首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A positive clone against pea (Pisum sativum L.) chloroplast fructose-1,6-bisphosphatase (FBPase; EC 3.1.3.11) antibodies was obtained from a copy DNA (cDNA) library in λgt11. The insert was 1261 nucleotides long, and had an open reading frame of 1143 base pairs with coding capability for the whole FBPase subunit and a fragment of a putative processing peptide. An additional 115 base pairs corresponding to a 3′-untranslated region coding for an mRNA poly(A)+ tail were also found in the clone. The deduced sequence for the FBPase subunit was a 357-amino-acid protein of molecular mass 39253 daltons (Da), showing 82–88% absolute homology with four chloroplastic FBPases sequenced earlier. The 3.1-kilobase (kb)KpnI-SacI fragment of the λgt11 derivative was subcloned between theKpnI-SacI restriction sites of pTZ18R to yield plasmid pAMC100. Lysates ofEscherichia coli (pAMC100) showed FBPase activity; this was purified as a 170-kDa protein which, upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, displayed a 44-kDa band. As occurs with native FBPases, this indicates a homotetrameric structure for the expressed FBPase. When assayed under excess Mg2+ (10 mM), the expressed enzyme had a higher affinity for the substrate than the native pea leaf FBPase; this parameter appears to be substantiated by a tenfold higher specific activity than that of the native enzyme. However, when activated with dithiothreitol plus saturating concentrations of pea thioredoxin (Td) f, both FBPase had similar activities, with a 4:1 Td f-FBPase stoichiometry. In contrast to the native pea chloroplast FBPase, theE. coli-expressed enzyme did not react with the monoclonal antibody GR-PB5. It also had a higher heat sensitivity, with 42% residual activity after heating for 30 min at 60°C, conditions which preserved the native enzyme in a fully active state. These results show the existence of some difference(s) in the conformation of the two FBPases; this could be a consequence of a different expression of the genomic and cDNA clones, or be due to the need for some factor for the correct assembly of the oligomeric structure of the native chloroplast enzyme. Accession number for pea chloroplast FBPase coding sequence: X68826 in the European Molecular Biology Laboratory (EMBL)  相似文献   

2.
Two hybrid thioredoxins (Trx) have been constructed from cDNA clones coding for pea chloroplast Trxs m and f. The splitting point was the AvaII site situated between the two cysteines of the regulatory cluster. One hybrid, Trx m/f, was purified from Escherichia coli-expressed cell lysates as a high yielding 12 kDa protein. Western blot analysis showed a positive reaction with antibodies against pea Trxs m and f and, like the parenteral pea Trx m, displayed an acidic pI (5.0) and a high thermal stability. In contrast, the opposite hybrid Trx f/m appeared in E. coli lysates as inclusion bodies, where it was detected by Western blot against pea Trx f antibodies as a 40 kDa protein. Trx f/m was very unstable, sensitive to heat denaturation, and could not be purified. Trx m/f showed a higher affinity for pea chloroplast fructose-1,6-bisphosphatase (FBPase) and a smaller Trx/FBPase saturation ratio than both parenterals; however, the FBPase catalytic rate was lower than that with Trxs m and f. Surprisingly, the hybrid Trx m/f appeared to be incompetent in the activation of pea NADP-malate dehydrogenase. Computer-assisted models of pea Trxs m and f, and of the chimeric Trx m/f, showed a change in the orientation of the α4-helix in the hybrid, which could explain the kinetic modifications with respect to Trxs m and f. We conclude that the stability of Trxs lies on the N-side of the regulatory cluster, and is associated with the acidic character of this fragment and, as a consequence, with the acidic pI of the whole molecule. In contrast, the ability of FBPase binding and enzyme catalysis depends on the structure on the C-side of the regulatory cysteines.  相似文献   

