After 20% cyclic, uniaxial stretch, FA-deficient MEFs showed morphological changes and levels of apoptosis of the order: focal adhesion kinase > p130Cas > vinculin compared to wildtype cells. ERK1/2 phosphorylation peaked in wildtype cells at around 10 min, and in all FA-deficient cells at around 5 min. The relative change in strain energy of FA-deficient cells compared to wildtype cells was of the order: vinculin > FAK > p130Cas. Taken together, FAK and p130Cas are more important in the stretch-mediated downstream signaling and cell survival pathway, while vinculin is more critical in maintaining cell contractility.  相似文献   

3.
p130Cas/breast cancer anti-oestrogen resistance 1 (BCAR1) is a member of the Cas (Crk-associated substrate) family of adaptor proteins, which have emerged as key signalling nodes capable of interactions with multiple proteins, with important regulatory roles in normal and pathological cell function. The Cas family of proteins is characterised by the presence of multiple conserved motifs for protein–protein interactions, and by extensive tyrosine and serine phosphorylations. Recent studies show that p130Cas contributes to migration, cell cycle control and apoptosis. p130Cas is essential during early embryogenesis, with a critical role in cardiovascular development. Furthermore, p130Cas has been reported to be involved in the development and progression of several human cancers. p130Cas is able to perform roles in multiple processes due to its capacity to regulate a diverse array of signalling pathways, transducing signals from growth factor receptor tyrosine kinases, non-receptor tyrosine kinases, and integrins. In this review we summarise the current understanding of the structure, function, and regulation of p130Cas, and discuss the importance of p130Cas in both physiological and pathophysiological settings, with a focus on the cardiovascular system and cancer.  相似文献   

4.
Basically, all mammalian tissues are constantly exposed to a variety of environmental mechanical signals. Depending on the signal strength, mechanics intervenes in a multitude of cellular processes and is thus capable of inducing simple cellular adaptations but also complex differentiation processes and even apoptosis. The underlying recognition typically depends on mechanosensitive proteins, which most often sense the mechanical signal for the induction of a cellular signaling cascade by changing their protein conformation. However, the fate of mechanosensors after mechanical stress application is still poorly understood, and it remains unclear whether protein degradation pathways affect the mechanosensitivity of cells. Here, we show that cyclic stretch induces autophagosome formation in a time-dependent manner. Formation depends on the cochaperone BAG family molecular chaperone regulator 3 (BAG3) and thus likely involves BAG3-mediated chaperone-assisted selective autophagy. Furthermore, we demonstrate that strain-induced cell reorientation is clearly delayed upon inhibition of autophagy, suggesting a bidirectional cross-talk between mechanotransduction and autophagic degradation. The strength of the observed delay depends on stable adhesion structures and stress fiber formation in a Ras homologue family member A (RhoA)-dependent manner.  相似文献   

5.
Geiger B 《Cell》2006,127(5):879-881
Focal adhesions are sites of contact between cells and the extracellular matrix. Sawada et al. (2006) now report that the mechanical stretching of cells forces p130Cas, an adaptor protein at focal adhesions, to undergo a conformational change. This change promotes phosphorylation of p130Cas by Src family kinases and the transduction of integrin-mediated signaling.  相似文献   

6.
Cell motility on extracellular matrices critically depends on matrix rigidity, which affects cell adhesion and formation of focal contacts. Receptor-like protein tyrosine phosphatase alpha (RPTPalpha) and the alphavbeta3 integrin form a rigidity-responsive complex at the leading edge. Here we show that the rigidity response through increased spreading and growth correlates with leading edge recruitment of Fyn, but not endogenous c-Src. Recruitment of Fyn requires the palmitoylation site near the N-terminus and addition of that site to c-Src enables it to support a rigidity response. In all cases, the rigidity response correlates with the recruitment of the Src family kinase to early adhesions. The stretch-activated substrate of Fyn and c-Src, p130Cas, is also required for a rigidity response and it is phosphorylated at the leading edge in a Fyn-dependent process. A possible mechanism for the fibronectin rigidity response involves force-dependent Fyn phosphorylation of p130Cas with rigidity-dependent displacement. With the greater displacement of Fyn from p130Cas on softer surfaces, there will be less phosphorylation. These studies emphasize the importance of force and nanometer-level movements in cell growth and function.  相似文献   

