首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is predicted that warmer conditions should lead to a loss of trophic levels, as larger bodied consumers, which occupy higher trophic levels, experience higher metabolic costs at high temperature. Yet, it is unclear whether this prediction is consistent with the effect of warming on the trophic structure of natural systems. Furthermore, effects of temperature at the species level, which arise through a change in species composition, may differ from those at the population level, which arise through a change in population structure. We investigate this by building species-level trophic networks, and size-structured trophic networks, as a proxy for population structure, for 18 648 stream fish communities, from 4 145 234 individual fish samples, across 7024 stream locations in France from 1980 to 2008. We estimated effects of temperature on total trophic diversity (total number of nodes), vertical trophic diversity (mean and maximum trophic level) and distribution of biomass across trophic level (correlation between trophic level and biomass) in these networks. We found a positive effect of temperature on total trophic diversity in both species- and size-structured trophic networks. We found that maximum trophic level and biomass distribution decreased in species-level and size-structured trophic networks, but the mean trophic level decreased only in size-structured trophic networks. These results show that warmer temperatures associate with a lower vertical trophic diversity in size-structured networks, and a higher one in species-level networks. This suggests that vertical trophic diversity is shaped by antagonistic effects of temperature on population structure and on species composition. Our results hence demonstrate that effects of temperature do not only differ across trophic levels, but also across levels of biological organisation, from population to species level, implying complex changes in network structure and functioning with warming.  相似文献   

2.
土壤含水量与N2O产生途径研究   总被引:8,自引:2,他引:6  
土壤含水量变化对N2O产生和排放影响的研究表明,不同含水量情况下,N2O排放也不相同。特别是用乙炔抑制技术证明了在播种前后,气候干燥而土壤含水量较低的情况下,N2O产生主要来自于硝化过程;降雨后,土壤含水量较高时,N2O主要是通过反硝化过程产生;而在农田中等含水量情况下,土壤微生物的硝化和反硝化作用产生的N2O大约各占一半。指出旱作农田N2O产生途径主要取决于土壤水分的控制和调节。  相似文献   

3.
Despite considerable recent interest in how biodiversity may influence ecosystem properties, the issue of how plant diversity and composition may affect multiple trophic levels in soil food webs remains essentially unexplored. We conducted a glasshouse experiment in which three plant species of each of three functional groups (grasses, N‐fixing legumes and forbs) were grown in monoculture and in mixtures of three species (with the three species being in the same or different functional groups) and all nine species. Plant species identity had important effects on the biomasses or population densities of belowground primary consumers (microbial biomass, herbivorous nematodes) and two groups of secondary consumers (microbe‐feeding nematodes and enchytraeids); the third consumer trophic level (predatory nematodes) was marginally not significantly affected at P=0.05. Plant species also influenced the relative importance of the bacterial‐based and fungal‐based energy channels for both the primary and secondary consumer trophic levels. Within‐group diversity of only the soil microflora and herbivorous nematodes (both representing the basal consumer trophic level) were affected by plant species identity. However, community composition within all trophic groupings considered (herbivorous nematodes, microbes, microbe‐feeding nematodes, predatory nematodes) was strongly influenced by what plant species were present. Despite the strong responses of the soil biota to plant species identity, there were few effects of plant species or functional group richness on any of the belowground response variables measured. Further, net primary productivity (NPP) was unaffected by plant diversity. Since some belowground response variables were correlated with NPP across treatments, it is suggested that belowground responses to plant diversity might become more apparent in situations when NPP itself responds to plant diversity. Our results point to plant species identity as having important multitrophic effects on soil food webs, both at the whole trophic group and within‐group levels of resolution, and suggest that differences in plant traits across species may be important in driving the decomposer subsystem.  相似文献   

4.
The rate at which biological diversity is altered on both land and in the sea, makes temporal community development a critical and fundamental part of understanding global change. With advancements in trait‐based approaches, the focus on the impact of temporal change has shifted towards its potential effects on the functioning of the ecosystems. Our mechanistic understanding of and ability to predict community change is still impeded by the lack of knowledge in long‐term functional dynamics that span several trophic levels. To address this, we assessed species richness and multiple dimensions of functional diversity and dynamics of two interacting key organism groups in the marine food web: fish and zoobenthos. We utilized unique time series‐data spanning four decades, from three environmentally distinct coastal areas in the Baltic Sea, and assembled trait information on six traits per organism group covering aspects of feeding, living habit, reproduction and life history. We identified gradual long‐term trends, rather than abrupt changes in functional diversity (trait richness, evenness, dispersion) trait turnover, and overall multi‐trait community composition. The linkage between fish and zoobenthic functional community change, in terms of correlation in long‐term trends, was weak, with timing of changes being area and trophic group specific. Developments of fish and zoobenthos traits, particularly size (increase in small size for both groups) and feeding habits (e.g. increase in generalist feeding for fish and scavenging or predation for zoobenthos), suggest changes in trophic pathways. We summarize our findings by highlighting three key aspects for understanding functional change across trophic groups: (a) decoupling of species from trait richness, (b) decoupling of richness from density and (c) determining of turnover and multi‐trait dynamics. We therefore argue for quantifying change in multiple functional measures to help assessments of biodiversity change move beyond taxonomy and single trophic groups.  相似文献   