3.
Based on known amino acid sequences, probes have been generated by PCR and used for the subsequent isolation of cDNAs and genes coding for two thioredoxins (m and h) of Chlamydomonas reinhardtii. Thioredoxin m, a chloroplastic protein, is encoded as a preprotein of 140 amino acids (15 101 Da) containing a transit peptide of 34 amino acids with a very high content of Ala and Arg residues. The sequence for thioredoxin h codes for a 113 amino acid protein with a molecular mass of 11817 Da and no signal sequence. The thioredoxin m gene contains a single intron and seems to be more archaic in structure than the thioredoxin h gene, which is split into 4 exons. The cDNA sequences encoding C. reinhardtii thioredoxins m and h have been integrated into the pET-3d expression vector, which permits efficient production of proteins in Escherichia coli cells. A high expression level of recombinant thioredoxins was obtained (up to 50 mg/l culture). This has allowed us to study the biochemical/biophysical properties of the two recombinant proteins. Interestingly, while the m-type thioredoxin was found to have characteristics very close to the ones of prokaryotic thioredoxins, the h-type thioredoxin was quite different with respect to its kinetic behaviour and, most strikingly, its heat denaturation properties.Abbreviations DTT dithiothreitol - FBPase Fructose 1,6-biphosphate phosphatase - FTR ferredoxin-thioredoxin reductase - IPTG isopropyl thiogalactoside - NADP-MDH NADPH-dependent malate dehydrogenase - NMR nuclear magnetic resonance - NTR NADPH-dependent thioredoxin reductase Dedicated to the memory of Claude Crétin  相似文献   

4.
A cDNA clone encoding pea (Pisum sativum L.) chloroplast thioredoxin (Trx) m and its transit peptide were isolated from a pea cDNA library. Its deduced amino acid sequence showed 70% homology with spinach (Spinacia oleracea L.) Trx m and 25% homology with Trx f from pea and spinach. After subcloning in the Ndel-BamHI sites of pET-12a, the recombinant supplied 20 mg Trx m/L. Escherichia coli culture. This protein had 108 amino acids and was 12,000 D, which is identical to the pea leaf native protein. Unlike pea Trx f, pea Trx m showed a hyperbolic saturation of pea chloroplast fructose-1,6-bisphosphatase (FBPase), with a Trx m/ FBPase molar saturation ratio of about 60, compared with 4 for the Trx f/FBPase quotient. Cross-experiments have shown the ability of pea Trx m to activate the spinach chloroplast FBPase, results that are in contrast with those in spinach found by P. Schürmann, K. Maeda, and A. Tsugita ([1981] Eur J Biochem 116: 37-45), who did not find Trx m efficiency in FBPase activation. This higher efficiency of pea Trx m could be related to the presence of four basic residues (arginine-37, lysine-70, arginine-74, and lysine-97) flanking the regulatory cluster; spinach Trx m lacks the positive charge corresponding to lysine-70 of pea Trx m. This has been confirmed by K70E mutagenesis of pea Trx m, which leads to a 50% decrease in FBPase activation.  相似文献   

5.
When we compare the primary structures of the six chloroplast fructose-1,6-bisphosphatases (FBPase) so far sequenced, the existence of a poorly conserved fragment in the region just preceding the redox regulatory cysteines cluster can be observed. This region is a good candidate for binding of FBPase to its physiological modulator thioredoxin (Td), as this association shows clear differences between species. Using a cDNA clone for pea chloroplast FBPase as template, we have amplified by PCR a DNA insert coding for a 19 amino acid fragment (149Pro-167Gly), which was expressed in pGEMEX-1 as a fusion protein. This protein strongly interacts with pea Td m, as shown by ELISA and Superose 12 gel filtration, depending on pH of the medium. Preliminary assays have shown inhibition of FBPase activity in the presence of specific IgG against the 19 amino acid insert. Surprisingly the fusion protein enhances the FBPase activation in competitive inhibition experiments carried out with FBPase and Td. These results show the fundamental role played by this domain in FBPase-Td binding, not only as docking point for Td, but also by inducing some structural modification in the Td molecule. Taking as model the structural data recently published for spinach photosynthetic FBPase [29], this sequence from a tertiary and quaternary structural point of view appears available for rearrangement.  相似文献   

