首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

In the recent past large progress has been made in the analysis of the epigenome, the entirety of epigenetic modifications, and its meaning for the implementation of the genetic code. Besides histone modifications and miRNA expression, DNA methylation is one of the key players in the field of epigenetics, involved in numerous regulatory processes.

Methods

In the present review we focus on methods for the analysis of DNA methylation patterns and present an overview about techniques and basic principles available for this purpose.

Results and general significance

We here discuss advantages and disadvantages of various methods and their feasibility for specific tasks of DNA methylation analysis.  相似文献   

2.
DNA methylation is a crucial epigenetic mark in mammalian development, genomic imprinting, X-inactivation, chromosomal stability and suppressing parasitic DNA elements. DNA methylation in neurons has also been suggested to play important roles for mammalian neuronal functions, and learning and memory. In this review, we first summarize recent discoveries and fundamental principles of DNA modifications in the general epigenetics field. We then describe the profiles of different DNA modifications in the mammalian brain genome. Finally, we discuss roles of DNA modifications in mammalian brain development and function.  相似文献   

3.
Genomic sequencing by ligation-mediated PCR   总被引:8,自引:0,他引:8  
Genomic sequencing permits studies of in vivo DNA methylation and protein-DNA interactions, but its use has been limited due to the complexity of the mammalian genome. Ligation-mediated PCR (LMPCR) is a sensitive genomic sequencing procedure that generates high quality, reproducible sequence ladders starting with only 1 μg of uncloned mammalian DNA per reaction. This genomic sequencing procedure can be adapted for various methylation, in vivo footprinting and DNA adduct mapping procedures. We provide a detailed protocol for genomic sequencing by LMPCR and discuss the principles and applications of the method.  相似文献   

4.
Genomic DNA methylation pattern (methylome) represents epigenetic program of a cell. It controls expression of genetic information. In tumor cells, significant alterations in DNA methylation take place, which can be identified as one of the earliest and most consistent features of tumorigenesis. Detailed survey of methylcytosines' distribution in genome is extremely important for understanding of real tumor etiology and early diagnostics. Progress in the field has been hampered by the unavailability of methods for large-scale determination of methylation patterns. Nowadays, variety of techniques is in development that allow for highly parallel regime of samples analysis (high-throughput analysis) or large loci DNA profiling (large-scale analysis). Aim of the work is to consider the main trends in the field of new methods development. The principles of the most frequently used approaches to DNA methylation studies are reviewed as well as their application and results. Most attention is paid to DNA microarrays as a technology of choice for epigenetic tumor analysis (oligonucleotide microarrays, BAC-arrays etc.). Alternative DNA sequencing based techniques are discussed, which can soon take on the leadership. Results of a large-scale analysis can be used for identification of new epigenetic markers and epigenetic classification of neoplasia.  相似文献   

5.
Decades of investigation on DNA methylation have led to deeper insights into its metabolic mechanisms and biological functions.This understanding was fueled by the recent development of genome editing tools and our improved capacity for analyzing the global DNA methylome in mammalian cells.This review focuses on the maintenance of DNA methylation patterns during mitotic cell division.We discuss the latest discoveries of the mechanisms for the inheritance of DNA methylation as a stable epigenetic memory.We also highlight recent evidence showing the rapid turnover of DNA methylation as a dynamic gene regulatory mechanism.A body of work has shown that altered DNA methylomes are common features in aging and disease.We discuss the potential links between methylation maintenance mechanisms and diseaseassociated methylation changes.  相似文献   

6.
Genome-wide analysis of DNA methylation patterns   总被引:10,自引:0,他引:10  
Cytosine methylation is the most common covalent modification of DNA in eukaryotes. DNA methylation has an important role in many aspects of biology, including development and disease. Methylation can be detected using bisulfite conversion, methylation-sensitive restriction enzymes, methyl-binding proteins and anti-methylcytosine antibodies. Combining these techniques with DNA microarrays and high-throughput sequencing has made the mapping of DNA methylation feasible on a genome-wide scale. Here we discuss recent developments and future directions for identifying and mapping methylation, in an effort to help colleagues to identify the approaches that best serve their research interests.  相似文献   

7.
Cytosine methylation is the quintessential epigenetic mark. Two well-established methods, bisulfite sequencing and methyl-DNA immunoprecipitation (MeDIP) lend themselves to the genome-wide analysis of DNA methylation by high throughput sequencing. Here we provide an overview and brief review of these methods. We summarize our experience with MeDIP followed by high throughput Illumina/Solexa sequencing, exemplified by the analysis of the methylated fraction of the Neurospora crassa genome ("methylome"). We provide detailed methods for DNA isolation, processing and the generation of in vitro libraries for Illumina/Solexa sequencing. We discuss potential problems in the generation of sequencing libraries. Finally, we provide an overview of software that is appropriate for the analysis of high throughput sequencing data generated by Illumina/Solexa-type sequencing by synthesis, with a special emphasis on approaches and applications that can generate more accurate depictions of sequence reads that fall in repeated regions of a chosen reference genome.  相似文献   