5.
1. The characterisation of energy flow through communities is a primary goal of ecology. Furthermore, predator–prey interactions can influence both species abundance and community composition. The ant subfamily Ponerinae includes many predatory species that range from generalist insectivores to highly specialised hunters that target a single prey type. Given their high diversity and ubiquity in tropical ecosystems, measuring intra- and interspecific variation in their trophic ecology is essential for understanding the role of ants as predators of insect communities. 2. The stable isotopic composition of nitrogen of 22 species from the ant subfamily Ponerinae was measured, relative to plants and other predatory and herbivorous insects at two Atlantic Forest sites in Argentina. The study tested the general assumption that ponerine ants are all predatory, and examined intra- and interspecific variation in trophic ecology relative to habitat, body size and cytochrome c oxidase subunit 1 sequences (DNA barcoding). 3. Stable isotope analysis revealed that most ponerines occupy high trophic levels (primary and secondary predators), but some species overlapped with known insect herbivores. Species residing at low trophic levels were primarily arboreal and may rely heavily on nectar or other plant-based resources in their diet. In addition, larger species tend to occupy lower trophic positions than smaller species. 4. Although some of the species were divided into two or more genetic clusters by DNA barcoding analysis, these clusters did not correspond to intraspecific variation in trophic position; therefore, colony dietary flexibility most probably explains species that inhabit more than one trophic level.  相似文献   

6.
7.
The composition of bottom invertebrates in rocky rapids and riffles in rivers of the White, Barents, and Baltic seas in the territory of Eastern Fennoscandia is presented and analyzed. A total of 114 species (137 taxa of different ranks) have been identified. Most of them have Euro-Siberian (44%) and Palaearctic (36%) distribution. Regarding the feeding mode, collector–gatherers (32%) and collector–filterers (25%) dominate among trophic groups. Differences in the composition of zoobenthos between the southern and northern parts of the region can be explained not by the fauna genesis, but by latitudinal zoning.  相似文献   

8.
1. Studies have shown that plant diversity plays a major role in influencing arthropod community composition. However, the effects of increasing plant species diversity on arthropod abundance at multiple trophic levels in the presence of aromatic plants have not been well documented. 2. To explore the potential of using aromatic plants to biocontrol arthropods at multiple trophic levels, three aromatic plant species – French marigold (Tagetes patula L.), Ageratum (Ageratum houstonianum Mill.) and Catnip (Nepeta cataria L.) – were introduced into an apple orchard to increase ground plant species composition. 3. The aromatic plants influenced the structure of arthropod communities at multiple trophic levels, particularly the herbivores in the tree canopy and predators in ground covers. Aromatic plants negatively influenced total arthropod community abundance. Compared with the control treatment, the total arthropod community abundance in the treated areas declined 24.99–33.84% and 14.35–24.65% in the tree canopy and ground covers, respectively. 4. Aromatic plants negatively influenced herbivore abundance, both overall and relative to the total community. By contrast, aromatic plants positively influenced predator abundance, both overall and relative to the total community, in the treatments containing both ageratum and catnip. However, aromatic plants had no effect on species richness at each trophic level or on parasitoid abundance. 5. These results suggest that increasing ground plant species diversity by introducing aromatic plants into apple orchards may considerably affect arthropod community composition, and that aromatic plants are potentially effective for the biocontrol of herbivore pests in agroforestry ecosystems.  相似文献   

