首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intercellular chromatin migration (cytomixis) in the pollen mother cells of two tobacco (Nicotiana tabacum L.) lines was analyzed by electron microscopy during the first meiotic prophase. The maximal manifestation of cytomixis was observed in the pachytene. As a rule, several cells connected with one another by cytomictic channels wherein the nuclei migrated were observable at this stage. In the majority of cases, nuclei passed from cell to cell concurrently through several closely located cytomictic channels. Chromatin migrated between cells within the nuclear envelope, and its disintegration was unobservable. The nucleus, after passing through cytomictic channels into another cell, can be divided into individual micronuclei or, in the case of a direct contact with another nucleus, can form a nuclear bridge. It has been demonstrated that the chromatin structure after intracellular migration visually matches the chromatin structure before it passed through the cytomictic channel. No signs of pyknosis were observable in the chromatin of the micronuclei formed after cytomixis, and the synaptonemal complex was distinctly seen. The dynamics of changes in the nucleoli during cytomixis was for the first time monitored on an ultrastructural level. Possible mechanisms determining cytomixis are discussed and the significance of this process in plant development is considered.  相似文献   

2.
植物小孢子母细胞胞间细胞融合通道的超显微结构研究   总被引:1,自引:1,他引:0  
采用常规的透射电子显微镜术研究了百合和黑麦花药小孢子母细胞减数第一次分裂前期孢间细胞融合道(ICC)的精细结构。首次发现ICCs内部除包含早期研究所看到的染色质,或核糖体、质体、线粒体等细胞器外,其中还存在有一些形态学特征与微丝和微管类似的细胞骨架系统。该系统穿过ICCs,从一个细胞延伸到相邻细胞的细胞质内,表面与周围的染色质颗粒、核糖体、质体等细胞器相连,方向与细胞质或核物质细胞间运动的方向一致  相似文献   

3.
Guo F  Hu SY  Yuan Z  Zee SY  Han Y 《Protoplasma》2005,225(1-2):5-14
Summary. In this paper, the stages of normal sexual reproduction between pollen tube penetration of the archegonium and early embryo formation in Pinus tabulaeformis are described, emphasizing the transmission of parental cytoplasm, especially the DNA-containing organelles – plastids and mitochondria. The pollen tube growing in the nucellus contained an irregular tube nucleus followed by a pair of sperm cells. The tube cytoplasm contained abundant organelles, including starch-containing plastids and mitochondria. The two sperm cells differed in their volume of cytoplasm. The leading sperm, with more cytoplasm, contained abundant plastids and mitochondria, while the trailing one, with a thin layer of cytoplasm, had very few organelles. The mature egg cell contained a great number of mitochondria, whereas it lacked normal plastids. At fertilization, the pollen tube penetrated into the egg cell at the micropylar end and released all of its contents, including the two sperms. One of the sperm nuclei fused with the egg nucleus, whereas the other one was retained by the receptive vacuole. Very few plastids and mitochondria of male origin were observed around the fusing sperm and egg nuclei, while the retained sperm nucleus was surrounded by a large amount of male cytoplasm. The discharged tube cytoplasm occupied a large micropylar area in the egg cell. In the free nuclear proembryo, organelles of maternal and paternal origins intermingled in the neocytoplasm around the free nuclei. Most of the mitochondria had the same features as those of the egg cell, but some appeared to be from sperm cells and tube cytoplasm. Plastids were obviously of male origin, with an appearance similar to those of the sperm or tube cells. After cellularization of the proembryo, maternal mitochondria became more abundant than the paternal ones and the plastids enlarged and began to accumulate starch. The results reveal the cytological mechanism for paternal inheritance of plastids and biparental inheritance of mitochondria in Chinese pine. Correspondence and reprints: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Science, China Agricultural University, Beijing 100094, People’s Republic of China.  相似文献   

