首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A M Hanel  W P Jencks 《Biochemistry》1991,30(47):11320-11330
The internalization of 45Ca by the calcium-transporting ATPase into sarcoplasmic reticulum vesicles from rabbit muscle was measured during a single turnover of the enzyme by using a quench of 7 mM ADP and EGTA (25 degrees C, 5 mM MgCl2, 100 mM KCl, 40 mM MOPS.Tris, pH 7.0). Intact vesicles containing either 10-20 microM or 20 mM Ca2+ were preincubated with 45Ca for approximately 20 s and then mixed with 0.20-0.25 mM ATP and excess EGTA to give 70% phosphorylation of Etot with the rate constant k = 300 s-1. The two 45Ca ions bound to the phosphoenzyme (EP) become insensitive to the quench with ADP as they are internalized in a first-order reaction with a rate constant of k = approximately 30 s-1. The first and second Ca2+ ions that bind to the free enzyme were selectively labeled by mixing the enzyme and 45Ca with excess 40Ca, or by mixing the enzyme and 40Ca with 45Ca, for 50 ms prior to the addition of ATP and EGTA. The internalization of each ion into loaded or empty vesicles follows first-order kinetics with k = approximately 30 s-1; there is no indication of biphasic kinetics or an induction period for the internalization of either Ca2+ ion. The presence of 20 mM Ca2+ inside the vesicles has no effect on the kinetics or the extent of internalization of either or both of the individual ions. The Ca2+ ions bound to the phosphoenzyme are kinetically equivalent. A first-order reaction for the internalization of the individual Ca2+ ions is consistent with a rate-limiting conformational change of the phosphoenzyme with kc = 30 s-1, followed by rapid dissociation of the Ca2+ ions from separate independent binding sites on E approximately P.Ca2; lumenal calcium does not inhibit the dissociation of calcium from these sites. Alternatively, the Ca2+ ions may dissociate sequentially from E approximately P.Ca2 following a rate-limiting conformational change. However, the order of dissociation of the individual ions can not be distinguished. An ordered-sequential mechanism for dissociation requires that the ions dissociate much faster (k greater than or equal to 10(5) s-1) than the forward and reverse reactions for the conformational change (k-c = approximately 3000 s-1). Finally, the Ca2+ ions may exchange their positions rapidly on the phosphoenzyme (kmix greater than or equal to 10(5) s-1) before dissociating. A Hill slope of nH = 1.0-1.2, with K0.5 = 0.8-0.9 mM, for the inhibition of turnover by binding of Ca2+ to the low-affinity transport sites of the phosphoenzyme was obtained from rate measurements at six different concentrations of Mg2+.  相似文献   

2.
Hydrolysis of acetyl phosphate is inhibited by high concentrations of Pi and MgCl2, probably due to an increase in the steady-state level of phosphoenzyme formed from Pi in the medium. A dual effect of ADP during steady-state hydrolysis of acetyl phosphate was observed. ADP inhibited hydrolysis in the presence of 5 mM MgCl2 and no added Pi, whereas it stimulated hydrolysis when phosphoenzyme formation by Pi was favored by including 6 mM Pi and 20 mM MgCl2 in the assay medium. ATP inhibited acetyl phosphate hydrolysis in both of these assay media. When phosphoenzyme formation by Pi in the presence of acetyl phosphate was stimulated at Ca2+ concentrations sufficient to saturate the low-affinity Ca2+-binding sites, ADP stimulated acetyl phosphate hydrolysis and also promoted ATP synthesis by reversal of the catalytic cycle. The rate of ATP synthesis was dependent on ADP, Pi and Ca2+. Phosphoenzyme formation by Pi and MgCl2, whether in the absence of Ca2+ and acetyl phosphate, or during acetyl phosphate hydrolysis, was inhibited by ADP and ATP. These results suggest that ADP interacts with different intermediates of the catalytic cycle and that expression of inhibition or activation of acetyl phosphate hydrolysis depends on the steady-state level of phosphoenzyme formed by Pi.  相似文献   

3.