9.
Fishing is the most widespread human exploitation of marine resources, which has an annual cyclical influence on aquatic species in Chinese offshore waters. This study used carbon and nitrogen isotopic ratios as tracers to reveal the changes in trophic level and dietary composition of offshore organisms during four cruises in March, June, August and November 2014. The results indicated that the trophic levels of fishes declined during two fishing periods, from March (average trophic level = 3.36) to June (3.01), and from August (2.99) to November (2.57), while most invertebrates did not show this trend. The self-restoring ability of this ecosystem was reflected in the trophic level changes after the closed fishing season (from June 1 to September 1). The trophic levels of fishes remained stable, and some species even recovered such as Enchelyopus elongates (trophic level increased from 2.84 in June to 2.86 in August), Cryptocentrus filifer (from 3.10 to 3.12), and Ernogrammus hexagrammus (from 2.91 to 2.96). According to the trophic results, we selected the invertebrates Octopus minor and Asterias amurensis from the top trophic levels for dietary composition analysis. The composition of their diets changed significantly after fishing periods, and the proportions of some smaller and “non-commercial” species increased, such as Notoacmea schrenckii and Chlorostoma rustica. After the closed fishing season, the larger and “commercial” species contributed a greater proportion to their diet composition. These results indicated that the closed fishing season should be prolonged to give the ecosystem enough time to restore itself and further halt the trend of this fishery towards environment deterioration.  相似文献   

10.
2006年5月至2007年1月在杭州湾南岸跨海大桥附近潮滩共采集到32种大型底栖动物,根据其食性类型划分为5种功能群。用功能群方法对这些物种生境变化的关系进行了分析,结果表明:大型底栖动物各多样性指数在潮带间差异显著,季节间则只有Margalef种类丰度(S)和Shannon-Wiener指数(H′)存在显著性差异;各功能群密度在季节间均不存在显著性差异,而在潮带间除了浮游生物食者外,其它类群均存在显著性差异;肉食者的种类数在潮带间不存在显著性差异,而在季节间存在显著性差异,其它功能群刚好相反。滩涂大型底栖动物群落主要包括4个营养级别,各营养级的构成密度在季节间差异不显著,在潮带间则差异显著;各营养级种类数是处于第四级的肉食者季节间差异显著,潮带间变化不显著,处于第二、三营养等级的功能群则正好相反。底栖动物功能群多样性综合反映了杭州湾南岸大桥建设区域潮间带大型底栖动物群落变化情况。  相似文献   

11.
The composition, structure, and spatial distribution of zoobenthos and zooperiphyton at plantfilled regions of the littoral of Lake Teletskoye have been analyzed. The dependence of the taxonomic composition, number, and biomass of zoobenthos on vegetation type has been discovered. A multilevel character of the distribution of invertebrates in macrophyte overgrowths has been shown. An analysis of the trophic structure of the communities of macroinvertebrates revealed the predominance of algodetritophagous animals in zooperiphyton. The role of plant overgrowth as a “life concentrator” in an oligotrophic lake has been revealed.  相似文献   

12.
Trophic assimilation efficiency (conversion of resource biomass into consumer biomass) is thought to be a limiting factor for food chain length in natural communities. In host–parasitoid systems, which account for the majority of terrestrial consumer interactions, a high trophic assimilation efficiency may be expected at higher trophic levels because of the close match of resource composition of host tissue and the consumer''s resource requirements, which would allow for longer food chains. We measured efficiency of biomass transfer along an aphid-primary–secondary–tertiary parasitoid food chain and used stable isotope analysis to confirm trophic levels. We show high efficiency in biomass transfer along the food chain. From the third to the fourth trophic level, the proportion of host biomass transferred was 45%, 65% and 73%, respectively, for three secondary parasitoid species. For two parasitoid species that can act at the fourth and fifth trophic levels, we show markedly increased trophic assimilation efficiencies at the higher trophic level, which increased from 45 to 63% and 73 to 93%, respectively. In common with other food chains, δ15N increased with trophic level, with trophic discrimination factors (Δ15N) 1.34 and 1.49‰ from primary parasitoids to endoparasitic and ectoparasitic secondary parasitoids, respectively, and 0.78‰ from secondary to tertiary parasitoids. Owing to the extraordinarily high efficiency of hyperparasitoids, cryptic higher trophic levels may exist in host–parasitoid communities, which could alter our understanding of the dynamics and drivers of community structure of these important systems.  相似文献   

13.
Several theoretical studies propose that biodiversity buffers ecosystem functioning against environmental fluctuations, but virtually all of these studies concern a single trophic level, the primary producers. Changes in biodiversity also affect ecosystem processes through trophic interactions. Therefore, it is important to understand how trophic interactions affect the relationship between biodiversity and the stability of ecosystem processes. Here we present two models to investigate this issue in ecosystems with two trophic levels. The first is an analytically tractable symmetrical plant-herbivore model under random environmental fluctuations, while the second is a mechanistic ecosystem model under periodic environmental fluctuations. Our analysis shows that when diversity affects net species interaction strength, species interactions--both competition among plants and plant-herbivore interactions--have a strong impact on the relationships between diversity and the temporal variability of total biomass of the various trophic levels. More intense plant competition leads to a stronger decrease or a lower increase in variability of total plant biomass, but plant-herbivore interactions always have a destabilizing effect on total plant biomass. Despite the complexity generated by trophic interactions, biodiversity should still act as biological insurance for ecosystem processes, except when mean trophic interaction strength increases strongly with diversity.  相似文献   

