首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ethanol, octanoic and decanoic acids are known toxic products of alcoholic fermentation and inhibit yeast functions such as growth and fermentation. pH-stat measurements showed that, in a concentration range up to 20 mg/l, octanoic and decanoic acids increase the rate of passive H+ influx across the plasma membrane of Saccharomyces cerevisiae IGC 3507. Decanoic acid was more active than octanoic acid, which agrees with its higher liposolubility. The fatty acids probably act as H+ carriers, since the magnitude of the effect depended on pH and correlated with the concentration of protonated fatty acids. Esterification of the fatty acids partially abolished the enhancing effect on passive H+ influx. Passive H+ influx showed saturation kinetics with half-maximal activity at 6.6 M H+ (pH 5.2). Contrary to previous findings, ethanol inhibited H+ influx exponentially up to a concentration of 8% (v/v). At higher concentrations, ethanol reactivated H+ influx; the original rate of H+ uptake was reached at 14% (v/v) ethanol. In the same concentration ranges that affected passive H+ influx, ethanol, octanoic and decanoic acids inhibited the fermentation rate. This inhibitory effect of the fatty acids on fermentation rate depended on liposolubility, pH, and esterification in the same way as that found for their effect on passive H+ influx. Inhibition of fermentation by octanoic and decanoic acids could therefore result from their effect on the rate of passive H+ influx. Correspondence to: S. Stevens  相似文献   

2.
As a follow-up to earlier studies on the emission of long-chain alcohols from broth cultures of Gram-negative enteric bacteria, E. coli was examined for the production of 1-octanol, 1-decanol, and 1-dodecanol. Ten strains of E. coli cultured in tryptic soy broth were assayed for volatile metabolites using solid-phase microextraction. Long-chain alcohols were produced by all strains with 1-decanol predominating with production ranging from 23.6 ng mL−1 to 148 ng mL−1. The production of long-chain alcohols followed the onset of the exponential growth phase of the broth culture. Doubling the concentration of glucose (5 g L−1) in the broth had no effect on the concentration of long-chain alcohols produced. Addition of octanoic, decanoic, or dodecanoic acids (as K+ salts) to the broth (100 mg L−1) markedly increased the production of the corresponding alcohols by E. coli, ranging from a 13-fold increase for decanol to a 51-fold increase for dodecanol. However, decanol remained the predominant alcohol detected in all assays. These neutral volatile alcohols may have application as vapor-phase indicators for certain classes of bacteria, particularly, Gram-negative enteric bacteria.  相似文献   

3.
Siderophore synthesis of Pseudomonas putida F1 was found to be regulated by quorum sensing since normalized siderophore production (per cell) increased 4.2-fold with cell density after the cells entered middle exponential phase; similarly, normalized siderophore concentrations in Pseudomonas aeruginosa JB2 increased 28-fold, and a 5.5-fold increase was seen for P. aeruginosa PAO1. Further evidence of the link between quorum sensing and siderophore synthesis of P. putida F1 was that the quorum-sensing-disrupter (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone (furanone) from the marine red alga Delisea pulchra was found to inhibit the formation of the siderophore produced by P. putida F1 in a concentration-dependent manner, with 57% siderophore synthesis repressed by 100 g/ml furanone. In contrast, this furanone did not affect the siderophore synthesis of Burkholderia cepacia G4 at 20–40 g/ml, and stimulated siderophore synthesis of P. aeruginosa JB2 2.5- to 3.7-fold at 20–100 g/ml. Similarly, 100 g/ml furanone stimulated siderophore synthesis in P. aeruginosa PAO1 about 3.5-fold. The furanone appears to interact with the quorum-sensing machinery of P. aeruginosa PAO1 since it stimulates less siderophore synthesis in the P. aeruginosa qscR quorum-sensing mutant (QscR is a negative regulator of LasI, an acylated homoserine lactone synthase).  相似文献   

4.
By fusing a human hybridoma producing an IgG2 antibody against human A431 epidermoid carcinoma cells with an Epstein-Barr virus-transformed human B lymphocyte producing an IgG2 antibody against Pseudomonas aeruginosa exotoxin A, we established a hybrid hybridoma producing a bispecific monoclonal antibody reacting with both A431 cells and the exotoxin. Human IgG was purified from the culture supernatant of the hybrid hybridoma, and the bispecific monoclonal antibody in the IgG preparation was further separated from the two parental antibodies by hydroxyapatite high-performance liquid chromatography. The human bispecific monoclonal antibody thus obtained efficiently targeted the antibody-reative cells, A431, for attack by the exotoxin in vitro.Abbreviations bs mAb Bispecific Monoclonal Antibody - HRP Horseradish Peroxidase - MHA Mixed Hemadsorption Assay - MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide - PEA Pseudomonas aeruginosa Exotoxin A - PEG Polyethylene Glycol  相似文献   