N Stahl  W P Jencks 《Biochemistry》1987,26(24):7654-7667
Phosphorylation of the sarcoplasmic reticulum calcium ATPase, E, is first order with kb = 70 +/- 7 s-1 after free enzyme was mixed with saturating ATP and 50 microM Ca2+; this is one-third the rate constant of 220 s-1 for phosphorylation of enzyme preincubated with calcium, cE.Ca2, after being mixed with ATP under the same conditions (pH 7.0, Ca2+-loaded vesicles, 100 mM KCl, 5 mM Mg2+, 25 degrees C). Phosphorylation of E with ATP and Ca2+ in the presence of 0.25 mM ADP gives approximately 50% E approximately P.Ca2 with kobsd = 77 s-1, not the sum of the forward and reverse rate constants, kobsd = kf + kr = 140 s-1, that is expected for approach to equilibrium if phosphorylation were rate limiting. These results show that (1) kb represents a slow conformational change, rather than phosphoryl transfer, and (2) different pathways are followed for the phosphorylation of E and of cE.Ca2. The absence of a lag for phosphorylation of E with saturating ATP and Ca2+ indicates that all other steps, including the binding of Ca2+ ions and phosphoryl transfer, have rate constants of greater than 500 s-1. Chase experiments with unlabeled ATP or with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) show that the rate constants for dissociation of [gamma-32P]ATP and Ca2+ are comparable to kb. Dissociation of ATP occurs at 47 s-1 from E.ATP.Ca2+ and at 24 s-1 from E.ATP. Approximately 20% phosphorylation occurs following an EGTA chase 4.5 ms after the addition of 300 microM ATP and 50 microM Ca2+ to enzyme. This shows that Ca2+ binds rapidly to the free enzyme, from outside the vesicle, before the conformational change (kb). The fraction of Ca2+-free E.[gamma-32P]ATP that is trapped to give labeled phosphoenzyme after the addition of Ca2+ and a chase of unlabeled ATP is half-maximal at 6.8 microM Ca2+, with a Hill slope of n = 1.8. The calculated dissociation constant for Ca2+ from E.ATP.Ca2 is approximately 2.2 X 10(-10) M2 (K0.5 = 15 microM). The rate constant for the slow phase of the biphasic reaction of E approximately P.Ca2 with 1.1 mM ADP increases 2.5-fold when [Ca2+] is decreased from 50 microM to 10 nM, with half-maximal increase at 1.7 microM Ca2+. This shows that Ca2+ is dissociating from a different species, aE.ATP.Ca2, that is active for catalysis of phosphoryl transfer, has a high affinity for Ca2+, and dissociates Ca2+ with k less than or equal to 45 s-1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
J R Petithory  W P Jencks 《Biochemistry》1986,25(16):4493-4497
The calcium adenosinetriphosphatase of sarcoplasmic reticulum, preincubated with Ca2+ on the vesicle exterior (cE X Ca2), reacts with 0.3-0.5 mM Mg X ATP to form covalent phosphoenzyme (E approximately P X Ca2) with an observed rate constant of 220 s-1 (pH 7.0, 25 degrees C, 100 mM KCl, 5 mM MgSO4, 23 microM free external Ca2+, intact SR vesicles passively loaded with 20 mM Ca2+). If the phosphoryl-transfer step were rate-limiting, with kf = 220 s-1, the approach to equilibrium in the presence of ADP, to give 50% EP and kf = kr, would follow kobsd = kf + kr = 440 s-1. The reaction of cE X Ca2 with 0.8-1.2 mM ATP plus 0.25 mM ADP proceeds to 50% completion with kobsd = 270 s-1. This result shows that phosphoryl transfer from bound ATP to the enzyme is not the rate-limiting step for phosphoenzyme formation from cE X Ca2. The result is consistent with a rate-limiting conformational change of the cE X Ca2 X ATP intermediate followed by rapid (greater than or equal to 1000 s-1) phosphoryl transfer. Calcium dissociates from cE X Ca2 X ATP with kobsd = 80 s-1 and ATP dissociates with kobsd = 120 s-1 when cE X Ca2 X ATP is formed by the addition of ATP to cE X Ca2. However, when E X Ca2 X ATP is formed in the reverse direction, from the reaction of E approximately P X Ca2 and ADP, Ca2+ dissociates with kobsd = 45 s-1 and ATP dissociates with kobsd = 35 s-1. This shows that different E X Ca2 X ATP intermediates are generated in the forward and reverse directions, which are interconverted by a conformational change.  相似文献   

5.
Energetics of the calcium-transporting ATPase   总被引:11,自引:0,他引:11  
A thermodynamic cycle for catalysis of calcium transport by the sarcoplasmic reticulum ATPase is described, based on equilibrium constants for the microscopic steps of the reaction shown in Equation 1 under a single set of experimental (formula; see text) conditions (pH 7.0, 25 degrees C, 100 mM KCl, 5 mM MgSO4): KCa = 5.9 X 10(-12) M2, K alpha ATP = 15 microM, Kint = 0.47, K alpha ADP = 0.73 mM, K'int = 1.7, K"Ca = 2.2 X 10(-6) M2, and Kp = 37 mM. The value of K"Ca was calculated by difference, from the free energy of hydrolysis of ATP. The spontaneous formation of an acylphosphate from Pi and E is made possible by the expression of 12.5 kcal mol-1 of noncovalent binding energy in E-P. Only 1.9 kcal mol-1 of binding energy is expressed in E X Pi. There is a mutual destabilization of bound phosphate and calcium in E-P X Ca2, with delta GD = 7.6 kcal mol-1, that permits transfer of phosphate to ADP and transfer of calcium to a concentrated calcium pool inside the vesicle. It is suggested that the ordered kinetic mechanism for the dissociation of E-P X Ca2, with phosphate transfer to ADP before calcium dissociation outside and phosphate transfer to water after calcium dissociation inside, preserves the Gibbs energies of these ligands and makes a major contribution to the coupling in the transport process. A lag (approximately 5 ms) before the appearance of E-P after mixing E and Pi at pH 6 is diminished by ATP and by increased [Pi]. This suggests that ATP accelerates the binding of Pi. The weak inhibition by ATP of E-P formation at equilibrium also suggests that ATP and phosphate can bind simultaneously to the enzyme at pH 6. Rate constants are greater than or equal to 115 s-1 for all the steps in the reaction sequence to form E-32P X Ca2 from E-P, Ca2+ and [32P]ATP at pH 7. E-P X Ca2 decomposes with kappa = 17 s-1, which shows that it is a kinetically competent intermediate. The value of kappa decreases to 4 s-1 if the intermediate is formed in the presence of 2 mM Ca2+. This decrease and inhibition of turnover by greater than 0.1 mM Ca2+ may result from slow decomposition of E-P X Ca3.  相似文献   

6.