14.
The species-energy hypothesis predicts increasing biodiversity with increasing energy in ecosystems. Proxies for energy availability are often grouped into ambient energy (i.e., solar radiation) and substrate energy (i.e., non-structural carbohydrates or nutritional content). The relative importance of substrate energy is thought to decrease with increasing trophic level from primary consumers to predators, with reciprocal effects of ambient energy. Yet, empirical tests are lacking. We compiled data on 332,557 deadwood-inhabiting beetles of 901 species reared from wood of 49 tree species across Europe. Using host-phylogeny-controlled models, we show that the relative importance of substrate energy versus ambient energy decreases with increasing trophic levels: the diversity of zoophagous and mycetophagous beetles was determined by ambient energy, while non-structural carbohydrate content in woody tissues determined that of xylophagous beetles. Our study thus overall supports the species-energy hypothesis and specifies that the relative importance of ambient temperature increases with increasing trophic level with opposite effects for substrate energy.  相似文献   

15.
Key processes such as trophic interactions and nutrient cycling are often influenced by the element content of organisms. Previous analyses have led to some preliminary understanding of the relative importance of evolutionary and ecological factors determining animal stoichiometry. However, to date, the patterns and underlying mechanisms of consumer stoichiometry at interspecific and intraspecific levels within natural ecosystems remain poorly investigated. Here, we examine the association between phylogeny, trophic level, body size, and ontogeny and the elemental composition of 22 arthropod as well as two lizard species from the coastal zone of the Atacama Desert in Chile. We found that, in general, whole‐body P content was more variable than body N content both among and within species. Body P content showed a significant phylogenetic signal; however, phylogeny explained only 4% of the variation in body P content across arthropod species. We also found a significant association between trophic level and the element content of arthropods, with carnivores having 15% greater N and 70% greater P contents than herbivores. Elemental scaling relationships across species were only significant for body P content, and even the P content scaling relationship was not significant after controlling for phylogeny. P content did decrease significantly with body size within most arthropod species, which may reflect the size dependence of RNA content in invertebrates. In contrast, larger lizards had higher P contents and lower N:P ratios than smaller lizards, which may be explained by size‐associated differences in bone and scale investments. Our results suggests that structural differences in material allocation, trophic level and phylogeny can all contribute to variation in the stoichiometry of desert consumers, and they indicate that the elemental composition of animals can be useful information for identifying broad‐scale linkages between nutrient cycling and trophic interactions in terrestrial food webs.  相似文献   

16.
While it is well established that ecosystem subsidies-the addition of energy, nutrients, or materials across ecosystem boundaries-can affect consumer abundance, there is less information available on how subsidy levels may affect consumer diet, body condition, trophic position, and resource partitioning among consumer species. There is also little information on whether changes in vegetation structure commonly associated with spatial variation in subsidies may play an important role in driving consumer responses to subsidies. To address these knowledge gaps, we studied changes in abundance, diet, trophic position, size, and body condition of two congeneric gecko species (Lepidodactylus spp.) that coexist in palm dominated and native (hereafter dicot dominated) forests across the Central Pacific. These forests differ strongly both in the amount of marine subsidies that they receive from seabird guano and carcasses, and in the physical structure of the habitat. Contrary to other studies, we found that subsidy level had no impact on the abundance of either gecko species; it also did not have any apparent effects on resource partitioning between species. However, it did affect body size, dietary composition, and trophic position of both species. Geckos in subsidized, dicot forests were larger, had higher body condition and more diverse diets, and occupied a much higher trophic position than geckos found in palm dominated, low subsidy level forests. Both direct variation in subsidy levels and associated changes in habitat structure appear to play a role in driving these responses. These results suggest that variation in subsidy levels may drive important behavioral responses in predators, even when their numerical response is limited. Strong changes in trophic position of consumers also suggest that subsidies may drive increasingly complex food webs, with longer overall food chain length.  相似文献   