4.
Fertilisation and proembryo development are described from transmission electron micrographs emphasising the origin and fate of the maternal and paternal mitochondria and plastids. During central cell and egg development mitochondria migrate toward the nuclei, forming a perinuclear zone consisting predominantly of maternal mitochondria and polysomes. At the same time, maternal plastids transformed and at fertilisation are excluded from the neocytoplasm. The pollen tube releases two sperm nuclei into the egg with cytoplasm from the generative cell and the tube cell. The leading sperm nucleus fuses with the egg nucleus and a small number of paternal mitochondria and plastids are taken into the perinuclear zone. The second sperm nucleus degenerates. As the zygote nucleus undergoes mitosis followed by free nuclear division and nuclear migration to the chalazal end of the archegonium, maternal and paternal organelles intermingle within the neocytoplasm. The result is paternal inheritance of plastids and biparental, but predominantly maternal, inheritance of mitochondria. This pattern is consistent within the Pinaceae but differs from some other conifer families. Received: 9 December 1999 / Revision accepted: 30 April 2000  相似文献   

5.
The generative cell at anthesis in the mature pollen grain of Erythrina crista-galli (Fabaceae) was examined by 4,6-diamidino-2-phenylindole(DAPI)-fluorescence microscopy using the squash method. An unequal, polarized distribution of DNA-containing organelles (plastids and/or mitochondria) within the generative cell was observed in every mature pollen grain examined. Polarization of DNA-containing organelles is obvious when generative cells are freed and assume a spherical shape soon after microspore mitosis, as revealed by fluorescence-microscopic observations of specimens embedded in Technovit 7100 resin and thin-sectioned at different developmental stages. Early establishment of polarized localization of organelles in young generative cells of E. crista-galli and maintenance of this unequal distribution until pollen maturation strongly suggests that the organelles may still be clustered at pollen mitosis. Production of a dimorphic pair of sperm cells, as has been reported in Plumbago zeylanica, was observed in some pollen tubes germinated in vitro. The differentiation of the two sperm cells is discussed in relation to possible preferential double fertilization in angiosperms. Received: 28 July 1999 / Revision accepted: 8 November 1999  相似文献   

6.
Microsporogenesis in dwarf Phaseolus vulgaris was studied under the electron microscope. Before meiosis the microspore mother cell had a lot of organelles especially plastids and ER in its cytoplasm. There were many osmiophilic granules adhering to the membranes of the plastids and vesicular ER until meiosis began. Some cytoplasmic channels were present between adjacent microsporocytes from pachytene to telophase Ⅱ. The organelles were at early stage in the early rnlcrospore, the plastids and mitochondria of which showed regional distribution. Original vacou[es were produced by smooth ER. The organelles in the tapetum cells were mainly mitochondria, plastids and ER. The ER was concentric circles in shape in transverse section.  相似文献   

7.
1. By means of cell separation, pectinase cell separation and routine paraffin method, we studied the cell types of leaves of wheat, Nongda 183 and several other varieties. 2. We observed in all the cell types, the presence of mitochondria, spherosomes, plastids or chloroplasts, though the morphology and distribution of these organelles vary to a certain extent they do not interfere with the recognition of these cell types. 3. The plastids and mitochondria of the long cells in the epidermis are of various forms. Most of these organelles are distributed in the portion of the cell away from the leaf surface. 4. In each one of the guard cells, there are many morphologically stable, pale-colored but shining plastids. They are peculiar to the guard cells and cannot be found in any other cell types. 5. The bulliform cells are in ball and socket connection with the mesophyll cells underneath, while the organelles of bulliform cells are concentrated at the surface of the socket. 6. The number of the chloroplasts in the mesophyll cells is not quite constant. From the external morphology and the distribution of the chloroplasts, the mesophyll cells can be divided into, at least, two morphological types. 7. The outer bundle sheath cell is divided into chloroplast-prominent and mitochondria-prominent halves. This peculiar structure of the cell reveals the function and the transitional position it occupies in the leaf. This is a good example of unity of function and structure. 8. The inner bundle sheath cells can be recognized readily by the presence of prominent pits in the walls. The protoplasmic streaming of these cells is very active. Plastids and mitochondria can be seen clearly. 9. The importance of the cell types of these specialized cells and their variously shaped and distributed organelles is discussed.  相似文献   