In order to determine the role of divalent cations in the reaction mechanism of the H+,K+-ATPase, we have substituted calcium for magnesium, which is required by the H+,K+-ATPase for phosphorylation from ATP and from PO4. Calcium was chosen over other divalent cations assayed (barium and manganese) because in the absence of magnesium, calcium activated ATP hydrolysis, generated sufficiently high levels of phosphoenzyme (573 +/- 51 pmol.mg-1) from [gamma-32P]ATP to study dephosphorylation, and inhibited K+-stimulated ATP hydrolysis. The Ca2+-ATPase activity of the H+,K+-ATPase was 40% of the basal Mg2+-ATPase activity. However, the Ca2+,K+-ATPase activity (minus the Ca2+ basal activity) was only 0.7% of the Mg2+,K+-ATPase, indicating that calcium could partially substitute for Mg2+ in activating ATP hydrolysis but not in K+ stimulation of ATP hydrolysis. Approximately 0.1 mM calcium inhibited 50% of the Mg2+-ATPase or Mg2+,K+-ATPase activities. Inhibition of Mg2+,K+-ATPase activity was not competitive with respect to K+. Inhibition by calcium of Mg2+,K+ activity p-nitrophenyl phosphatase activity was competitive with respect to Mg2+ with an apparent Ki of 0.27 mM. Proton transport measured by acridine orange uptake was not detected in the presence of Ca2+ and K+. In the presence of Mg2+ and K+, Ca2+ inhibited proton transport with an apparent affinity similar to the inhibition of the Mg2+, K+-ATPase activity. The site of calcium inhibition was on the exterior of the vesicle. These results suggest that calcium activates basal turnover and inhibits K+ stimulation of the H+,K+-ATPase by binding at a cytosolic divalent cation site. The pseudo-first order rate constant for phosphoenzyme formation from 5 microM [gamma-32P]ATP was at least 22 times slower in the presence of calcium (0.015 s-1) than magnesium (greater than 0.310 s-1). The Ca.EP (phosphoenzyme formed in the presence of Ca2+) formed dephosphorylated four to five times more slowly that the Mg.EP (phosphoenzyme formed in the presence of Mg2+) in the presence of 8 mm trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) or 250 microM ATP. Approximately 10% of the Ca.EP formed was sensitive to a 100 mM KCl chase compared with greater than 85% of the Mg.EP. By comparing the transient kinetics of the phosphoenzyme formed in the presence of magnesium (Mg.EP) and calcium (Ca.EP), we found two actions of divalent cations on dephosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
J R Petithory  W P Jencks 《Biochemistry》1988,27(23):8626-8635
The binding of Ca2+ and the resulting change in catalytic specificity that allows phosphorylation of the calcium ATPase of sarcoplasmic reticulum by ATP were examined by measuring the amount of phosphoenzyme formation from [32P]ATP, or 45Ca incorporation into vesicles, after the simultaneous addition of ATP and EGTA at different times after mixing enzyme and Ca2+ (25 degrees C, pH 7.0, 5 mM MgSO4, 0.1 M KCl). A "burst" of calcium binding in the presence of high [Ca2+] gives approximately 12% phosphorylation and internalization of two Ca2+ at very short times after the addition of Ca2+ with this assay. This shows that calcium binding sites are available on the cytoplasmic-facing side of the free enzyme. Calcium binding to these sites induces the formation of cE.Ca2, the stable high-affinity form of the enzyme, with k = 40 s-1 at saturating [Ca2+] and a half-maximal rate at approximately 20 microM Ca2+ (from Kdiss = 7.4 X 10(-7) M for Ca.EGTA). The formation of cE.Ca2 through a "high-affinity" pathway can be described by the scheme E 1 in equilibrium cE.Ca1 2 in equilibrium cE.Ca2, with k1 = 3 X 10(6) M-1 s-1, k2 = 4.3 X 10(7) M-1 s-1, k-1 = 30 s-1, k-2 = 60 s-1, K1 = 9 X 10(-6) M, and K2 = 1.4 X 10(-6) M. The approach to equilibrium from E and 3.2 microM Ca2+ follows kobsd = kf + kr = 18 s-1 and gives kf = kr = 9 s-1. The rate of exchange of 45Ca into the inner position of cE.Ca2 shows an induction period and is not faster than the approach to equilibrium starting with E and 45Ca. The dissociation of 45Ca from the inner position of cE.45Ca.Ca in the presence of 3.2 microM Ca2+ occurs with a rate constant of 7 s-1. These results are inconsistent with a slow conformational change of free E to give cE, followed by rapid binding-dissociation of Ca2+.  相似文献   

8.