6.
Thioredoxin and NADP-thioredoxin reductase from cultured carrot cells   总被引:7,自引:0,他引:7  
Dark-grown carrot (Daucus carota L.) tissue cultures were found to contain both protein components of the NADP/thioredoxin system—NADP—thioredoxin reductase and the thioredoxin characteristic of heterotrophic systems, thioredoxin h. Thioredoxin h was purified to apparent homogeneity and, like typical bacterial counterparts, was a 12-kdalton (kDa) acidic protein capable of activating chloroplast NADP-malate dehydrogenase (EC 1.1.1.82) more effectively than fructose-1,6-bisphosphatase (EC 3.1.3.11). NADP-thioredoxin reductase (EC 1.6.4.5) was partially purified and found to be an arsenite-sensitive enzyme composed of two 34-kDa subunits. Carrot NADP-thioredoxin reductase resembled more closely its counterpart from bacteria rather than animal cells in acceptor (thioredoxin) specificity. Upon greening of the cells, the content of NADP-thioredoxin-reductase activity, and, to a lesser extent, thioredoxin h decreased. The results confirm the presence of a heterotrophic-type thioredoxin system in plant cells and raise the question of its physiological function.Abbreviations DTNB dithiolbis(2-nitrobenzoic acid) - FBPase fructose-1,6-bisphosphatase - FTR terredoxin-thioredoxin, reductase - NADP-MDH NADP-malate dehydrogenase - NTR NADP-thioredoxin reductase - SDS sodium-dodecyl sulfate  相似文献   

7.
We previously demonstrated that a cluster in the available 150 Asn-170Glu region of pea chloroplast fructose-1,6-bisphosphatase (FBPase) could be involved in its interaction with the physiological modulator thioredoxin (Trx). Using as template a cDNA coding for pea chloroplast FBPase, a DNA insert coding for a 19 amino acid fragment ( 149 Pro-167Gly) was amplified by PCR. After insertion in the pGEX-4T vector-1, it was expressed in Escherichia coli as a fusion protein (GST-19) with the vector-coded glutathione transferase (GST). This protein appears in the supernatant of cell lysates, and was purified to homogeneity. After thrombin digestion, the 19 amino acid insert was isolated as a polypeptide which displayed a positive reaction against pea chloroplast FBPase antibodies. GST-19 linked to glutathione-Sepharose beads, but not the GST, strongly interacts with pea Trx f , suggesting that this binding depends on the 19 amino acid insert. ELISA and Western blot experiments also demonstrate the existence of a GST-19-Trx f interaction, as well as a negligible quantity of Trx f bound by the vector-coded GST. Putative competitive inhibition assays of FBPase activity carried out in the presence of increasing concentrations of the 19 amino acid insert do not demonstrate any enzyme inhibition. On the contrary, this protein fragment enhances the enzyme activity proportionally to its concentration in the assay mixture. This indicates that the FBPase-Trx f binding promotes some type of structural modification of the Trx molecule, or of the FBPase-Trx docking site, thus facilitating the reductive modulation of FBPase.  相似文献   