7.
The adapter molecule p130Cas (Cas) plays a role in cellular processes such as proliferation, survival, cell adhesion, and migration. The ability of Cas to promote migration has been shown to be dependent upon its carboxyl terminus, which contains a bipartite binding site for the protein tyrosine kinase c-Src (Src). The association between Src and Cas enhances Src kinase activity, and like Cas, Src plays an important role in cell proliferation and migration. In this study, we show that Src and Cas function cooperatively to promote cell migration in a manner that depends upon kinase-active Src. Another carboxyl-terminal binding partner of Cas, AND-34/BCAR3 (AND-34), functions synergistically with Cas to enhance Src activation and cell migration. The carboxyl-terminal guanine nucleotide exchange factor domain of AND-34, as well as the activity of its putative target Rap1, contribute to these events. A mechanism through which AND-34 may regulate Cas-dependent cell migration is suggested by the finding that Cas becomes redistributed from focal adhesions to lamellipodia located at the leading edge of AND-34 overexpressing cells. These data thus provide insight into how Cas and AND-34 may function together to stimulate Src signaling pathways and promote cell migration.  相似文献   

8.
The environment for living organism in space has microgravity and/or hypergravity and/or any kind of mechanical stresses. Cellular response may differ from the variety of mechanical stress. Mitogen-activated protein kinases (MAPKs) pathway is related to various cellular events. In the present study it was investigated the serial measurement of MAPK phosphorylation using western-blotting analysis following with three types of cyclic stretch, static, 0.1 Hz and 0.25 Hz. The result was that induction of MAPK phosphorylation had peaks within 2 to 4 hours and attenuated, while induction of p38 phosphorylation in 0.1 Hz stretch had a peak at 6 hours later and the strongest. Thus, there might be differential cellular response depends upon the frequency of cyclic stretch .  相似文献   

9.
The docking protein p130Cas has, together with FAK, been found as a target of the Yersinia virulence effector YopH. YopH is a protein tyrosine phosphatase that is delivered into host cells via the bacterial type III secretion machinery, and the outcome of its activity is inhibition of host cell phagocytosis. In the present study using p130Cas-/- cells, and p130Cas-/- cells expressing variants of GFPp130Cas, we show that this docking protein, via its substrate domain, is responsible for subcellular targeting of YopH in eukaryotic cells. Since YopH inhibits phagocytosis, p130Cas was expected to be critical for signalling mediating bacterial internalization. However, p130Cas-/- cells did not exhibit reduced capacity to internalize Yersinia. On the other hand, when a dominant negative variant of p130Cas was expressed in these cells, the phagocytic capacity was severely impaired. Moreover, the p130Cas-/- cells displayed a marked reduced sensitivity towards YopH-mediated detachment compared to wild-type cells. Transfecting these cells with full-length p130Cas rendered cells hypersensitive to both mechanical and Yersinia-mediated detachment. This hypersensitivity was not seen upon transfection with the dominant negative substrate domain-deleted variant of p130Cas. This implicates p130Cas as a prominent regulator of cell adhesion, where its substrate-binding domain has a significant function.  相似文献   

10.
Src tyrosine kinase is a novel direct effector of G proteins   总被引:17,自引:0,他引:17  
Ma YC  Huang J  Ali S  Lowry W  Huang XY 《Cell》2000,102(5):635-646
Heterotrimeric G proteins transduce signals from cell surface receptors to modulate the activity of cellular effectors. Src, the product of the first characterized proto-oncogene and the first identified protein tyrosine kinase, plays a critical role in the signal transduction of G protein-coupled receptors. However, the mechanism of biochemical regulation of Src by G proteins is not known. Here we demonstrate that Galphas and Galphai, but neither Galphaq, Galpha12 nor Gbetay, directly stimulate the kinase activity of downregulated c-Src. Galphas and Galphai similarly modulate Hck, another member of Src-family tyrosine kinases. Galphas and Galphai bind to the catalytic domain and change the conformation of Src, leading to increased accessibility of the active site to substrates. These data demonstrate that the Src family tyrosine kinases are direct effectors of G proteins.  相似文献   

