首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Dendritic cells (DCs) are a heterogeneous population of APCs with critical roles in T cell activation and immune regulation. We report in this study the identification and characterization of a novel subset of DCs resident in skin-draining peripheral lymph nodes of normal mice. This subset of CD11c(high)CD40(high)CD8alpha(intermediate (int)) DCs expresses the collagen-binding integrin, alpha1beta1, and the E-cadherin-binding integrin, alphaEbeta7. Although alpha1beta1 and alphaEbeta7 are also expressed on CD11c(high)CD40(int)CD8alpha(high) lymphoid DCs, CD11c(high)CD40(high)CD8alpha(int) DCs demonstrate preferential integrin-mediated adhesion to collagen and fibronectin. This DC subset most likely acquires expression of these integrins in peripheral lymph node, as this subset is not found in the spleen or mesenteric lymph node, and recent DC migrants from the skin lack expression of alpha1beta1 and alphaEbeta7 integrins. Resident CD40(high) DCs express alpha1beta1 integrin and colocalize with collagen in lymph nodes. When compared with CD11c(high)CD40(high)CD8alpha(int) DCs lacking expression of these integrins, the alpha1beta1+alphaEbeta7+DC subset exhibits more efficient formation of Ag-independent conjugates with T cells, and a decreased ability to acquire soluble Ag. Thus, the alpha1beta1 and alphaEbeta7 integrins define a unique population of peripheral lymph node-derived DCs with altered functional properties and adhesive potential that localizes these cells to sites in lymph nodes where Ag presentation to T cells occurs.  相似文献   

2.
Although several subsets of intestinal APCs have been described, there has been no systematic evaluation of their phenotypes, functions, and regional localization to date. In this article, we used 10-color flow cytometry to define the major APC subsets in the small and large intestine lamina propria. Lamina propria APCs could be subdivided into CD11c(+)CD11b(-), CD11c(+)CD11b(+), and CD11c(dull)CD11b(+) subsets. CD11c(+)CD11b(-) cells were largely CD103(+)F4/80(-) dendritic cells (DCs), whereas the CD11c(+)CD11b(+) subset comprised CD11c(+)CD11b(+)CD103(+)F4/80(-) DCs and CD11c(+)CD11b(+)CD103(-)F4/80(+) macrophage-like cells. The majority of CD11c(dull)CD11b(+) cells were CD103(-)F4/80(+) macrophages. Although macrophages were more efficient at inducing Foxp3(+) regulatory T (T(reg)) cells than DCs, at higher T cell/APC ratios, all of the DC subsets efficiently induced Foxp3(+) T(reg) cells. In contrast, only CD11c(+)CD11b(+)CD103(+) DCs efficiently induced Th17 cells. Consistent with this, the regional distribution of CD11c(+)CD11b(+)CD103(+) DCs correlated with that of Th17 cells, with duodenum > jejunum > ileum > colon. Conversely, CD11c(+)CD11b(-)CD103(+) DCs, macrophages, and Foxp3(+) T(reg) cells were most abundant in the colon and scarce in the duodenum. Importantly, however, the ability of DC and macrophage subsets to induce Foxp3(+) T(reg) cells versus Th17 cells was strikingly dependent on the source of the mouse strain. Thus, DCs from C57BL/6 mice from Charles River Laboratories (that have segmented filamentous bacteria, which induce robust levels of Th17 cells in situ) were more efficient at inducing Th17 cells and less efficient at inducing Foxp3(+) T(reg) cells than DCs from B6 mice from The Jackson Laboratory. Thus, the functional specializations of APC subsets in the intestine are dependent on the T cell/APC ratio, regional localization, and source of the mouse strain.  相似文献   