8.
Thioredoxin (Td) f from pea (Pisum sativum L.) leaves was purified by a simple method, which provided a high yield of homogeneous Td f. Purified Td f had an isoelectric point of 5.4 and a relative molecular mass (Mr) of 12 kilodaltons (kDa) when determined by filtration through Superose 12, but an Mr of 15.8 kDa when determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified protein remained fully active for several months when conserved frozen at — 20° C. The pea protein was able to activate fructose1,6-bisphosphatase (FBPase; EC 3.1.3.11), but in contrast to other higher-plant Td f proteins, was not functional in the modulation of NADP+-malate dehydrogenase activity. In spite of the absence of immunological cross-reactions of pea and spinach Td f proteins with the corresponding antibodies, pea Td f activated not only the homologous FBPase, but also the spinach enzyme. The saturation curves for pea FBPase, either with fructose-1,6-bisphosphate in the presence of different concentrations of homologous Td f, or with pea Td f in the presence of excess substrate, showed sigmoid kinetics; this can be explained on the basis of a random distribution of fructose-1,6-bisphosphate, and of the oxidized and reduced forms of the activator, among the four Td f- and substrate-binding sites of this tetrameric enzyme. From the saturation curves of pea and spinach Td f proteins against pea FBPase, a 4:1 stoichiometry was determined for the Td f-enzyme binding. This is in contrast to the 2:1 stoichiometry found for the spinach FBPase. The UV spectrum of pea Td f had a maximum at 277 nm, which shifted to 281 nm after reduction with dithiothreitol (s at 280 nm for 15.8-kDa Mr = 6324 M–1 · cm–1). The fluorescence emission spectrum after 280-nm excitation had a maximum at 334 nm, related to tyrosine residues; after denaturation with guanidine isothiocyanate an additional maximum appeared at 350 nm, which is concerned with tryptophan groups. Neither the native nor the denatured form showed a significant increase in fluorescence after reduction by dithiothreitol, which means that the tyrosine and tryptophan groups in the reduced Td f are similarly exposed. Pea Td f appears to have one cysteine residue more than the three cysteines earlier described for spinach and Scenedesmus Td f proteins.Abbreviations DDT dithiothreitol - ELISA enzyme-linked immunosorbent assay - FBPase fructose- 1,6-bisphosphatase - kDa kilodalton - Mr relative molecular mass - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - Td thioredoxin The authors are grateful to Mrs. Francisca Castro and Mr. Narciso Algaba for skilful technical assistance. This work was supported by grant PB87-0431 of Dirección General de Investigación Cientifica y Técnica (DGICYT, Spain).  相似文献   

9.
Fructose-1,6-bisphosphatase (FBPase; EC 3.1.3.11) binds its putative physiological activator thioredoxin f (Trx f ) at pH 7.9, the pH in the stroma of the illuminated chloroplast. Since Trx m , described as specific in NADP+-malate dehydrogenase (NADPMDH) activation, appears in pea (Pisum sativum L.) also to be functional in FBPase modulation, we have here analyzed the effect of pH and the redox status of the chloroplast stroma in the pea FBPase binding of homologous Trx f and m . Both pea Trx were strongly bound by purified FBPase when they were preincubated at pH 7.9 with 2.5 m M dithiothreitol (DTT), but not when the reductant was omitted. As occurs with Trx f the Trx m /FBPase ratio of the complex was 4, but this was only observed with a Trx m /FBPase concentration ratio > 10 in the preincubation mixture. The FBPase-Trx m binding disappeared in the presence of 100 m M NaCl, even with 2.5 m M DTT at pH 7.9, with a concomitant appearance of different aggregation states of the FBPase subunit. A similar FBPase-Trx m complex was detected in the stromal solution when pea chloroplasts were lysed at pH 7.9 in the presence of DTT. No interaction was observed between NADP-MDH and Trx f or m , either in the presence or in the absence of DTT. Pea FBPase showed sigmoidal activation kinetics with pea Trx m , and an S0.5 of 133 n M versus 6.6 n M with pea Trx f . About 10-fold higher concentration of the former than that of the latter was required for obtaining maximum activity; however, the Vmax with Trx f was only 2-fold higher than that with Trx m . We conclude that pea FBPase binds and is activated by the homologous Trx m , even though to a lesser extent than with Trx f . We also deduce that in the light the conditions in the chloroplast stroma are optimal for forming an FBPase-Trx complex.  相似文献   

10.
NADP-malate dehydrogenase extracted from darkened leaves of the C3 plants pea, barley, wheat and spinach was activated by reduced glutathione, a monothiol, as well as by dithiothreitol (DTT). However, in the C4 plants maize and Flaveria trinervia, only dithiothreitol could effectively activate the enzyme. There was no activation of the maize enzyme and little or no activation of the F. trinervia enzyme by glutathione. The failure of glutathione to activate NADP-MDH in leaf extracts of maize and F. trinervia may indicate there is some difference in disulfide groups of the protein compared to the C3 plant enzyme. Both DTT and glutathione could activate NADP-malate dehydrogenase in a partially purified enzyme preparation from pea leaves with or without addition of partially purified thioredoxin. However, the required concentration of reductant was lower with addition of thioredoxin than in its absence. In extracts of C3 species and the partially purified pea enzyme the level of activation after 40 to 60 min under aerobic conditions was higher (up to twofold) with DTT than with glutathione. Under anaerobic conditions, the initial rate of activation was about twice as high with DTT as with glutathione, but the total activation after 40 to 60 min was similar. Ascorbate was totally ineffective as a reducing agent in activating NADP-MDH from C3 or C4 plants, possibly due to its more positive redox potential.Abbreviations Chl Chlorophyll - DTT Dithiothreitol - GSH Reduced Glutathione - NADP-MDH NADP-malate Dehydrogenase  相似文献   