17.
Incomplete sampling is a major problem affecting data quality with respect to food webs. We described a host–parasitoid food web based on data from four years of sampling, evaluated the dataset robustness of the food web, and tested the hypothesis that different trophic levels require different sampling efforts. We sampled Senegalia tenuifolia fruits at eight sampling sites in three areas, during four years (2011–2014) in the Brazilian cerrado (savanna). We recorded 26 insect species in three trophic levels associated with S. tenuifolia. For species accumulation curves, all insect trophic levels, areas and years reached the asymptote, except for one area. The cumulative species richness in each trophic level suggested that the third level (primary parasitoid) should be sampled for a longer time than the second and fourth levels, supporting our hypothesis. In conclusion, the sampling effort employed was sufficient to assess most of the insect species richness, and provided a high-quality and well-represented host-parasitoid food web, even though trophic levels require different efforts.  相似文献   

18.
The abundant herbivorous mud-snail Hydrobia ulvae is an ecosystem engineer in soft-bottom intertidal habitats due to its grazing and bioturbation activity. However, mud snails are commonly infected by trematodes that reduce their overall activity, which in turn may affect their impact on the surrounding benthic community. To test this hypothesis, we performed field experiments manipulating both the abundance of uninfected snails (0, 7500 and 15.000 ind. m- 2) and the level of snail parasitism (0, 33 and 100% trematode prevalence) on a Danish mud-flat. The results showed that increasing snail abundance and parasitism generally had opposite effects on the community of microphytobenthos and zoobenthos. Increasing snail density increased the chlorophyll-a concentration in the substrate (enhancement), whereas increasing parasitism decreased it. In accordance, the benthic primary producers were generally less nutrient limited at high snail density and mostly so at high levels of snail parasitism. Moreover, epipsammic diatoms were favoured over epipelic diatoms at increasing snail density, whereas the opposite was evident at increasing snail parasitism. At the community level, increasing snail density increased evenness among epipelic diatoms, whereas increasing snail parasitism decreased evenness and species diversity. Probably through the action of trophic cascades and varying levels of disturbance, the zoobenthic community was influenced by experimental treatments as well. The indirect effects of snail parasitism influenced significantly the abundance of more faunal species (seven) than did snail density (two). At the community level, increasing snail density decreased evenness and lowest species richness coincided with intermediate snail density. In contrast, increasing snail parasitism resulted in increasing evenness and peaking species richness at intermediate level of parasitism. Together, the results show that parasites solely through their impact on the behaviour of a single community member can be significant indirect determinants of community organisation and function.  相似文献   

19.
Understanding and predicting how and why abundance varies is one of the central questions in ecology. One of the few consistent predictors of variation in abundance between species has been body mass, but the nature of this relationship has been contentious. Here I explore the relationship between body mass and abundance in birds of North America, using hierarchical partitioning of variance and regressions at taxonomic levels above the species. These analyses show that much variation in abundance is found across space, while a moderate amount of variation is found at the species/genus and also at the family/order level. However, body size and trophic level primarily vary at the family/order level, suggesting that mechanisms based on body size and energy should primarily explain only this moderate-sized, taxonomically conserved component of variation in abundance. Body size does explain more than 50% of the variation at this level (and almost 75% when trophic level is also included). This tighter relationship makes clear that energetic equivalence (slope = -3/4) sets an upper limit but does not describe the relationship between body mass and average abundance for birds of North America. Finally, I suggest that this hierarchical, multivariate approach should be used more often in macroecology.  相似文献   

20.
Experiments and theory in single trophic level systems dominate biodiversity and ecosystem functioning research and recent debates. All natural ecosystems contain communities with multiple trophic levels, however, and this can have important effects on ecosystem structure and functioning. Furthermore, many experiments compare assembled communities, rather than examining loss of species directly. We identify three questions around which to organise an investigation of how species loss affects the structure and functioning of multitrophic systems. 1) What is the distribution of species richness among trophic levels; 2) from which trophic levels are species most often lost; and 3) does loss of species from different trophic levels influence ecosystem functioning differently? Our analyses show that: 1) Relatively few high‐quality data are available concerning the distribution of species richness among trophic levels. A new data‐set provides evidence of a decrease in species richness as trophic height increases. 2) Multiple lines of evidence indicate that species are lost from higher trophic levels more frequently than lower trophic levels. 3) A theoretical model suggests that both the structure of food webs (occurrence of omnivory and the distribution of species richness among trophic levels) and the trophic level from which species are lost determines the impact of species loss on ecosystem functioning, which can even vary in the sign of the effect. These results indicate that, at least for aquatic systems, models of single trophic level ecosystems are insufficient for understanding the functional consequences of extinctions. Knowledge is required of food web structure, which species are likely to be lost, and also whether cascading extinctions will occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号