11.
《Biophysical journal》2022,121(5):684-691
Cellular mechanosensing is pivotal for virtually all biological processes, and many molecular mechano-sensors and their way of function are being uncovered. In this work, we suggest that c-Src kinase acts as a direct mechano-sensor. c-Src is responsible for, among others, cell proliferation, and shows increased activity in stretched cells. In its native state, c-Src has little basal activity, because its kinase domain binds to an SH2 and SH3 domain. However, it is known that c-Src can bind to p130Cas, through which force can be transmitted to the membrane. Using molecular dynamics simulations, we show that force acting between the membrane-bound N-terminus of the SH3 domain and p130Cas induces partial SH3 unfolding, thereby impeding rebinding of the kinase domain onto SH2/SH3 and effectively enhancing kinase activity. Forces involved in this process are slightly lower or similar to the forces required to pull out c-Src from the membrane through the myristoyl linker, and key interactions involved in this anchoring are salt bridges between negative lipids and nearby basic residues in c-Src. Thus, c-Src appears to be a candidate for an intriguing mechanosensing mechanism of impaired kinase inhibition, which can be potentially tuned by membrane composition and other environmental factors.  相似文献   

12.
How physical force is sensed by cells and transduced into cellular signaling pathways is poorly understood. Previously, we showed that tyrosine phosphorylation of p130Cas (Cas) in a cytoskeletal complex is involved in force-dependent activation of the small GTPase Rap1. Here, we mechanically extended bacterially expressed Cas substrate domain protein (CasSD) in vitro and found a remarkable enhancement of phosphorylation by Src family kinases with no apparent change in kinase activity. Using an antibody that recognized extended CasSD in vitro, we observed Cas extension in intact cells in the peripheral regions of spreading cells, where higher traction forces are expected and where phosphorylated Cas was detected, suggesting that the in vitro extension and phosphorylation of CasSD are relevant to physiological force transduction. Thus, we propose that Cas acts as a primary force sensor, transducing force into mechanical extension and thereby priming phosphorylation and activation of downstream signaling.  相似文献   

13.
Integrin-mediated cell adhesion triggers intracellular signaling cascades, including tyrosine phosphorylation of intracellular proteins. Among these are the focal adhesion proteins p130cas (Cas) and focal adhesion kinase (FAK). Here we identify the kinase(s) mediating integrin-induced Cas phosphorylation and characterize protein-protein interactions mediated by phosphorylated Cas. We found that expression of a constitutively active FAK in fibroblasts results in a consecutive tyrosine phosphorylation of Cas. This effect required the autophosphorylation site of FAK, which is a binding site for Src family kinases. Integrin-mediated phosphorylation of Cas was not, however, compromised in fibroblasts lacking FAK. In contrast, adhesion-induced tyrosine phosphorylation of Cas was reduced in cells lacking Src, whereas enhanced phosphorylation of Cas was observed Csk- cells, in which Src kinases are activated. These results suggest that Src kinases are responsible for the integrin-mediated tyrosine phosphorylation of Cas. FAK seems not to be necessary for phosphorylation of Cas, but when autophosphorylated, FAK may recruit Src family kinases to phosphorylate Cas. Cas was found to form complexes with Src homology 2 (SH2) domain-containing signaling molecules, such as the SH2/SH3 adapter protein Crk, following integrin-induced tyrosine phosphorylation. Guanine nucleotide exchange factors C3G and Sos were found in the Cas-Crk complex upon integrin ligand binding. These observations suggest that Cas serves as a docking protein and may transduce signals to downstream signaling pathways following integrin-mediated cell adhesion.  相似文献   