11.
A cDNA clone coding for mature C. reinhardtii ferredoxin has been isolated from a cDNA library using PCR and two oligonucleotide primers based on the N- and C-termini of the protein's amino acid sequence. The nucleotidic sequence of the PCR fragment (299 bp) agreed well with the amino acid sequence since a single conservative substitution (Thr-7 to Ser) could be deduced. The PCR fragment was inserted into the expression vector pTrc 99A, using the incorporated NcoI and BamHI restriction sites and the construction used to transform E. coli (DH5α F′). After subsequent large scale expression and purification of the recombinant protein, biochemical and biophysical analysis have indicated that the product isolated from E. coli is homologous to native ferredoxin isolated from green algae.  相似文献   

12.
鲑鱼生长激素基因分泌型表达质粒的构建   总被引:1,自引:0,他引:1  
生长激素(GH)是动物垂体前叶分泌的一种多肽类激素.应用分子重组及PCR等技术,构建了一种鲑鱼生长激素基因分泌型表达质粒pOsGH153,使编码鲑鱼生长激素成熟肽的序列克隆在大肠杆菌分泌型表达载体PIN-Ⅲ-ompA内,直接位于编码大肠杆菌外膜蛋白A信号肽序列的下游,在Lpp-Lac杂合启动子控制下,经IPTG诱导,分子量约23 000的鲑鱼生长激素在大肠杆菌中获得高效表达,该产物具有天然鲑鱼生长激素的免疫活性,直接分泌到细胞周质,而信号肽被自动剪除.  相似文献   

13.
The reactivity of human thioredoxin (HTR) was tested in several reactions. HTR was as efficient as E. coli or plant and algal thioredoxins when assayed with E. coli ribonucleotide reductase or for the reduction of insulin. On the other hand, HTR was poorly reduced by NADPH and the E. coli flavoenzyme NADPH thioredoxin reductase as monitored in the DTNB reduction test. When reduced with dithiothreitol (DTT), HTR was much less efficient than thioredoxin m and thioredoxin f, the respective specific thioredoxins for the chloroplast enzymes NADP-malate dehydrogenase (NADP-MDH) and fructose 1,6 bisphosphatase (FBPase). Finally, HTR could be used in the photoactivation of NADP-MDH although less efficiently than thioredoxin m, proving nevertheless that it can be reduced by the iron sulfur enzyme ferredoxin thioredoxin reductase in the presence of photoreduced ferredoxin. Based on sequence comparisons, it was expected that HTR would display a reactivity similar to chloroplast thioredoxin f rather than to thioredoxin m. However the observed behavior of FTR did not exactly fit this prediction. The results are discussed in relation to the structural data available for the proteins.  相似文献   