5.
Summary The ability of the nocardioform actinomycete Rhodococcus rhodochrous to metabolize selected lignin model compounds was studied. The compounds studied included cinnamic and ferulic acids and dimers possessing intermonomeric linkages that are characteristic of the lignin molecule. R. rhodochrous reduced the carbonyl group of anisoin, a 1,2-diarylethane (-1) structure to (1R,2R)-1,2-bis(4-methoxyphenyl)ethane-1,2-diol with an enantiomeric excess of .98%. Cleavage of 1,2-diarylethane and -O-4 structures by this strain could not be detected under our metabolic conditions. Offprint requests to: V. Andreoni  相似文献   

6.
A hybridoma secreting human monoclonal antibody (MAB) against Pseudomonas aeruginosa exotoxin A (PEA) was constructed by fusing Epstein-Barr virus-transformed peripheral blood lymphocytes with human B lymphoblastoid cell line TAW-925. The human-human hybridoma stably produced human IgG2 MAB at the rate of 0.4–0.5 g/ml per 106 cells per day for more than six months, and the MAB was capable of neutralizing the in vitro cytotoxic and in vivo lethal effects of PEA with approximately 100-and 70-fold, respectively, higher activity than serum polyclonal antibody preparations.Abbreviations MAB Monoclonal Antibody - PEA Pseudomonas aeruginosa exotoxin A - LPS Lipopolysaccharides - OMP Outer Membrane Proteins - P. Pseudomonas - EBV Epstein-Barr Virus - PEG Polyethylene Glycol  相似文献   

7.
The objective of the present study was to investigate the in vitro effects of octanoic acid, which accumulates in medium-chain acyl-CoA dehydrogenase (MCAD) deficiency and in Reye syndrome, on key enzyme activities of energy metabolism in the cerebral cortex of young rats. The activities of the respiratory chain complexes I–IV, creatine kinase, and Na+, K+-ATPase were evaluated. Octanoic acid did not alter the electron transport chain and creatine kinase activities, but, in contrast, significantly inhibited Na+, K+-ATPase activity both in synaptic plasma membranes and in homogenates prepared from cerebral cortex. Furthermore, decanoic acid, which is also increased in MCAD deficiency, and oleic acid strongly reduced Na+, K+-ATPase activity, whereas palmitic acid had no effect. We also examined the effects of incubating glutathione and trolox (-tocopherol) alone or with octanoic acid on Na+, K+-ATPase activity. Tested compounds did not affect Na+, K+-ATPase activity by itself, but prevented the inhibitory effect of octanoic acid. These results suggest that inhibition of Na+, K+-ATPase activity by octanoic acid is possibly mediated by oxidation of essential groups of the enzyme. Considering that Na+, K+-ATPase is critical for normal brain function, it is feasible that the significant inhibition of this enzyme activity by octanoate and also by decanoate may be related to the neurological dysfunction found in patients affected by MCAD deficiency and Reye syndrome.  相似文献   

8.
The iron(III) mineral cores of bacterioferritins (BFRs), as isolated, contain a significant component of phosphate, with an iron-to-phosphate ratio approaching 1:1 in some cases. In order to better understand the in vivo core-formation process, the effect of phosphate on in vitro core formation in Escherichia coli BFR was investigated. Iron cores reconstituted in the presence of phosphate were found to have iron-to-phosphate ratios similar to those of native cores, and possessed electron paramagnetic resonance properties characteristic of the phosphate-rich core. Phosphate did not affect the stoichiometry of the initial iron(II) oxidation reaction that takes place at the intrasubunit dinuclear iron-binding sites (phase 2 of core formation), but did increase the rate of oxidation. Phosphate had a more significant effect on subsequent core formation (the phase 3 reaction), increasing the rate up to five-fold at pH 6.5 and 25 °C. The dependence of the phase 3 rate on phosphate was complex, being greatest at low phosphate and gradually decreasing until the point of saturation at ~2 mM phosphate (for iron(II) concentrations <200 M). Phosphate caused a significant decrease in the absorption properties of both phase 2 and phase 3 products, and the phosphate dependence of the latter mirrored the observed rate dependence, suggesting that distinct iron(III)-phosphate species are formed at different phosphate concentrations. The effect of phosphate on absorption properties enabled the observation of previously undetected events in the phase 2 to phase 3 transition period.Abbreviations BFR Bacterioferritin - EcBFR Escherichia coli BFR - PaBFR Pseudomonas aeruginosa BFR - AvBFR Azotobacter vinelandii BFR - ITPG Isopropyl -d-thiogalactopyranoside - MES 2-(N-morpholino)-ethanesulfonic acid  相似文献   