14.
The regulation and function of the signaling adaptor protein p130(Cas) in tumor cell anchorage-independent survival, or anoikis resistance, were investigated in human lung adenocarcinoma cells. The tyrosine phosphorylation and function of p130(Cas) during cell detachment were analyzed in tumor cells and compared with that of normal epithelial cells. Cell detachment trigged rapid dephosphorylation of p130(Cas) in the nontumorigenic and anoikis-sensitive normal epithelial cells, but had no effect on the tyrosine phosphorylation of p130(Cas) in the anoikis-resistant lung adenocarcinoma cells. Further analysis revealed that the total tyrosine kinase activities associated with p130(Cas) in the lung tumor cells are anchorage-independent and are significantly higher than that in the normal cells, in which the p130(Cas)-associated tyrosine kinase activities are anchorage-dependent. Analysis of two known p130(Cas)-associated tyrosine kinases FAK and Src indicated that the regulation of tyrosine phosphorylation of FAK and Src are altered in the tumor cells. Inhibition of Src specifically abolished phosphorylation of p130(Cas) and induced anoikis. Furthermore, overexpression of dominant-negative forms of p130(Cas) also induced apoptosis. Taken together, these data suggest that p130(Cas) mediates a cell survival signal from cell-matrix interaction. Alterations in tumor cells that lead to constitutive phosphorylation of p130(Cas) can prevent cells from anoikis, hence contribute to tumor cell anchorage independence and metastasis.  相似文献   

15.
NSP protein family members associate with p130Cas, a focal adhesion adapter protein best known as a Src substrate that integrates adhesion-related signaling. Over-expression of AND-34/BCAR3/NSP2 (BCAR3), but not NSP1 or NSP3, induces anti-estrogen resistance in human breast cancer cell lines. BCAR3 over-expression in epithelial MCF-7 cells augments levels of a phosphorylated p130Cas species that migrates more slowly on SDS-PAGE while NSP1 and NSP3 induce modest or no phosphorylation, respectively. Conversely, reduction in BCAR3 expression in mesenchymal MDA-231 cells by inducible shRNA results in loss of such p130Cas phosphorylation. Replacement of NSP3's serine/proline-rich domain with that of AND-34/BCAR3 instills the ability to induce p130Cas phosphorylation. Phospho-amino acid analysis demonstrates that BCAR3 induces p130Cas serine phosphorylation. Mass spectrometry identified phosphorylation at p130Cas serines 139, 437 and 639. p130Cas serine phosphorylation accumulates for several hours after adhesion of MDA-231 cells to fibronectin and is dependent upon BCAR3 expression. BCAR3 knockdown alters p130Cas localization and converts MDA-231 growth to an epithelioid pattern characterized by striking cohesiveness and lack of cellular projections at colony borders. These studies demonstrate that BCAR3 regulates p130Cas serine phosphorylation that is adhesion-dependent, temporally distinct from previously well-characterized rapid Fak and Src kinase-mediated p130Cas tyrosine phosphorylation and that correlates with invasive phenotype.  相似文献   

16.
Recognition of external mechanical signals is vital for mammalian cells. Cyclic stretch, e.g. around blood vessels, is one such signal that induces cell reorientation from parallel to almost perpendicular to the direction of stretch. Here, we present quantitative analyses of both, cell and cytoskeletal reorientation of umbilical cord fibroblasts. Cyclic strain of preset amplitudes was applied at mHz frequencies. Elastomeric chambers were specifically designed and characterized to distinguish between zero strain and minimal stress directions and to allow accurate theoretical modeling. Reorientation was only induced when the applied stretch exceeded a specific amplitude, suggesting a non-linear response. However, on very soft substrates no mechanoresponse occurs even for high strain. For all stretch amplitudes, the angular distributions of reoriented cells are in very good agreement with a theory modeling stretched cells as active force dipoles. Cyclic stretch increases the number of stress fibers and the coupling to adhesions. We show that changes in cell shape follow cytoskeletal reorientation with a significant temporal delay. Our data identify the importance of environmental stiffness for cell reorientation, here in direction of zero strain. These in vitro experiments on cultured cells argue for the necessity of rather stiff environmental conditions to induce cellular reorientation in mammalian tissues.  相似文献   