8.
DNA methylation is an epigenetic modification involved in both normal developmental processes and disease states through the modulation of gene expression and the maintenance of genomic organization. Conventional methods of DNA methylation analysis, such as bisulfite sequencing, methylation sensitive restriction enzyme digestion and array-based detection techniques, have major limitations that impede high-throughput genome-wide analysis. We describe a novel technique, MBD-isolated Genome Sequencing (MiGS), which combines precipitation of methylated DNA by recombinant methyl-CpG binding domain of MBD2 protein and sequencing of the isolated DNA by a massively parallel sequencer. We utilized MiGS to study three isogenic cancer cell lines with varying degrees of DNA methylation. We successfully detected previously known methylated regions in these cells and identified hundreds of novel methylated regions. This technique is highly specific and sensitive and can be applied to any biological settings to identify differentially methylated regions at the genomic scale.  相似文献   

9.
DNA甲基化作为一种表观遗传学修饰,在调控基因表达、X染色体失活、印记基因等方面都发挥着重要的作用.不同的DNA甲基化的预处理方法结合二代测序产生了大量的高通量甲基化数据,这些数据的存储、处理和分析是当前亟需解决的问题.在本文中,总结了目前存在的三种高通量DNA甲基化检测技术(限制性内切酶法,亲和纯化法,重亚硫酸盐转换法),以及针对这些技术产生的高通量数据开发的存储、处理和分析工具.另外,还注重介绍了单碱基水平的DNA甲基化检测技术,BS-Seq的测序原理、数据处理流程以及后续的分析工具.  相似文献   

10.
It is frequently useful to determine the methylation state of samples containing limited amounts of DNA such as from embryos, or from fixed tissue samples in which DNA is degraded or difficult to isolate. By modification of the standard protocols for DNA preparation and bisulfite treatment, it is possible to obtain DNA methylation sequence data for such samples. We present methods for bisulfite treatment of embryos, fixed sections, and samples obtained by laser capture microdissection, and discuss the additional experimental considerations required when working with small numbers of cells or degraded DNA samples.  相似文献   

11.
DNA methylation plays essential homeostatic functions in eukaryotic genomes. In animals, DNA methylation is also developmentally regulated and, in turn, regulates development. In the past two decades, huge research effort has endorsed the understanding that DNA methylation plays a similar role in plant development, especially during sexual reproduction. The power of whole-genome sequencing and cell isolation techniques, as well as bioinformatics tools, have enabled recent studies to reveal dynamic changes in DNA methylation during germline development. Furthermore, the combination of these technological advances with genetics, developmental biology and cell biology tools has revealed functional methylation reprogramming events that control gene and transposon activities in flowering plant germlines. In this review, we discuss the major advances in our knowledge of DNA methylation dynamics during male and female germline development in flowering plants.  相似文献   

12.
DNA methylation at cytosines is a widely studied epigenetic modification. Methylation is commonly detected using bisulfite modification of DNA followed by PCR and additional techniques such as restriction digestion or sequencing. These additional techniques are either laborious, require specialized equipment, or are not quantitative. Here we describe a simple algorithm that yields quantitative results from analysis of conventional four-dye-trace sequencing. We call this method Mquant and we compare it with the established laboratory method of combined bisulfite restriction assay (COBRA). This analysis of sequencing electropherograms provides a simple, easily applied method to quantify DNA methylation at specific CpG sites.  相似文献   

13.
DNA methylation: a profile of methods and applications   总被引:27,自引:0,他引:27  
Fraga MF  Esteller M 《BioTechniques》2002,33(3):632, 634, 636-632, 634, 649
Ever since methylcytosine was found in genomic DNA, this epigenetic alteration has become a center of scientific attraction, especially because of its relation to gene silencing in disease. There is currently a wide range of methods designed to yield quantitative and qualitative information on genomic DNA methylation. The earliest approaches were concentrated on the study of overall levels of methylcytosine, but more recent efforts havefocused on the study ofthe methylation status of specific DNA sequences. Particularly, optimization of the methods based on bisulfite modification of DNA permits the analysis of limited CpGs in restriction enzyme sites (e.g., combined bisulfite restriction analyses and methylation-sensitive single nucleotide primer extension) and the overall characterization based on differential methylation states (e.g., methylation-specific PCR, MethyLight, and methylation-sensitive single-stranded conformational polymorphism) and allows very specific patterns of methylation to be revealed (bisulfite DNA sequencing). In addition, novel methods designed to search for new methylcytosine hot spots have yielded further data without requiring prior knowledge of the DNA sequence. We hope this review will be a valuable tool in selecting the best techniques to address particular questions concerning the cytosine methylation status of genomic DNA.  相似文献   