3.
Differential regulation of human blood dendritic cell subsets by IFNs   总被引:29,自引:0,他引:29  
Based on the relative expression of CD11c and CD1a, we previously identified subsets of dendritic cells (DCs) or DC precursors in human peripheral blood. A CD1a(+)/CD11c(+) population (CD11c(+) DCs), also called myeloid DCs, is an immediate precursor of Langerhans cells, whereas a CD1a(-)/CD11c(-) population (CD11c(-) DCs), sometimes called lymphoid DCs but better known as plasmacytoid DCs, is composed of type I IFN (IFN-alpha beta)-producing cells. Here, we investigate the effects of IFN-alpha beta and IFN-gamma as well as other cytokines on CD11c(+) and CD11c(-) DC subsets, directly isolated from the peripheral blood, instead of in vitro-generated DCs. IFN-gamma and IFN-alpha, rather than GM-CSF, were the most potent cytokines for enhancing the maturation of CD11c(+) DCs. Incubation of CD11c(+) DCs with IFN-gamma also resulted in increased IL-12 production, and this IL-12 allowed DCs to increase Th1 responses by alloreactive T cells. In contrast, IFN-alpha did not induce IL-12 but, rather, augmented IL-10 production. IFN-alpha-primed matured CD11c(+) DCs induced IL-10-producing regulatory T cells; however, this process was independent of the DC-derived IL-10. On the other hand, IFN-alpha by itself neither matured CD11c(-) DCs nor altered the polarization of responding T cells, although this cytokine was a potent survival factor for CD11c(-) DCs. Unlike IFN-alpha, IL-3 was a potent survival factor and induced the maturation of CD11c(-) DCs. The IL-3-primed CD11c(-) DCs activated T cells to produce IL-10, IFN-gamma, and IL-4. Thus, CD11c(+) and CD11c(-) DC subsets play distinct roles in the cytokine network, especially their responses to IFNs.  相似文献   

4.
Peyer's patch (PP) dendritic cells (DCs) have been shown to exhibit a distinct capacity to induce cytokine secretion from CD4(+) T cells compared with DCs in other lymphoid organs such as the spleen (SP). In this study, we investigated whether PP DCs are functionally different from DCs in the SP in their ability to induce Ab production from B cells. Compared with SP DCs, freshly isolated PP DCs induced higher levels of IgA secretion from naive B cells in DC-T cell-B cell coculture system in vitro. The IgA production induced by PP DCs was attenuated by neutralization of IL-6. In addition, the induction of IgA secretion by SP DCs, but not PP DCs, was further enhanced by the addition of exogenous IL-6. Finally, we demonstrated that only PP CD11b(+) DC subset secreted higher levels of IL-6 compared with other DC subsets in the PP and all SP DC populations, and that PP CD11b(+) DC induced naive B cells to produce higher levels of IgA compared with SP CD11b(+) DC. These results suggest a unique role of PP CD11b(+) DCs in enhancing IgA production from B cells via secretion of IL-6.  相似文献   

5.
The mammalian target of rapamycin (mTOR) controls cell growth and survival through two distinct complexes called mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Although several reports have suggested the involvement of mTORC1 in development and function of dendritic cells (DCs), its physiological roles remain obscure. We therefore established mTORC1 signal-deficient mice lacking Raptor, an essential component of mTORC1 signal, specifically in DC lineage (referred to here as Raptor(DC-/-)). Raptor(DC-/-) mice exhibited cell expansion in specific subsets of DCs such as splenic CD8(+) DCs and intestinal CD11c(+)CD11b(+) DCs. We also found that impaired mTORC1 signal resulted in the suppression of IL-10 production along with enhanced CD86 expression in intestinal CD11c(+)CD11b(+) DCs and that Raptor(DC-/-) mice were highly susceptible to dextran sodium sulfate-induced colitis. Our results uncover mTORC1-mediated anti-inflammatory programs in intestinal CD11c(+)CD11b(+) DCs to limit the intestinal inflammation.  相似文献   

6.
The activation, proliferation, differentiation, and trafficking of CD4 T cells is central to the development of type I immune responses. MHC class II (MHCII)-bearing dendritic cells (DCs) initiate CD4(+) T cell priming, but the relative contributions of other MHCII(+) APCs to the complete Th1 immune response is less clear. To address this question, we examined Th1 immunity in a mouse model in which I-A(beta)(b) expression was targeted specifically to the DCs of I-A(beta)b-/- mice. MHCII expression is reconstituted in CD11b(+) and CD8alpha(+) DCs, but other DC subtypes, macrophages, B cells, and parenchymal cells lack of expression of the I-A(beta)(b) chain. Presentation of both peptide and protein Ags by these DC subsets is sufficient for Th1 differentiation of Ag-specific CD4(+) T cells in vivo. Thus, Ag-specific CD4(+) T cells are primed to produce Th1 cytokines IL-2 and IFN-gamma. Additionally, proliferation, migration out of lymphoid organs, and the number of effector CD4(+) T cells are appropriately regulated. However, class II-negative B cells cannot receive help and Ag-specific IgG is not produced, confirming the critical MHCII requirement at this stage. These findings indicate that DCs are not only key initiators of the primary response, but provide all of the necessary cognate interactions to control CD4(+) T cell fate during the primary immune response.  相似文献   