9.
The dsz desulfurization gene cluster from Rhodococcus erythropolis KA2-5-1 was transferred into the chromosomes of Pseudomonas aeruginosa NCIMB 9571 by using a transposon vector. Resting cells of the recombinant strain, PAR41, desulfurized 63 mg sulfur l–1 of light gas oil (LGO) containing 360 mg S l–1. The desulfurization activity for LGO by the resting cells of strain PAR41 grown with n-tetradecane (50% v/v) was much higher (1018-fold) than in glucose-grown cells. P. aeruginosa NCIMB 9571 is able to take up water-insoluble compounds from an oil phase which is enhanced by n-alkane.  相似文献   

10.
Summary Lipase from Pseudomonas cepacia was modified with 2,4-bis[O-methoxypoly(ethylene glycol)]-6-chloro-s-triazine(activated PEG2) to form PEG-lipase. The PEG-lipase, soluble and active in organic solvents, catalyzes asymmetric alcoholysis of racemic -decalactone in alcohols to form (R)-5-hydroxydecanoic acid alkyl esters. The yield was 69% with 83% enantiomeric excess after 3 hr-reaction in n-decanol at 50°C. The advantage of this reaction is that the alcoholysis proceeds efficiently in straight hydrophobic substrates without any organic solvents.  相似文献   

11.
Summary Electron probe X-ray microanalysis (XRMA) of freeze-dried ultrathin sections provides the capability of measuring intracellular elemental content. This methodology was used to investigate the stimulus-permeability coupling responses associated with phagocytosis of Pseudomonas aeruginosa by cultured pulmonary alveolar macrophages (PAMs) of rats. PAMs were challenged with P. aeruginosa suspended in Gey's buffer at a bacteria to PAM ratio of 501 for 1 h at 37° C. A 1-mm3 pellet of the unchallenged control PAMs, challenged PAMs and P. aeruginosa alone was quench-frozen in nitrogen-cooled, liquid propane, and 0.1-m cryosections were cut at -100° C. X-ray spectra were collected for nucleus and cytoplasm of 39 control PAMs, 36 challenged PAMs and 40 P. aeruginosa. Concentrations (mmole/kg dry weight) were obtained for Na, Cl, K, Ca, Mg, P, S for each cell. In the control PAMs, the content was similar to other mammalian cells. Moreover, there were no differences in elemental content between nucleus and cytoplasm. In the challenged PAMs, Na concentration was 4 times that of control PAMs (p<0.001) whereas Cl was double (p<0.001), K was 29% lower (p<0.001), and Ca was 4 times higher (p<0.05). The elemental concentration profile in the P. aeruginosa was distinctly different from that of the PAMs: higher Na, Ca, Mg, but lower Cl and K values. These results demonstrate elemental content changes in cultured PAMs challenged with P. aeruginosa that indicate a stimulus-permeability response by membranes associated with the phagocytic process.  相似文献   

12.
The strain Pseudomonas putida DOT-T1E was tested for its ability to tolerate second phases of different alkanols for their use as solvents in two-liquid-phase biotransformations. Although 1-decanol showed an about 10-fold higher toxicity to the cells than 1-octanol, the cells were able to adapt completely to 1-decanol only and could not be adapted in order to grow stably in the presence of a second phase of 1-octanol. The main explanation for this observation can be seen in the higher water and membrane solubility of 1-octanol. The hydrophobicity (log P) of a substance correlates with a certain partitioning of that compound into the membrane. Combining the log P value with the water solubility, the maximum membrane concentration of a compound can be calculated. With this simple calculation, it is possible to predict the property of an organic chemical for its potential applicability as a solvent for two-liquid-phase biotransformations with solvent-tolerant P. putida strains. Only compounds that show a maximum membrane concentration of less than 400mM, such as 1-decanol, seem to be tolerated by these bacterial strains when applied in supersaturating concentrations to the medium. Taking into consideration that a solvent for a two-liquid-phase system should possess partitioning properties for potential substrates and products of a fine chemical synthesis, it can be seen that 1-decanol is a suitable solvent for such biotransformation processes. This was also demonstrated in shake cultures, where increasing amounts of a second phase of 1-decanol led to bacteria tolerating higher concentrations of the model substrate 3-nitrotoluene. Transferring this example to a 5-liter-scale bioreactor with 10% (vol/vol) 1-decanol, the amount of 3-nitrotoluene tolerated by the cells is up to 200-fold higher than in pure aqueous medium. The system demonstrates the usefulness of two-phase biotransformations utilizing solvent-tolerant bacteria.  相似文献   