14.
Nagase H  Ghosh S 《The FEBS journal》2008,275(8):1617-1623
Epigenetics refers to heritable phenotypic alterations in the absence of DNA sequence changes, and DNA methylation is one of the extensively studied epigenetic alterations. DNA methylation is an evolutionally conserved mechanism to regulate gene expression in mammals. Because DNA methylation is preserved during DNA replication it can be inherited. Thus, DNA methylation could be a major mechanism by which to produce semi-stable changes in gene expression in somatic tissues. Although it remains controversial whether germ-line DNA methylation in mammalian genomes is stably heritable, frequent tissue-specific and disease-specific de novo methylation events are observed during somatic cell development/differentiation. In this minireview, we discuss the use of restriction landmark genomic scanning, together with in silico analysis, to identify differentially methylated regions in the mammalian genome. We then present a rough overview of quantitative DNA methylation patterns at 4600 NotI sites and more than 150 differentially methylated regions in several C57BL/6J mouse tissues. Comparative analysis between mice and humans suggests that some, but not all, tissue-specific differentially methylated regions are conserved. A deeper understanding of cell-type-specific differences in DNA methylation might lead to a better illustration of the mechanisms behind tissue-specific differentiation in mammals.  相似文献   

15.
16.
17.
The analysis of cytosine methylation provides a new way to assess and describe epigenetic regulation at a whole-genome level in many eukaryotes. DNA methylation has a demonstrated role in the genome stability and protection, regulation of gene expression and many other aspects of genome function and maintenance. BS-seq is a relatively unbiased method for profiling the DNA methylation, with a resolution capable of measuring methylation at individual cytosines. Here we describe, as an example, a workflow to handle DNA methylation analysis, from BS-seq library preparation to the data visualization. We describe some applications for the analysis and interpretation of these data. Our laboratory provides public access to plant DNA methylation data via visualization tools available at our “Next-Gen Sequence” websites (http://mpss.udel.edu), along with small RNA, RNA-seq and other data types.  相似文献   

18.
Variable DNA methylation has been associated with cancers and complex diseases. Researchers have identified many DNA methylation markers that have different mean methylation levels between diseased subjects and normal subjects. Recently, researchers found that DNA methylation markers with different variabilities between subject groups could also have biological meaning. In this article, we aimed to help researchers choose the right test of equal variance in DNA methylation data analysis. We performed systematic simulation studies and a real data analysis to compare the performances of 7 equal-variance tests, including 2 tests recently proposed in the DNA methylation analysis literature. Our results showed that the Brown-Forsythe test and trimmed-mean-based Levene''s test had good performance in testing for equality of variance in our simulation studies and real data analyses. Our results also showed that outlier profiles could be biologically very important.  相似文献   

19.
DNA methylation is an indispensible epigenetic modification required for regulating the expression of mammalian genomes. Immunoprecipitation-based methods for DNA methylome analysis are rapidly shifting the bottleneck in this field from data generation to data analysis, necessitating the development of better analytical tools. In particular, an inability to estimate absolute methylation levels remains a major analytical difficulty associated with immunoprecipitation-based DNA methylation profiling. To address this issue, we developed a cross-platform algorithm-Bayesian tool for methylation analysis (Batman)-for analyzing methylated DNA immunoprecipitation (MeDIP) profiles generated using oligonucleotide arrays (MeDIP-chip) or next-generation sequencing (MeDIP-seq). We developed the latter approach to provide a high-resolution whole-genome DNA methylation profile (DNA methylome) of a mammalian genome. Strong correlation of our data, obtained using mature human spermatozoa, with those obtained using bisulfite sequencing suggest that combining MeDIP-seq or MeDIP-chip with Batman provides a robust, quantitative and cost-effective functional genomic strategy for elucidating the function of DNA methylation.  相似文献   

20.
DNA methylation regulates gene expression primarily through modification of chromatin structure. Global methylation studies have revealed biologically relevant patterns of DNA methylation in the human genome affecting sequences such as gene promoters, gene bodies, and repetitive elements. Disruption of normal methylation patterns and subsequent gene expression changes have been observed in several diseases especially in human cancers. Immunoprecipitation (IP)‐based methods to evaluate methylation status of DNA have been instrumental in such genome‐wide methylation studies. This review describes techniques commonly used to identify and quantify methylated DNA with emphasis on IP based platforms. In an effort to consolidate the wealth of information and highlight critical aspects of methylated DNA analysis, sample considerations, experimental and bioinformatic approaches for analyzing genome‐wide methylation profiles, and the benefit of integrating DNA methylation data with complementary dimensions of genomic data are discussed. J. Cell. Physiol. 222: 522–531, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号