8.
The present study of the formation of the generative and vegetative cells in wheat has demonstrated some cytological details at the ultrastructural level. The phragmoplast formed in telophase of the first microsporic mitosis extended centrifugally until it connected with the intine of the pollen grain. A new cell wall was then formed to separate the generative and the vegetative cells. By unequal cytokinesis the former is small and the latter large. In early developmental stage of male gametophyte, the organelles in the cytoplasm of the generaVive cell and the vegetative cells are similar, including mitochondria, dictyosomes, rough endoplasmic retieulum, free and clustered ribosomes and plastids, but microtubules were observed only in the early cytokinesis stage. In the further developmental stage of the male gemetophyte, the generative cell gradually detached from the intine of pollen grain and grew inward to the cytoplasm of the vegetation cell. When the generative cell became round and free in the cytoplasm of the vegetative cell, the wall materials between plasma membranes of the cytoplasm of the generative and the vegetative cells disappeared completely, so that it was a naked cell with a double-layer membrane at this time. The heterogeneity between both cells was then very conspiceous. The organelles in the cytoplasm of the generative cell have hardly any changed besides the degeneration of plastids, but in vegetative cytoplasm the mitochondria and plastids increased dramatically both in number and size. The rapid deposition of starch in the plastids of the cytoplasm of the vegetative cell made the most conspicuous feature of the vegetative cell in mature pollen grain. The significance of the presence of a temporary cell wall in generative cell and heterogeneity between generative and vegetative cells are discussed.  相似文献   

9.
Masuda T  Suzuki T  Shimada H  Ohta H  Takamiya K 《Planta》2003,217(4):602-609
It is widely believed that ferrochelatase (protoheme ferrolyase, EC 4.99.1.1), which catalyzes the insertion of ferrous ion into protoporphyrin IX to form protoheme, exists in both plastids and mitochondria of higher plants. By in vitro import assay with isolated pea (Pisum sativum L.) organelles, it has been proposed that one of two isoforms of ferrochelatase (type 1) is dual-targeted into both plastids and mitochondria, and functions for heme biosynthesis in the both organelles. Recently, however, mitochondrial targeting of ferrochelatase is being disputed since pea mitochondria appeared to accept a variety of chloroplast proteins including the type-1 ferrochelatase of Arabidopsis thaliana (L.) Heynh. To clarify the precise subcellular localization of ferrochelatase in higher plants, here we investigated the subcellular localization of two types of ferrochelatase (CsFeC1 and CsFeC2) in cucumber (Cucumis sativus L.). In cotyledons, a significant level of specific ferrochelatase activity was detected in thylakoid membranes, but only a trace level of activity was detectable in mitochondria. Western blot analysis with specific antibodies showed that anti-CsFeC2 antiserum cross-reacted with plastids in photosynthetic and non-photosynthetic tissues. Anti-CsFeC1 did not cross-react with mitochondria, but CsFeC1 was clearly detectable in plastids from non-photosynthetic tissues. In situ transient-expression assays using green fluorescent protein demonstrated that, as well as CsFeC2, the N-terminal transit peptide of CsFeC1 targeted the fusion protein solely into plastids, but not into mitochondria. These results demonstrated that in cucumber both CsFeC1 and CsFeC2 are solely targeted into plastids, but not into mitochondria. Screening of a cucumber genomic or cDNA library did not allow any other ferrochelatase homologous gene to be isolated. The data presented here imply the reconsideration of mitochondrial heme biosynthesis in higher plants.  相似文献   

10.
Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) ovules were used to study male gamete formation, insemination of the egg, and free nuclear and cellular proembryo development. Two male nuclei form as the pollen tube either reaches the megaspore wall or as it enters the archegonial chamber. No cell wall separates them. They are contained within the body-cell cytoplasm. A narrow extension of the pollen tube separates the neck cells and penetrates the ventral canal cell. The pollen tube then releases its contents into the egg cytoplasm. The two male gametes and a cluster of paternal organelles (plastids and mitochondria) migrate within the remains of the body-cell cytoplasm toward the egg nucleus. Microtubules are associated with this complex. The leading male gamete fuses with the egg nucleus. The zygote nucleus undergoes free nuclear division, but the cluster of paternal organelles remains discrete. Free nuclei, paternal and maternal nucleoplasm, maternal perinuclear cytoplasm, and the cluster of paternal organelles migrate en masse to the chalazal end of the archegonium. There, paternal and maternal organelles intermingle to form the neocytoplasm, the nuclei divide, and a 12-cell proembryo is formed. The importance of male nuclei or cells, the perinuclear zone, and large inclusions in cytoplasmic inheritance are discussed in the Pinaceae and in other conifer families. This completes a two-part study to determine the fate of paternal and maternal plastids and mitochondria during gamete formation, fertilization, and proembryo development in Douglas fir.  相似文献   