7.
Murine dendritic cells (DCs) can present Ag in an immunogenic or tolerogenic fashion, the distinction depending on either the occurrence of specialized DC subsets or the maturation or activation state of the DC. Although DC subsets may be programmed to direct either tolerance or immunity, it is not known whether appropriate environmental stimulation can result in complete flexibility of a basic program. Using splenic CD8(-) and CD8(+) DCs that mediate the respective immunogenic and tolerogenic presentation of self peptides, we show that both the in vivo and in vitro activities of either subset can be altered by ligation of specific surface receptors. Otherwise immunogenic CD8(-) DCs become tolerogenic upon B7 ligation by soluble CTLA-4, a maneuver that initiates immunosuppressive tryptophan catabolism. In contrast, CD40 ligation on tolerogenic CD8(+) DCs makes these cells capable of immunogenic presentation. Thus, environmental conditioning by T cell ligands may alter the default function of DC subsets to meet the needs of flexibility and redundancy.  相似文献   

8.
Dendritic cells (DCs) are bone marrow-derived mononuclear cells that play a central role in the initiation of immune responses. Because human lung DCs have been incompletely characterized, we enumerated and phenotyped mononuclear cell populations from excess lung tissue obtained at surgery. Myeloid DCs (MDCs) were identified as CD1c(+)CD11c(+)CD14(-)HLA-DR(+) cells and comprised approximately 2% of low autofluorescent (LAF) mononuclear cells. Plasmacytoid DCs (PDCs) were characterized as CD123(+)CD11c(-)CD14(-)HLA-DR(+) cells and comprised approximately 1.0% of the LAF mononuclear cells. Cells enriched in MDCs expressed CD86, moderate CD80, and little CD40, but cells enriched in PDCs had little to no expression of these three costimulatory molecules. CD11c(+)CD14(-) lineage-negative (MDC-enriched) LAF cells were isolated and shown to be much more potent in stimulating an alloreaction than CD11c(+)CD14(+) lineage-negative (monocyte-enriched) LAF cells. PDC-enriched cells were more capable of responding to a TLR-7 agonist by secreting IFN-alpha than MDC-enriched cells. MDC-enriched cells were either CD123(+) or CD123(-), but both subsets secreted cytokines and chemokines typical of MDC upon stimulation with a TLR-4 agonist and both subsets failed to secrete IFN-alpha upon stimulation with a TLR-7 agonist. By immunohistochemistry, we identified MDCs throughout different anatomical locations of the lung. However, our method did not allow the localization of PDCs with certainty. In conclusion, in the human lung MDCs were twice as numerous and expressed higher levels of costimulatory molecules than PDCs. Our data suggest that both lung DC subsets exert distinct immune modulatory functions.  相似文献   

9.
Lymphotoxin (LT)-alpha, a member of the TNF family, is recognized as an important mediator in different aspects of lymphoid organ development. Targeted disruption of this molecule resulted in a substantial reduction in the proportion of alphaEbeta7-integrin(high) CD8+ T cells detectable in peripheral lymphoid organs. This defect, however, was not observed on mature CD4-CD8+ thymocytes. To determine whether this was due to downregulation of beta7-integrin expression by peripheral CD8+ T cells or a failure of thymic emigration of CD8+ beta7-integrin(high) T cells, beta7-integrin was examined on recent thymic emigrants (RTE). When analysed within 16 h after leaving the thymus CD4-CD8+ RTE in both LT-alpha-/- and wild type (wt) mice remained beta7-integrin(high) and were indistinguishable. However, within 3-5 days, emigration loss of beta7-integrin became evident in LT-alpha-/- mice. Despite this loss, the proportion of thymically derived alphabetaTCR+ T-cell populations in the intestinal epithelium, an important target tissue of CD8+ alphaEbeta7-integrin(high) T cells, was increased in the absence of LT-alpha. In contrast, B cells were detectable only rarely in the intestinal tissue of LT-alpha-/- mice. The expression of E-Cadherin remained unchanged. These results indicate that a LT-alpha-dependent process maintains a high level of alphaEbeta7-integrin expression by peripheral CD8+ T cells, and with this control mechanism LT-alpha may help to regulate CD8+ T-cell numbers in the tissues.  相似文献   