14.
AtJ1, a mitochondrial homologue of theEscherichia coli DnaJ protein   总被引:1,自引:0,他引:1  
The nucleotide sequence of a cDNA clone fromArabidopsis thaliana ecotype Columbia was determined, and the corresponding amino sequence deduced. The open reading frame encodes a protein, AtJ1, of 368 residues with a molecular mass of 41 471 Da and an isoelectric point of 9.2. The predicted sequence contains regions homologous to the J- and cysteine-rich domains ofEscherichia coli DnaJ, but the glycine/phenylalanine-rich region is not present. Based upon Southern analysis,Arabidopsis appears to have a singleatJ1 structural gene. A single species of mRNA, of 1.5 kb, was detected whenArabidopsis poly(A)+ RNA was hybridized with theatJ1 cDNA. The function ofatJ1 was tested by complementation of adnaJ deletion mutant ofE. coli, allowing growth in minimal medium at 44°C. The AtJ1 protein was expressed inE. coli as a fusion with the maltose binding protein. This fusion protein was purified by amylose affinity chromatography, then cleaved by digestion with the activated factor X protease. The recombinant AtJ1 protein was purified to electrophoretic homogeneity.In vitro, recombinant AtJ1 stimulated the ATPase activity of bothE. coli DnaK and maize endosperm cytoplasmic Stress70. The deduced amino acid sequence of AtJ1 contains a potential mitochondrial targeting sequence at the N-terminus. Radioactive recombinant AtJ1 was synthesized inE. coli and purified. When the labeled protein was incubated with intact pea cotyledon mitochondria, it was imported and proteolytically processed in a reaction that depended upon an energized mitochondrial membrane.Abbreviations MBP maltose binding protein - PCR polymerase chain reaction - Stress70c the cytosolic member of the 70 kDA family of stress-related proteins  相似文献   

15.
In order to isolate a cDNA clone of ribosome inactivating protein (RIP), a cDNA library was constructed in Uni-ZAP XL vector with poly(A) RNA purified from leaves of Amaranthus viridis. To get the probe for screening the library, PCR of phage DNA was conducted using the vector primer and degenerate primer designed from a conserved putative active site of the RIPs. Twenty-six cDNA clones from about 600,000 plaques were isolated, and one of these clones was fully sequenced. It was 1,047 bp and contained an open reading frame encoding 270 amino acids. The deduced amino acid sequence had a putative signal sequence of 17 amino acids and a putative active site (AIQMVAEAARFFKYIE) conserved in other RIPs. E. coli cells expressing A. viridis RIP cDNA did not grow well as compared to control cells, indicating that recombinant A. viridis RIP presumably inactivated E. coli ribosomes. In addition, recombinant A. viridis RIP cDNA produced by E. coli had translation inhibition activity in vitro.  相似文献   

16.
The constitutive expression of a cDNA encoding a pea (Pisum sativum L.) PR 10 protein in Brassica napus leading to an enhancement of germination under saline conditions has been previously reported. In order to understand the biochemical function of this pea PR 10 protein, its cDNA has been expressed in Escherichia coli and the recombinant protein purified to homogeneity. Ribonuclease activity of the recombinant pea PR 10 protein has been demonstrated for the first time using an in-solution as well as an in-gel RNA degradation assay. Furthermore, in order to characterize the changes brought about as a result of the constitutive expression of the pea PR 10 cDNA in B. napus, we have measured the endogenous concentrations of several phytohormones. Increased cytokinin and, decreased abscisic acid (ABA) were observed in 7-day-old transgenic seedlings whereas no significant changes in the concentrations of gibberellin (GA) or indoleacetic acid (IAA) were observed at this stage of growth and development. The potential role(s) of PR 10 proteins with RNase activity and elevated cytokinins during plant stress responses as well as the possible relationship between PR 10 protein and changes in cytokinin concentrations are discussed.  相似文献   

17.
Fructose-1,6-bisphosphatase (FBPase) and sedoheptulose-1,7-bisphosphatase (SBPase) were identified and purified from the Crassulacean acid metabolism (CAM) plant, Kalanchoë daigremontiana. FBPase and SBPase showed respective molecular weights of 180,000 and 76,000, and exhibited immunological cross-reactivity with their counterparts from chloroplasts of C3 (spinach) and C4 (corn) plants. Based on Western blot analysis, FBPase was composed of four identical 45,000-dalton subunits and SBPase of two identical 38,000-dalton subunits. Immunological evidence, together with physical properties, indicated that both enzymes were of chloroplast origin.

Kalanchoë FBPase and SBPase could be activated by thioredoxin f reduced chemically by dithiothreitol or photochemically by a reconstituted Kalanchoë ferredoxin/thioredoxin system. Both enzymes were activated synergistically by reduced thioredoxin f and thier respective substrates.