A M Hanel  W P Jencks 《Biochemistry》1990,29(21):5210-5220
The calcium-transport ATPase (CaATPase) of rabbit sarcoplasmic reticulum preincubated with 0.02 mM Ca2+ (cE.Ca2) is phosphorylated upon the addition of 0.25 mM LaCl3 and 0.3 mM [gamma-32P]ATP with an observed rate constant of 6.5 s-1 (40 mM MOPS, pH 7.0, 100 mM KCl, 25 degrees C). La.ATP binds to cE.Ca2 with a rate constant of 5 X 10(6) M-1 s-1, while ATP, Ca2+, and La3+ dissociate from cE.Ca2.La.ATP at less than or equal to 1 s-1. The reaction of ADP with phosphoenzyme (EP) formed from La.ATP is biphasic. An initial rapid loss of EP is followed by a slower first-order disappearance, which proceeds to an equilibrium mixture of EP.ADP and nonphosphorylated enzyme with bound ATP. The fraction of EP that reacts in the burst (alpha) and the first-order rate constant for the slow phase (kb) increase proportionally with increasing concentrations of ADP to give maximum values of 0.34 and 65 s-1, respectively, at saturating ADP (KADPS = 0.22 mM). The burst represents rapid phosphoryl transfer and demonstrates that ATP synthesis and hydrolysis on the enzyme are fast. The phosphorylation of cE.Ca2 by La.ATP at 6.5 s-1 and the kinetics for the reaction of EP with ADP are consistent with a rate-limiting conformational change in both directions. The conformational change converts cE.Ca2.La.ATP to the form of the enzyme that is activated for phosphoryl transfer, aE.Ca2.La.ATP, at 6.5 s-1; this is much slower than the analogous conformational change at 220 s-1 with Mg2+ as the catalytic ion [Petithory & Jencks (1986) Biochemistry 25, 4493]. The rate constant for the conversion of aE.Ca2.La.ATP to cE.Ca2.La.ATP is 170 s-1. ATP does not dissociate measurably from aE.Ca2.La.ATP. Labeled EP formed from cE.Ca2 and La.ATP with leaky vesicles undergoes hydrolysis at 0.06 s-1. It is concluded that the reaction mechanism of the CaATPase is remarkably similar with Mg.ATP and La.ATP; however, the strong binding of La.ATP slows both the conformational change that is rate limiting for EP formation and the dissociation of La.ATP. An interaction between La3+ at the catalytic site and the calcium transport sites decreases the rate of calcium dissociation by greater than 60-fold. When cE-Ca2 is mixed with 0.3 mM ATP and 1.0 mM Cacl2, the phosphoenzyme is formed with an observed rate constant of 3 s-1. The phosphoenzyme formed from Ca.ATP reacts with 2.0 mM ADP and labeled ATP with a rate constant of 30 s-1; there may be a small burst (alpha less than or equal to 0.05).  相似文献   

9.
The sequential binding of Sr2+ and Ca2+ to the cytoplasmic transport sites of the sarcoplasmic reticulum calcium ATPase allows the formation of two different mixed complexes: cE.Sr.Ca, with Sr2+ bound to the "inner" site and Ca2+ bound to the "outer" site, and cE. Ca.Sr, with Ca2+ bound to the inner site and Sr2+ bound to the outer site (pH 7.0, 25 degrees C, 10 mM MgCl2, 100 mM KCl). Both cE.Sr.45Ca and cE.45Ca.Sr react with ATP to internalize one 45Ca/phosphoenzyme. The value of K0.5 = 83 microM Sr2+ for activation of the enzyme for phosphorylation by ATP is much larger than K0.5 = 28 microM Sr2+ for inhibition of phosphoenzyme formation from inorganic phosphate (eta H = 1.0-1.3). These results are consistent with the sequential binding of two strontium ions with negative cooperativity and dissociation constants of KSr1 = 35 microM and KSr2 = 55 microM. The species cE.Sr2 and cE.Ca2 react rapidly with ATP but not inorganic phosphate. However, enzyme with one strontium bound, cE.Sr, does not react with either inorganic phosphate or ATP. Therefore, the conformational changes in the enzyme that alter the chemical specificity for phosphorylation by ATP and by inorganic phosphate are different. This requires the existence of at least three forms of the unphosphorylated enzyme with three different chemical specificities for catalysis.  相似文献   

10.