13.
Pseudomonas aeruginosa PA01 was found to utilise both thed- andl-isomers of -alanine and also -alanine as sole sources of carbon and energy for growth. Enzymological studies of wild-type cultures and comparison with mutants deficient in growth upon one or more isomers of alanine led to the following conclusions: (i) utilisation ofd-alanine involved its direct oxidation by an inducible, membrane-bound, cytochrome-linked dehydrogenase; (ii) utilisation ofl-alanine required its conversion to the directly oxidisabled-form by a soluble racemase; (iii) utilisation of -alanine, likel-alanine, involves both the racemase andd-alanine dehydrogenase enzymes, but in addition must involve other enzymes the identity, of which is still speculative; (iv)P. aeruginosa, likeEscherichia coli, appears to take upd-alanine andl-alanine by means of two specific permeases.Abbreviation DCPIP 2,6-dichlorophenol-indophenol  相似文献   

14.
1.
(1) The uptake of Pseudomonas aeruginosa DNA by pea seedlings, and uptake of tobacco DNA or P. aeruginosa DNA by tobacco cells in shake cultures has been investigated. The fate of the DNA has been followed by CsCl density gradient equilibrium centrifugation, using radiolabeled donor DNA of high density.  相似文献   

15.
A set of microcosm experiments was performed to assess different bioremediation strategies, i.e., biostimulation and bioaugmentation, for groundwater contaminated with chlorobenzenes. The biodegradative potential was stimulated either by the supply of electron acceptors (air, (NO 3 ), to increase the activity of the indigenous bacterial community, or by the addition of aerobic chlorobenzene-degrading bacteria (Pseudomonas putida GJ31, Pseudomonas aeruginosa RHO1, Pseudomonas putida F1CC). Experiments were performed with natural groundwater of the aquifer of Bitterfeld, which had been contaminated with 1,2-dichlorobenzene (1,2-DCB), 1,4-dichlorobenzene (1,4-DCB), and chlorobenzene (CB). The microcosms consisted of airtight glass bottles with 800 mL of natural groundwater and were incubated under in situ temperature (13°C). Behavior of the introduced strains within the indigenous bacterial community was monitored by fluorescent in situ hybridization (FISH) with species-specific oligonucleotides. Dynamics of the indigenous community and the introduced strains within the microcosms were followed by single-strand conformation polymorphism (SSCP) analysis of 16S rDNA amplicons obtained from total DNA of the microbial community. An indigenous biodegradation potential under aerobic as well as anaerobic denitrifying conditions was observed accompanied by fast and specific changes in the natural bacterial community composition. Augmentation with P. aeruginosa RHO1 did not enhance bio-degradation. In contrast, both P. putida GJ31 as well as P. putida F1CC were capable of growing in groundwater, even in the presence of the natural microbial community, and thereby stimulating chlorobenzene depletion. P. putida GJ31 disappeared when the xenobiotics were depleted and P. putida F1CC persisted even in the absence of CB. Detailed statistical analyses revealed that community dynamics of the groundwater microbiota were highly reproducible but specific to the introduced strain, its inoculum size, and the imposed physicochemical conditions. These findings could contribute to the design of better in situ bioremediation strategies for contaminated groundwater.  相似文献   

16.
The bacterium Klebsiella aerogenes (type 25) produced an inducible alginate lyase, whose major activity was located intracellularly during all growth phases. The enzyme was purified from the soluble fraction of sonicated cells by ammonium sulfate precipitation, anion- and cation-exchange chromatography and gel filtration. The apparent molecular weight of purified alginate lyase of 28,000 determined by gel filtration and of 31,600 determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the active enzyme was composed of a single polypeptide. The alginate lyase displayed a pH optimum around 7.0 and a temperature optimum around 37°C. The purified enzyme depolymerized alginate by a lyase reaction in an endo manner releasing products which reacted in the thiobarbituric acid assay and absorbed strongly in the ultraviolet region at 235 nm. The alginate lyase was specific for guluronic acidrich alginate preparations. Propylene glycol esters of alginate and O-acetylated bacterial alginates were poorly degraded by the lyase compared with unmodified polysaccharide. The guluronate-specific lyase activity was applied in an enzymatic method to detect mannuronan C-5 epimerase in three different mucoid (alginate-synthesizing) strains of Pseudomonas aeruginosa. This enzyme which converts polymannuronate to alginate could not be demonstrated either extracellularly or intracellularly in all strains suggesting the absence of a polymannuronate-modifying enzyme in P. aeruginosa.Abbreviations poly(ManA) (1–4)--D-mannuronan - poly(GulA) (1–4)--L-guluronan - TBA 2-thiobarbituric acid  相似文献   