Kalanchoë FBPase could be partially activated by Mg2+ at concentrations greater than 10 millimolar; however, such activation was considerably less than that observed in the presence of reduced thioredoxin and Ca2+, especially in the pH range between 7.8 and 8.3. In contrast to FBPase, Kalanchoë SBPase exhibited an absolute requirement for a dithiol such as reduced thioredoxin irrespective of Mg2+ concentration. However, like FBPase, increased Mg2+ concentrations enhanced the thioredoxin-linked activation of this enzyme.

In conjunction with these studies, an NADP-linked malate dehydrogenase (NADP-MDH) was identified in cell-free preparations of Kalanchoë leaves which required reduced thioredoxin m for activity.

These results indicate that Kalanchoë FBPase, SBPase, and NADP-MDH share physical and regulatory properties with their equivalents in C3 and C4 plants. In contrast to previous evidence, all three enzymes appear to have the capacity to be photoregulated in chloroplasts of CAM plants, thereby providing a means for the functional segregation of glucan synthesis and degradation.

  相似文献   

18.
A chromosomal fragment from Salmonella typhimurium, when cloned in Escherichia coli, generates a haemolytic phenotype. This fragment carries two genes, termed slyA and slyB. The expression of slyA is sufficient for the haemolytic phenotype. The haemolytic activity of E. coli carrying multiple copies of slyA is found mainly in the cytoplasm, with some in the periplasm of cells grown to stationary phase, but overexpression of SlyB, a 15 kDa lipoprotein probably located in the outer membrane, may lead to enhanced, albeit unspecific, release of the haemolytic activity into the medium. Polyclonal antibodies raised against a purified SlyA-HlyA fusion protein identified the over-expressed monomeric 17 kDa SlyA protein mainly in the cytoplasm of E. coli grown to stationary phase, although smaller amounts were also found in the periplasm and even in the culture supernatant. However, the anti-SlyA antibodies reacted with the SlyA protein in a periplasmic fraction that did not contain the haemolytic activity. Conversely, the periplasmic fraction exhibiting haemolytic activity did not contain the 17 kDa SlyA protein. Furthermore, S. typhimurium transformed with multiple copies of the slyA gene did not show a haemolytic phenotype when grown in rich culture media, although the SlyA protein was expressed in amounts similar to those in the recombinant E. coli strain. These results indicate that SlyA is not itself a cytolysin but rather induces in E. coli (but not in S. typhimurium) the synthesis of an uncharacterised, haemolytically active protein which forms pores with a diameter of about 2.6 nm in an artificial lipid bilayer. The SlyA protein thus seems to represent a regulation factor in Salmonella, as is also suggested by the similarity of the SlyA protein to some other bacterial regulatory proteins. slyA- and slyB-related genes were also obtained by PCR from E. coli, Shigella sp. and Citrobacter diversus but not from several other gram-negative bacteria tested.  相似文献   

19.
Phosphoenolpyruvate carboxylase (PEPC)-deficient mutants ofEscherichia coli have been complemented with a plasmid bearing a full-length cDNA encoding the C4-type form ofSorghum leaf PEPC. Transformed cells grew on minimal medium. Two clones were selected which produce a functional and full-sized enzyme protein as determined by activity assays, immunochemical behavior and SDS-PAGE. In addition, regulatory phosphorylation of immunopurified recombinant PEPC was observed when the enzyme was incubated with a partially purified plant PEPC kinase. These results establish thatE. coli cells produce a genuine, phosphate-free, higher-plant PEPC. Application of immunoadsorbtion chromatography to bacterial extracts makes it possible to prepare highly pure protein available for biochemical studies.  相似文献   

20.
The recently cloned gene for spinach chloroplast thioredoxin f was subcloned in a modified pKK233-2 expression vector and used for transformation of Escherichia coli cells containing the Iq plasmid. After induction with IPTG (isopropyl--D-thiogalactoside) the transformed cells produce the chloroplast protein in large amounts as insoluble deposit within the cell. The protein has been solubilized, purified and analysed for activity. It shows no difference in catalytic activity from native spinach chloroplast thioredoxin f. Its electrophoretic behaviour suggests that the native thioredoxin f may have a different N-terminus than was assumed on the basis of the protein sequencing results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号