11.
One of the most citated characteristics of eukaryotic cells are mitochondria and in the case of phototrophic cells, the plastids. These organelles are of eubacterial origin and contain a remnant genome. Here, we present hypotheses concerning the origin of the first mitochondrium-harboring cell and show the evolution of primary, secondary and tertiary plastids. Furthermore we discuss models explaining why plastids have to maintain their own genome.  相似文献   

12.
The immature megaspore mother cell of Ginkgo biloba is essentially spherical and is surrounded by a thick, complex wall. A large nucleus occupies the central region of the cell, and the organelles appear to be randomly arranged in the cytoplasm. With approaching maturity and the onset of meiosis, the cell elongates in the direction of the ovular axis. An extensive system of ER develops at the micropylar pole of the cell during elongation, and the plastids and mitochondria migrate to the opposite or chalazal pole. The micropylar end of the mature megaspore mother cell is usually devoid of plastids and mitochondria, but these organelles are densely packed in the chalazal end of the cell below the nucleus. The dictyosomes and dense spherosome-like bodies do not show such polarity in their distribution. At meiosis I plastids and mitochondria are, as a rule, restricted to the chalazal dyad cell that is destined to produce the functional megaspore. The wall of the megaspore mother cell consists of a middle lamella which is irregularly thickened, an outer wall layer resembling the walls of the surrounding nutritive cells, and an inner layer resembling the middle lamella in appearance.  相似文献   

13.
A study was made of the number of plastids and mitochondria present in generative cells of Solanum immediately after microspore mitosis, and the fate of these organelles during development of the pollen was determined. Changes were followed via electron microscopy of anthers of S. chacoense and S. tuberosum Group Phureja × S. chacoense. In earliest stages the generative cells were oval and had one surface along the intine and other surfaces in contact with the vegetative cell. As the pollen matured the generative cells elongated, became spindle-shaped, and were completely engulfed in the vegetative cells. At the earliest stages studied, both mitochondria and plastids were present in the generative cell. Plastids of the generative cell were, in contrast to those of the vegetative cells, fewer, smaller, and lacking in starch. Through the maturation stages the content of these organelles in the vegetative cells remained unchanged. While the generative cells retained mitochondria until anthesis, their plastids disappeared completely during maturation. This selective loss during generative cell maturation could lead to transmission of those characteristics encoded in plastid DNA through the pistillate parent only. The mechanism could explain earlier genetic evidence that plastid characters of Solanum were transmitted uniparentally.  相似文献   

14.
Spontaneous intercellular chromatin migration/cytomixis was observed to occur in the pollen mother cells (PMCs) of theChlorophytum comosum for the first time. The migration through cytomictic channels was more pronounced in meiosis-I and very rare in meiosis-II. The process was associated with erratic meiosis, which was characterized by defects in chromosome organization and segregation. Cytomixis was more intense in the month of April than in July and consequently the frequency of meiotic irregularities was much more pronounced during the month of April. As a consequence of abnormal meiosis, fertility was drastically reduced resulting in meager seed efficiency of 17% only. Recombination system also does not guarantee the release of sufficient variability. We view the phenomenon of cytomixis as genetically controlled mechanism involving meiotic genes and operating through signal transduction pathway triggered by the environmental stimuli. The evolutionary significance and tenable hypothesis in the backdrop of existing literature is also proposed.  相似文献   

15.
Archegonium development, beginning with the archegonial initial and culminating in the mature egg, was studied with the electron microscope. The ultrastructural features of the beginning stages in development of the archegonium are relatively similar to one another. Plasmodesmata occur between all adjacent cells at this time. After the secondary central cell is formed these protoplasmic connections are lost, and both axial and parietal cell lineages begin to show signs of ultrastructural differentiation. The mature egg is characterized by cytoplasm rich in ribosomes and larger organelles. Mitochondria and simplified plastids commonly display a juxtaposed association. As far as could be ascertained the numerous plastids and mitochondria in the egg of Marchantia arise through division of preexisting organelles and are not formed anew from evaginations of the nucleus. Blebbing of the nucleus produces polymorphic organelles which appear to be pinched off into the cytoplasm. The mature egg also contains vacuoles and lipid bodies toward its periphery, while dictyosomes and extensive endoplasmic reticulum occur throughout. The space between the wall cells and the mature egg appears to contain an amorphous substance. No extra membrane was observed around the mature egg.  相似文献   