17.
The sense of touch detects forces that bombard the body's surface. In metazoans, an assortment of morphologically and functionally distinct mechanosensory cell types are tuned to selectively respond to diverse mechanical stimuli, such as vibration, stretch, and pressure. A comparative evolutionary approach across mechanosensory cell types and genetically tractable species is beginning to uncover the cellular logic of touch reception.  相似文献   

18.
Conversion of mechanical force into biochemical signaling   总被引:7,自引:0,他引:7  
Physical forces play important roles in regulating cell proliferation, differentiation, and death by activating intracellular signal transduction pathways. How cells sense mechanical stimulation, however, is largely unknown. Most studies focus on cellular membrane proteins such as ion channels, integrins, and receptors for growth factors as mechanosensory units. Here we show that mechanical stretch-induced c-Src protein tyrosine kinase activation is mediated through the actin filament-associated protein (AFAP). Distributed along the actin filaments, AFAP can directly active c-Src through binding to its Src homology 3 and/or 2 domains. Mutations at these specific binding sites on AFAP blocked mechanical stretch-induced c-Src activation. Therefore, mechanical force can be transmitted along the cytoskeleton, and interaction between cytoskeletal associated proteins and enzymes related to signal transduction may convert physical forces into biochemical reactions. Cytoskeleton deformation-induced protein-protein interaction via specific binding sites may represent a novel intracellular mechanism for cells to sense mechanical stimulation.  相似文献   

19.
Targeted disruption of either c-Src or TNFR-associated factor 6 (TRAF6) in mice causes osteoclast dysfunction and an osteopetrotic phenotype, suggesting that both molecules play important roles in osteoclastic bone resorption. We previously demonstrated that IL-1 induces actin ring formation and osteoclast activation. In this study, we examined the relationship between IL-1/TRAF6-dependent and c-Src-mediated pathways in the activation of osteoclast-like cells (prefusion cells (pOCs); multinucleated cells) formed in the murine coculture system. In normal pOCs, IL-1 induces actin ring formation and tyrosine phosphorylation of p130(Cas), a known substrate of c-Src. However, in Src-deficient pOCs, p130(Cas) was not tyrosine phosphorylated following IL-1 treatment. In normal pOCs treated with IL-1, anti-TRAF6 Abs coprecipitate p130(Cas), protein tyrosine kinase 2, and c-Src. In Src-deficient pOCs, this molecular complex was not detected, suggesting that c-Src is required for formation of the TRAF6, p130(Cas), and protein tyrosine kinase 2 complex. Moreover, an immunocytochemical analysis revealed that in osteoclast-like multinucleated cells, IL-1 induced redistribution of TRAF6 to actin ring structures formed at the cell periphery, where TRAF6 also colocalized with c-Src. Taken together, these data suggest that IL-1 signals feed into the tyrosine kinase pathways through a TRAF6-Src molecular complex, which regulates the cytoskeletal reorganization essential for osteoclast activation.  相似文献   

20.
Sun Y  Ma YC  Huang J  Chen KY  McGarrigle DK  Huang XY 《Biochemistry》2005,44(44):14455-14462
Src-family tyrosine kinases mediate many receptor signals to various biological responses. Here we investigate the requirement of Src-family tyrosine kinases in adipogenesis. The biochemical mechanism by which insulin induces adipogenesis, converting fibroblast cells to adipocytes, is not clear. We show that fibroblast cells deficient of three ubiquitously expressed Src-family members (Src, Yes, and Fyn), SYF cells, are refractory to hormonally induced fat accumulation. The defect is rescued by reintroduction of c-Src into SYF cells. Furthermore, Src-family tyrosine kinases are required in the early steps of insulin signaling; it is responsible for the tyrosine phosphorylation of adaptor protein c-Cbl. Deficiency of c-Cbl blocked adipogenesis. These genetic and biochemical data clearly demonstrate that Src-family tyrosine kinases serve as a critical signal relay, via phosphorylation of c-Cbl, for fat accumulation, and provide potential new strategies for treating obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号