10.
CD103(+) dendritic cells (DCs) are the major conventional DC population in the intestinal lamina propria (LP). Our previous report showed that a small number of cells in the LP could be classified into four subsets based on the difference in CD11c/CD11b expression patterns: CD11c(hi)CD11b(lo) DCs, CD11c(hi)CD11b(hi) DCs, CD11c(int)CD11b(int) macrophages, and CD11c(int)CD11b(hi) eosinophils. The CD11c(hi)CD11b(hi) DCs, which are CD103(+), specifically express TLR5 and induce the differentiation of naive B cells into IgA(+) plasma cells. These DCs also mediate the differentiation of Ag-specific Th17 and Th1 cells in response to flagellin. We found that small intestine CD103(+) DCs of the LP (LPDCs) could be divided into a small subset of CD8α(+) cells and a larger subset of CD8α(-) cells. Flow cytometry analysis revealed that CD103(+)CD8α(+) and CD103(+)CD8α(-) LPDCs were equivalent to CD11c(hi)CD11b(lo) and CD11c(hi)CD11b(hi) subsets, respectively. We analyzed a novel subset of CD8α(+) LPDCs to elucidate their immunological function. CD103(+)CD8α(+) LPDCs expressed TLR3, TLR7, and TLR9 and produced IL-6 and IL-12p40, but not TNF-α, IL-10, or IL-23, following TLR ligand stimulation. CD103(+)CD8α(+) LPDCs did not express the gene encoding retinoic acid-converting enzyme Raldh2 and were not involved in T cell-independent IgA synthesis or Foxp3(+) regulatory T cell induction. Furthermore, CD103(+)CD8α(+) LPDCs induced Ag-specific IgG in serum, a Th1 response, and CTL activity in vivo. Accordingly, CD103(+)CD8α(+) LPDCs exhibit a different function from CD103(+)CD8α(-) LPDCs in active immunity. This is the first analysis, to our knowledge, of CD8α(+) DCs in the LP of the small intestine.  相似文献   

11.
The evidence that dendritic cell (DC) subsets produce differential cytokines in response to specific TLR stimulation is robust. However, the role of TLR stimulation in Ag presentation and phenotypic maturation among DC subsets is not clear. Through the adjuvanticity of a novel mannosylated Ag, mannosylated dendrimer OVA (MDO), as a pathogen-associated molecular pattern Ag, we characterized the functionality of GM-CSF/IL-4-cultured bone marrow DC and Flt3 ligand (Flt3-L) DC subsets by Ag presentation and maturation assays. It was demonstrated that both bone marrow DCs and Flt3-L DCs bound, processed, and presented MDO effectively. However, while Flt3-L CD24(high) (conventional CD8(+) equivalent) and CD11b(high) (CD8(-) equivalent) DCs were adept at MDO processing by MHC class I and II pathways, respectively, CD45RA(+) plasmacytoid DCs presented MDO poorly to T cells. Successful MDO presentation was largely dependent on competent TLR4 for Ag localization and morphological/phenotypic maturation of DC subsets, despite the indirect interaction of MDO with TLR4. Furthermore, Toll/IL-1 receptor-domain-containing adaptor-inducing IFN-beta, but not MyD88, as a TLR4 signaling modulator was indispensable for MDO-induced DC maturation and Ag presentation. Taken together, our findings suggest that DC subsets differentially respond to a pathogen-associated molecular pattern-associated Ag depending on the intrinsic programming and TLRs expressed. Optimal functionality of DC subsets in Ag presentation necessitates concomitant TLR signaling critical for efficient Ag localization and processing.  相似文献   