17.
The OprB porin-mediated glucose transport system was investigated in Pseudomonas chlororaphis, Burkholderia cepacia, and Pseudomonas fluorescens. Kinetic studies of [U-14C]glucose uptake revealed an inducible system of low K m values (0.3–5 M) and high specificity for glucose. OprB homologs were purified and reconstituted into proteoliposomes. The porin function and channel preference for glucose were demonstrated by liposome swelling assays. Examination of the periplasmic glucose-binding protein (GBP) components by Western immunoblotting using P. aeruginosa GBP-specific antiserum revealed some homology between P. aeruginosa GBP and periplasmic proteins from P. fluorescens and P. chlororaphis but not B. cepacia. Circular dichroism spectropolarimetry of purified OprB-like porins from the three species revealed sheet contents of 31–50% in agreement with 40% sheet content for the P. aeruginosa OprB porin. These findings suggest that the high-affinity glucose transport system is primarily specific for glucose and well conserved in the genus Pseudomonas although its outer membrane component may differ in channel architecture and specificity for other carbohydrates.  相似文献   

18.
The inhibition of growth by octanoic or decanoic acids, two subproducts of ethanolic fermentation, was evaluated in Saccharomyces cerevisiae and Kluyveromyces marxianus in association with ethanol, the main product of fermentation. In both strains, octanoic and decanoic acids, at concentrations up to 16 and 8 mg/liter, respectively, decreased the maximum specific growth rate and the biomass yield at 30°C as an exponential function of the fatty acid concentration and increased the duration of growth latency. These toxic effects increased with a decrease in pH in the range of 5.4 to 3.0, indicating that the undissociated form is the toxic molecule. Decanoic acid was more toxic than octanoic acid. The concentrations of octanoic and decanoic acids were determined during the ethanolic fermentation (30°C) of two laboratory media (mineral and complex) by S. cerevisiae and of Jerusalem artichoke juice by K. marxianus. Based on the concentrations detected (0.7 to 23 mg/liter) and the kinetics of growth inhibition, the presence of octanoic and decanoic acids cannot be ignored in the evaluation of the overall inhibition of ethanolic fermentation.  相似文献   

19.
Four (1, 2, 4 and 6) synthetic quaternary ammonium derivatives of pyranochromenones and (coumarinyloxy)acetamides were synthesized and investigated for their antimicrobial efficacy on MRSA (Methicillin-resistant Staphylococcus aureus), and multi-drug resistant Pseudomonas aeruginosa, Salmonella enteritidis and Mycobacterium tuberculosis H37Rv strain. One of the four compounds screened i.e. N,N,N-triethyl-10-((4,8,8-trimethyl-2-oxo-2,6,7,8-tetrahydropyrano[3,2-g]chromen-10-yl)oxy)decan-1-aminium bromide (1), demonstrated significant activity against S. aureus, P. aeruginosa and M. tuberculosis with MIC value of 16, 35, and 15.62 µg/ml respectively. The cytotoxicity evaluation of compound 1 on A549 cell lines showed it to be a safe antimicrobial molecule, TEM study suggested that the compound led to the rupture of the bacterial cell walls.  相似文献   

20.
Resistance and the development thereof inPseudomonas aeruginosa to the bactericide sodium dimethyldithiocarbamate (SMT) was investigated.P. aeruginosa was cultured in nutrient-poor broth in the presence of subinhibitory concentrations of SMT. It adapted over 21 days of exposure from 250 g·ml–1 to 490 g·ml–1. The initial high MIC was ascribed to exclusion of SMT by the lipopolysaccharide layer, since removal thereof by EDTA rendered cells highly susceptible. The alginate-producing mutant PAO 579 was much more susceptible to SMT than was its parent PAO 381, indicating that extracellular polysaccharide does not act as an exclusion barrier to SMT. Following 24 h of exposure to SMT,P. aeruginosa had an altered profile of outer membrane proteins as determined by SDS-PAGE. Resistant cells had a further altered profile. Resistance ofP. aeruginosa is ascribed to a change in the outer membrane protein profile, leading to improved exclusion of SMT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号