Inorganic phosphate (Pi) release was determined by means of a fluorescent Pi-probe in single permeabilized rabbit soleus and psoas muscle fibers. Measurements of Pi release followed photoliberation of approximately 1.5 mM ATP by flash photolysis of NPE-caged ATP in the absence and presence of Ca2+ at 15 degrees C. In the absence of Ca2+, Pi release occurred with a slow rate of 11 +/- 3 microM . s-1 (n = 3) in soleus fibers and 23 +/- 1 microM . s-1 (n = 10) in psoas fibers. At saturating Ca2+ concentrations (pCa 4.5), photoliberation of ATP was followed by rapid force development. The initial rate of Pi release was 0.57 +/- 0.05 mM . s-1 in soleus (n = 13) and 4.7 +/- 0.2 mM . s-1 in psoas (n = 23), corresponding to a rate of Pi release per myosin head of 3.8 s-1 in soleus and 31.5 s-1 in psoas. Pi release declined at a rate of 0.48 s-1 in soleus and of 5.2 s-1 in psoas. Pi release in soleus was slightly faster in the presence of an ATP regenerating system but slower when 0.5 mM ADP was added. The reduction in the rate of Pi release results from an initial redistribution of cross-bridges over different states and a subsequent ADP-sensitive slowing of cross-bridge detachment.  相似文献   

11.
The binding and conformational properties of the divalent cation site required for H+,K(+)-ATPase catalysis have been explored by using Ca2+ as a substitute for Mg2+. 45Ca2+ binding was measured with either a filtration assay or by passage over Dowex cation exchange columns on ice. In the absence of ATP, Ca2+ was bound in a saturating fashion with a stoichiometry of 0.9 mol of Ca2+ per active site and an apparent Kd for free Ca2+ of 332 +/- 39 microM. At ATP concentrations sufficient for maximal phosphorylation (10 microM), 1.2 mol of Ca2+ was bound per active site with an apparent Kd for free Ca2+ of 110 +/- 22 microM. At ATP concentrations greater than or equal to 100 microM, 2.2 mol of Ca2+ were bound per active site, suggesting that an additional mole of Ca2+ bound in association with low affinity nucleotide binding. At concentrations sufficient for maximal phosphorylation by ATP (less than or equal to 10 microM), APD, ADP + Pi, beta,gamma-methylene-ATP, CTP, and GTP were unable to substitute for ATP. Active site ligands such as acetyl phosphate, phosphate, and p-nitrophenyl phosphate were also ineffective at increasing the Ca2+ affinity. However, vanadate, a transition state analog of the phosphoenzyme, gave a binding capacity of 1.0 mol/active site and the apparent Kd for free Ca2+ was less than or equal to 18 microM. Mg2+ displaced bound Ca2+ in the absence and presence of ATP but Ca2+ was bound about 10-20 times more tightly than Mg2+. The free Mg2+ affinity, like Ca2+, increased in the presence of ATP. Monovalent cations had no effect on Ca2+ binding in the absence of ATP but dit reduce Ca2+ binding in the presence of ATP (K+ = Rb+ = NH4 + greater than Na+ greater than Li+ greater than Cs+ greater than TMA+, where TMA is tetramethylammonium chloride) by reducing phosphorylation. These results indicate that the Ca2+ and Mg2+ bound more tightly to the phosphoenzyme conformation. Eosin fluorescence changes showed that both Ca2+ and Mg2+ stabilized E1 conformations (i.e. cytosolic conformations of the monovalent cation site(s)) (Ca.E1 and Mg.E1). Addition of the substrate acetyl phosphate to either Ca.E1 or Mg.E1 produced identical eosin fluorescence showing that Ca2+ and Mg2+ gave similar E2 (extracytosolic) conformations at the eosin (nucleotide) site. In the presence of acetyl phosphate and K+, the conformations with Ca2+ or Mg2+ were also similar. Comparison of the kinetics of the phosphoenzyme and Ca2+ binding showed that Ca2+ bound prior to phosphorylation and dissociated after dephosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The effect of cyclic-AMP-dependent phosphorylation on the activity of isolated pig liver pyruvate kinase was studied. It was found that the major kinetic effect of the phosphorylation was to reduce the affinity for the substrate phosphoenolpyruvate, K0.5 for this substrate increasing from 0.3 to 0.9 mM upon phosphorylation. The cooperative effect with phosphoenolpyruvate was enhanced, the Hill constant nH increasing concomitantly from 1.1 to 1.5. V was unaltered. The change in activity occurred in parallel with the phosphate incorporation, except during the initial part of the reaction, when inactivation was correspondingly slower. The affinity for the second substrate ADP was unchanged, with an apparent Km of 0.3 mM at saturating concentration of phosphoenolpyruvate. Likewise, the requirement for potassium was unaffected, whereas the phosphoenzyme required a higher concentration of magnesium ions for maximal activity, compared with the control enzyme. The inhibitory effect of the phosphorylation was counteracted by positive effectors, fructose 1,6-biphosphate in micromolar concentrations completely activated the phosphoenzyme, resulting in an enzyme with properties similar to the fructose 1,6-biphosphate-activated unphosphorylated enzyme, with K0.5 for phosphoenolpyruvate about 0.025 mM and with a Hill constant of 1.1. Hydrogen ions were also effective in activating the phosphoenzyme. Thus, when pH was lowered from 8 to 6.5 the inhibition due to phosphorylation was abolished. The phosphoenzyme was sensitive to further inhibition by negative effectors such as ATP and alanine. 2 mM ATP increased K0.5 for phosphoenolpyruvate to 1.5 mM and nH to 2.3. The corresponding values with alanine were 1.3 mM and 1.9. Phosphorylation is thought to be an additional mechanism of inhibition of the enzyme under gluconeogenetic conditions.  相似文献   

13.