12.
13.
14.
Dendritic cells (DCs) are the key antigen-presenting cells controlling the initiation of the T cell- dependent immune response. Currently, two peripheral blood DC subsets have been identified on the basis of their CD11c expression. The CD11c-negative (CD11c-) DCs (expressing high levels of CD123) are designated as lymphoid-derived DCs (DC2), whereas the CD11c+/CD123- cells, do identify the myeloid-derived DCs (DC1). A growing number of studies have been conducted in recent years on both the quantitative and functional alterations of DCs and their subsets in different pathological conditions. In the present study we assessed, using two different flow cytometric (FCM) techniques, the normal profile of blood DCs in 50 italian adult healthy subjects (M/F: 25/25, median age 42.5 years, range 20-65). The percentage and the absolute number of DCs and their subsets, were obtained starting from whole blood samples in two ways: 1) by calculating the number of DCs when gated as lineage-negative/ HLA-DR+ and identifing the two subsets as CD11c+ (DC1) and CD123+ (DC2) and 2) by using three specific markers: BDCA.1 (CD11c+ high/CD123+ low, myeloid DCs); BDCA.2 (CD11c-/ CD123+high, lymphoid DCs); BDCA.3 (CD11c+low /CD123-, myeloid DCs). Six parameters, 4-color FCM analysis were perfomed with a BD FACSCanto equipment. The mean values of the percentage and of the absolute number were: 0.5+/-0.2% and 30+/-11 cells/microL for DCs; 0.2+/-0.1% and 15+/-6 cells/microL for DC1; 0.2+/-0.1% and 15+/-7 cells/microL for DC2. The same values were: 0.2+/-0.1% and 16+/-7 cells/microL for BDCA.1; 0.2+/-0.1% and 12+/-7 cells/microL for BDCA.2; 0.02+/-0.01% and 2+/-1 cells/microL for BDCA.3, respectively. Our study confirmes that the two types of FCM analysis are able to identify the DC population. We also provides the first reference values on normal rates and counts of blood DCs in italian adult healthy subjects.  相似文献   

15.
Dendritic cells (DCs) have a unique ability to stimulate naive T cells. Recent evidence suggests that distinct DC subsets direct different classes of immune responses in vitro and in vivo. In humans, the monocyte-derived CD11c+ DCs induce T cells to produce Th1 cytokines in vitro, whereas the CD11c- plasmacytoid T cell-derived DCs elicit the production of Th2 cytokines. In this paper we report that administration of either Flt3-ligand (FL) or G-CSF to healthy human volunteers dramatically increases distinct DC subsets, or DC precursors, in the blood. FL increases both the CD11c+ DC subset (48-fold) and the CD11c- IL-3R+ DC precursors (13-fold). In contrast, G-CSF only increases the CD11c- precursors (>7-fold). Freshly sorted CD11c+ but not CD11c- cells stimulate CD4+ T cells in an allogeneic MLR, whereas only the CD11c- cells can be induced to secrete high levels of IFN-alpha, in response to influenza virus. CD11c+ and CD11c- cells can mature in vitro with GM-CSF + TNF-alpha or with IL-3 + CD40 ligand, respectively. These two subsets up-regulate MHC class II costimulatory molecules as well as the DC maturation marker DC-lysosome-associated membrane protein, and they stimulate naive, allogeneic CD4+ T cells efficiently. These two DC subsets elicit distinct cytokine profiles in CD4+ T cells, with the CD11c- subset inducing higher levels of the Th2 cytokine IL-10. The differential mobilization of distinct DC subsets or DC precursors by in vivo administration of FL and G-CSF offers a novel strategy to manipulate immune responses in humans.  相似文献   

16.
Dendritic cells (DCs) regulate the development of distinct Th populations and thereby provoke appropriate immune responses to various kinds of Ags. In the present work, we investigated the role CD40-CD154 interactions play during the process of Th cell priming by CD8 alpha(+) and CD8 alpha(-) murine DC subsets, which have been reported to differently regulate the Th response. Adoptive transfer of Ag-pulsed CD8 alpha(+) DCs induced a Th1 response and the production of IgG2a Abs, whereas transfer of CD8 alpha(-) DCs induced Th2 cells and IgE Abs in vivo. Induction of distinct Th populations by each DC subset was also confirmed in vitro. Although interruption of CD80/CD86-CD28 interactions inhibited Th cell priming by both DC subsets, disruption of CD40-CD154 interactions only inhibited the induction of the Th1 response by CD8 alpha(+) DCs in vivo. CD40-CD154 interactions were not required for the proliferation of Ag-specific naive Th cells stimulated by either DC subset, but were indispensable in the production of IL-12 from CD8 alpha(+) DCs and their induction of Th1 cells in vitro. Taken together, in our immunization model of Ag-pulsed DC transfer, CD40-CD154 interactions play an important role in the development of CD8 alpha(+) DC-driven Th1 responses but not CD8 alpha(-) DC-driven Th2 responses to protein Ags.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号