16.
17.
De novo purine biosynthesis is localized to both mitochondria and plastids isolated from Bradyrhizobium sp.-infected cells of cowpea (Vigna unguiculata L. Walp) nodules, but several of the pathway enzymes, including aminoimidazole ribonucleotide synthetase (AIRS [EC 6.3.3.1], encoded by Vupur5), are encoded by single genes. Immunolocalization confirmed the presence of AIRS protein in both organelles. Enzymatically active AIRS was purified separately from nodule mitochondria and plastids. N-terminal sequencing showed that these two isoforms matched the Vupur5 cDNA sequence but were processed at different sites following import; the mitochondrial isoform was five amino acids longer than the plastid isoform. Electrospray tandem mass spectrometry of a trypsin digest of mitochondrial AIRS identified two internal peptides identical with the amino acid sequence deduced from Vupur5 cDNA. Western blots of proteins from mitochondria and plastids isolated from root tips showed a single AIRS protein present at low levels in both organelles. (35)S-AIRS protein translated from a Vupur5 cDNA was imported into isolated pea (Pisum sativum) leaf chloroplasts in vitro by an ATP-dependent process but not into import-competent mitochondria from several plant and non-plant sources. Components of the mature protein are likely to be important for import because the N-terminal targeting sequence was unable to target green fluorescent protein to either chloroplasts or mitochondria in Arabidopsis leaves. The data confirm localization of the protein translated from the AIRS gene in cowpea to both plastids and mitochondria and that it is cotargeted to both organelles, but the mechanism underlying import into mitochondria has features that are yet to be identified.  相似文献   

18.
Plasmodium sporozoites, the infective stage of the malaria parasite transmitted by mosquitoes, migrate through several hepatocytes before infecting a final one. Migration through hepatocytes occurs by breaching their plasma membranes, and final infection takes place with the formation of a vacuole around the sporozoite. Once in the liver, sporozoites have already reached their target cells, making migration through hepatocytes prior to infection seem unnecessary. Here we show that this migration is required for infection of hepatocytes. Migration through host cells, but not passive contact with hepatocytes, induces the exocytosis of sporozoite apical organelles, a prerequisite for infection with formation of a vacuole. Sporozoite activation induced by migration through host cells is an essential step of Plasmodium life cycle.  相似文献   

19.
Electron-microscopic analysis of cytomictic channels formation in the pollen mother cells in tobacco at the stage of meiosis prophase I of anthers has been conducted. The cytomictic channels in the pollen mother cells in tobacco have been established to be formed under the basis of both single plasmodesmata and de novo with the involvement of specific electron-dense bodies. The role of cytomictic channels in microsporogenesis regulation is discussed.  相似文献   

20.
Cytoplasmic channel represents a huge intercellular connection other than plasmodesma. They are proposed to play an essential role in controlling cell-to-cell trafficking of macromolecules. The present study ultrastructurally examined the occurrence, structure, and formation of this intercellular path in somatic tissues of wheat, tobacco, and onion anthers as well as their differences from those present in anther generative tissue. It was shown that cytoplasmic channels existed not only in the pollen mother cells, but also in both epidermis and vascular parenchyma of the anthers. In somatic tissues, they appeared as plasmallema-lined tubes 400–750 nm wide filled with nuclear or cytoplasmic material, the latter including cytoplasmic matrix, ribosomes, and filamentous structures. Their biogenesis seems to result from the thinning of the local portions of cell wall containing multiple plasmodesmata and the fusion of plasmodesmata in such regions induced by the wall-digesting enzymes released by nearby located vesicles. In contrast to the channels existing in the pollen mother cells of tobacco, the cytoplasmic channels in the epidermal or vascular parenchyma cells of wheat, onion, and tobacco anthers usually do not appear in groups, but are single. Perhaps this is the way for nuclear material to migrate from cell to cell via a single channel and then form a single chromatin spherical body in the adjoining cell. An individual cell could not accept the nuclear material from another cell while extruding its own to the third cell. Cell-to-cell migration of organelles through the cytoplasmic channels was not shown in the somatic tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号