We have investigated the kinetic and thermodynamic properties of the Ca2+-ATPase of skeletal muscle sarcoplasmic reticulum under conditions that result in a single transport cycle. Simultaneous addition of ATP and EGTA to sarcoplasmic reticulum vesicles, preincubated with calcium, resulted in a transient of intermediate species. In the presence of saturating Ca2+ levels, total E-P species reached a maximum of 2.3 nmol/mg at 100 ms, followed by a monoexponential decay with kobs = 3.6 s-1. The data are interpreted in terms of Ca2+ sequestration, either by occlusion as Ca2+ in the phosphorylated enzyme or chelation by EGTA. Maximum Ca2+ uptake was 8.3 nmol/mg with the release of 4.4 nmol/mg Pi. The ratio of Ca2+ uptake to Pi release approached 1.9 over a wide [Ca2+] range. Equilibrium Ca2+ binding, in the absence of ATP, showed a K0.5 of 0.88 microM with a Hill coefficient of 1.9. The Ca2+ concentration dependence of Ca2+ uptake during single-cycle catalysis showed a 10-fold enhanced affinity (K0.5 = 0.06 microM) and was noncooperative (nH = 0.9). Quench with excess EGTA (greater than 2 mM) decreased Ca2+ uptake to 1 nmol/mg, indicating an "off" rate of Ca2+ from high affinity sites that exceeds 100 s-1. The ATP concentration dependence for a single-cycle catalysis showed an apparent K0.5 of 1.1 microM, similar to that for ATP equilibrium binding. It is proposed that enzyme phosphorylation proceeds only following binding of a second calcium ion to externally oriented sites whose intrinsic affinity is in the same range as the calcium dependence of a single-cycle turnover.  相似文献   

14.
In experiments performed at 37 degrees C, Ca2+ reversibly inhibits the Na+-and (Na+ + K+)-ATPase activities and the K+-dependent phosphatase activity of (Na+ + K+)-ATPase. With 3 mM ATP, the Na+-ATPase was less sensitive to CaCl2 than the (Na+ + K+)-ATPase activity. With 0.02 mM ATP, the Na+-ATPase and the (Na+ + K+)-ATPase activities were similarly inhibited by CaCl2. The K0.5 for Ca2+ as (Na+ + K+)-ATPase inhibitor depended on the total MgCl2 and ATP concentrations. This Ca2+ inhibition could be a consequence of Ca2+-Mg2+ competition, Ca . ATP-Mg . ATP competition or a combination of both mechanisms. In the presence of Na+ and Mg2+, Ca2+ inhibited the K+-dependent dephosphorylation of the phosphoenzyme formed from ATP, had no effect on the dephosphorylation in the absence of K+ and inhibited the rephosphorylation of the enzyme. In addition, the steady-state levels of phosphoenzyme were reduced in the presence both of NaCl and of NaCl plus KCl. With 3 mM ATP, Ca2+ alone sustained no more than 2% of the (Na+ + K+)-ATPase activity and about 23% of the Na+-ATPase activity observed with Mg2+ and no Ca2+. With 0.003 mM ATP, Ca2+ was able to maintain about 40% of the (Na+ + K+)-ATPase activity and 27% of the Na+-ATPase activity seen in the presence of Mg2+ alone. However, the E2(K)-E1K conformational change did not seem to be affected. Ca2+ inhibition of the K+-dependent rho-nitrophenylphosphatase activity of the (Na+ + K+)-ATPase followed competition kinetics between Ca2+ and Mg2+. In the presence of 10 mM NaCl and 0.75 mM KCl, the fractional inhibition of the K+-dependent rho-nitrophenylphosphatase activity as a function of Ca2+ concentration was the same with and without ATP, suggesting that Ca2+ indeed plays the important role in this process. In the absence of Mg2+, Ca2+ was unable to sustain any detectable ouabain-sensitive phosphatase activity, either with rho-nitrophenylphosphate or with acetyl phosphate as substrate.  相似文献   

15.
The effect of low concentrations of Triton X-100, below that required for solubilization, on the properties of the Ca2+-ATPase of sarcoplasmic reticulum has been investigated. The changes observed have been compared with the changes produced on solubilization of the vesicles at higher concentrations of detergent. In the range 0.02-0.05% (w/v) Triton X-100, concentrations which did not solubilize the vesicles but completely inhibit ATP-mediated Ca2+ accumulation, 8-16 mol of detergent/mol of ATPase was associated with the vesicles. This amount of Triton X-100 altered equilibrium Ca2+ binding and Ca2+ activation of p-nitrophenyl phosphate and of ATP hydrolysis in a manner which lowered the apparent Ca2+ cooperatively (nH = 1 or less), and which increased the K0.5(Ca) value 20-fold. These changes in Ca2+ binding and activation parameters were associated with a 90% lower Ca2+-induced change in fluorescence of fluorescein isothiocyanate modified enzyme. The rates of p-nitrophenyl phosphate and of ATP hydrolysis, at saturating Ca2+ concentrations, were about half that of detergent-free vesicles. The rate constant for phosphoenzyme hydrolysis in the absence of Ca2+, calculated from medium Pi in equilibrium HOH exchange and phosphoenzyme measurements, was lowered from 38 to 11 s-1. The steady-state level of phosphoenzyme formed from Pi in the absence of Ca2+ was slightly increased up to 0.02% Triton X-100 and then decreased about half at 0.05%. The synthesis of ATP in single turnover type experiments was not affected by detergent binding. Pi in equilibrium ATP exchange was inhibited 65%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Sarcoplasmic reticulum vesicles of rabbit skeletal muscle are able to accumulate Ca2+ or Sr2+ at the expense of ATP hydrolysis. Depending on the conditions used, vesicles loaded with Ca2+ can catalyze either an ATP in equilibrium Pi exchange or the synthesis of ATP from ADP and Pi. Both reactions are impaired in vesicles loaded with Sr2+. The Sr2+ concentration required for half-maximal ATPase activity increases from 2 microM to 60-70 microM when the Mg2+ concentration is raised from 0.5 to 50 mM. The enzyme is phosphorylated by ATP in the presence of Sr2+. The steady state level of phosphoenzyme varies depending on both the Sr2+ and Mg2+ concentrations in the medium. Phosphorylation of the enzyme by Pi is inhibited by both Ca2+ and Sr2+. In the presence of 2 and 20 mM Mg2+, half-maximal inhibition is attained in the presence of 4 and 8 microM Ca2+ or in the presence of 0.24 mM and more than 2 mM Sr2+, respectively. After the addition of Sr2+, the phosphoenzyme is cleaved with two different rate constants, 0.5-1.5 s-1 and 10-18 s-1. The fraction of phosphoenzyme cleaved at a slow rate is smaller the higher the Sr2+ concentration in the medium. Ca2+ inhibition of enzyme phosphorylation by Pi is overcome by the addition of ITP. This is not observed when Ca2+ is replaced by Sr2+.  相似文献   

17.
T Wang 《Biochemistry》1987,26(25):8360-8365
A five-syringe quench-flow apparatus was used in the transient-state kinetic study of intermediary phosphoenzyme (EP) decomposition in a Triton X-100 purified dog cardiac sarcoplasmic reticulum (SR) Ca2+-ATPase at 20 degrees C. Phosphorylation of the enzyme by ATP in the presence of 100 mM K+ for 116 ms gave 32% ADP-sensitive E1P, 52% ADP- and K+-reactive E2P, and 16% unreactive residual EPr. The EP underwent a monomeric, sequential E1P 17 s-1----E2P 10.5 s-1----E2 + Pi transformation and decomposition in the ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid quenched Ca2+-devoid medium. The calculated rate constant for the total EP (i.e., E1P + E2P) dephosphorylation was 7.8 s-1. The E1P had an affinity for ADP with an apparent Kd congruent to 100 microM. When the EP was formed in the absence of K+ for 116 ms, no appreciable amount of the ADP-sensitive E1P was detected. The EP comprised about 80% ADP- and K+-reactive E2P and 20% residual EPr, suggesting a rapid E1P----E2P transformation. Both the E2P's formed in the presence and absence of K+ decomposed with a rate constant of about 19.5 s-1 in the presence of 80 mM K+ and 2 mM ADP, showing an ADP enhancement of the E2P decomposition. The results demonstrate mechanistic differences in monomeric EP transformation and decomposition between the Triton X-100 purified cardiac SR Ca2+-ATPase and deoxycholate-purified skeletal enzyme [Wang, T. (1986) J. Biol. Chem. 261, 6307-6319].  相似文献   

18.
J A Teruel  G Inesi 《Biochemistry》1988,27(16):5885-5890
The roles of the phosphorylation (phosphorylated enzyme intermediate) and nucleotide binding domains in calcium transport were studied by comparing acetyl phosphate and ATP as substrates for the Ca2+-ATPase of sarcoplasmic reticulum vesicles. We found that the maximal level of phosphoenzyme obtained with either substrate is approximately 4 nmol/mg of protein, corresponding to the stoichiometry of catalytic sites in our preparation. The initial burst of phosphoenzyme formation observed in the transient state, following addition of either substrate, is accompanied by internalization of 2 mol of calcium per mole of phosphoenzyme. The internalized calcium is then translocated with a sequential pattern, independent of the substrate used. Following a rate-limiting step, the phosphoenzyme undergoes hydrolytic cleavage and proceeds to the steady-state activity which is soon "back inhibited" by the rise of Ca2+ concentration in the lumen of the vesicles. When the "back inhibition" is released by the addition of oxalate, substrate utilization and calcium transport occur with a ratio of 1:2, independent of the substrate and its concentration. When the nucleotide binding site is derivatized with FITP, the enzyme can still utilize acetyl phosphate (but not ATP) for calcium transport. No secondary activation of acetyl phosphate utilization by the FITC-enzyme was obtained with millimolar nucleotide. These observations demonstrate that the basic coupling mechanism of catalysis and calcium transport involves the phosphorylation and calcium binding domains, and not the nucleotide binding domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In order to characterize low affinity ATP-binding sites of renal (Na+,K+) ATPase and sarcoplasmic reticulum (Ca2+)ATPase, the effects of ATP on the splitting of the K+-sensitive phosphoenzymes were compared. ATP inactivated the dephosphorylation in the case of (Na+,K+)ATPase at relatively high concentrations, while activating it in the case of (Ca2+)ATPase. When various nucleotides were tested in place of ATP, inactivators of (Na+,K+)ATPase were found to be activators in (Ca2+)ATPase, with a few exceptions. In the absence of Mg2+, the half-maximum concentration of ATP for the inhibition or for the activation was about 0.35 mM or 0.25 mM, respectively. These values are comparable to the previously reported Km or the dissociation constant of the low affinity ATP site estimated from the steady-state kinetics of the stimulation of ATP hydrolysis or from binding measurements. By increasing the concentration of Mg2+, but not Na+, the effect of ATP on the phosphoenzyme of (Na+,K+)ATPase was reduced. On the other hand, Mg2+ did not modify the effect of ATP on the phosphoenzyme of (Ca2+)ATPase. During (Na+,K+)ATPase turnover, the low affinity ATP site appeared to be exposed in the phosphorylated form of the enzyme, but the magnesium-complexed ATP interacted poorly with the reactive K+-sensitive phosphoenzyme, which has a tightly bound magnesium, probably because of interaction between the divalent cations. In the presence of physiological levels of Mg2+ and K+, ATP appeared to bind to the (Na+,K+)ATPase only after the dephosphorylation, while it binds to the (Ca2+)-ATPase before the dephosphorylation to activate the turnover.  相似文献   

20.
The present work compares the effects of several ligands (phosphatase substrates, MgCl2, RbCl and inorganic phosphate) and temperature on the phosphatase activity and the E2(Rb) occluded conformation of Na+/K+-ATPase. Cooling from 37 degrees C to 20 degrees C and 0 degrees C (hydrolysis experiments) or from 20 degrees C to 0 degrees C (occlusion experiments) had the following consequences: (i) dramatically reduced the Vmax for p-nitrophenyl phosphate and acetyl phosphate hydrolysis but it produced little or no changes in the Km for the substrates; (ii) led to a 5-fold drop in the Km for the inorganic phosphate-induced di-occlusion of E2(Rb); (iii) reduced the K0.5 and curve sigmoidicity of the Rb-stimulated hydrolysis of p-nitrophenyl phosphate and acetyl phosphate and the Rb-promoted E2(Rb) formation. At 20 degrees C, in the presence of 1 mM RbCl and no Mg2+, acetyl phosphate did not affect E2(Rb); with 3 mM MgCl2, acetyl phosphate stimulated a release of Rb from E2(Rb) both in the presence and absence of RbCl in the incubation mixture. As a function of acetyl phosphate concentration the Km for iRb release was indistinguishable from the Km found for stimulation of hydrolysis and enzyme phosphorylation under identical experimental conditions; in addition, the extrapolated di-occluded fraction corresponding to maximal hydrolysis was not different from 100%. These results indicate that although E2(K) might be an intermediary in the phosphatase reaction, the most abundant enzyme conformation during phosphatase turnover is E2 which has no K+ occluded in it. The ligand interactions associated to phosphatase activity do not support an equivalence of this reaction with the dephosphorylation step in the Na+ + K+-dependent ATP hydrolysis; on the other hand, there are similarities with the reversible binding of inorganic phosphate in the presence of Mg2+ and K+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号