首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sporulation in Bacillus subtilis is a complex developmental process that occurs in response to nutrient deprivation. To identify components of the mechanism that allows cells to monitor their nutritional status and to understand how this sensory information is transduced into a signal to activate specific sporulation genes, we have isolated mutants that are able to sporulate efficiently under nutritional conditions that strongly inhibit sporulation in wild-type bacteria, a phenotype we refer to as Coi (control of initiation). Four coi mutations were found to be within the coding sequence of spoOA, a gene in which null mutations prevent the initiation of sporulation and a gene whose product shares a domain of homology with phosphorylation-activated proteins that play signal transduction roles in bacteria. All four of the spoOA mutations were within this conserved domain and in close proximity to the presumptive phosphoacceptor site. The wild-type and one of the mutant SpoOA proteins were purified and shown to be competent to accept phosphoryl groups from a phosphohistidine within a bacterial signal transduction kinase (CheA). The mutant SpoOA protein exhibited enhanced phosphoacceptor activity compared with the wild-type. This property of the mutant protein, together with additional genetic information, supports a model for regulation of sporulation initiation by control of the phosphorylation level of SpoOA.  相似文献   

2.
Iyer LM  Aravind L 《Proteins》2004,55(4):977-991
The beta-clip fold includes a diverse group of protein domains that are unified by the presence of two characteristic waist-like constrictions, which bound a central extended region. Members of this fold include enzymes like deoxyuridine triphosphatase and the SET methylase, carbohydrate-binding domains like the fish antifreeze proteins/Sialate synthase C-terminal domains, and functionally enigmatic accessory subunits of urease and molybdopterin biosynthesis protein MoeA. In this study, we reconstruct the evolutionary history of this fold using sensitive sequence and structure comparisons methods. Using sequence profile searches, we identified novel versions of the beta-clip fold in the bacterial flagellar chaperone FlgA and the related pilus protein CpaB, the StrU-like dehydrogenases, and the UxaA/GarD-like hexuronate dehydratases (SAF superfamily). We present evidence that these versions of the beta-clip domain, like the related type III anti-freeze proteins and C-terminal domains of sialic acid synthases, are involved in interactions with carbohydrates. We propose that the FlgA and CpaB-like proteins mediate the assembly of bacterial flagella and Flp pili by means of their interactions with the carbohydrate moieties of peptidoglycan. The N-terminal beta-clip domain of the hexuronate dehydratases appears to have evolved a novel metal-binding site, while their C-terminal domain is likely to adopt a metal-binding TIM barrel-like fold. Using structural comparisons, we show that the beta-clip fold can be further classified into two major groups, one that includes the SAF, SET, dUTPase superfamilies, and the other that includes the phage lambda head decoration protein, the beta subunit of urease and the C-terminal domain of the molybdenum cofactor biosynthesis protein MoeA. Structural comparisons also suggest the beta-clip fold was assembled through the duplication of a three-stranded unit. Though the three-stranded units are likely to have had a common origin, we present evidence that complete beta-clip domains were assembled through such duplications, independently on multiple occasions. There is also evidence for circular permutation of the basic three-stranded unit on different occasions in the evolution of the beta-clip unit. We also describe how assembly of this fold from a basic three-stranded unit has been utilized to accommodate a variety of activities in its different versions.  相似文献   

3.
The cell wall peptidoglycan of Gram-positive bacteria functions as a surface organelle for the transport and assembly of proteins that interact with the environment, in particular, the tissues of an infected host. Signal peptide-bearing precursor proteins are secreted across the plasma membrane of Gram-positive bacteria. Some precursors carry C-terminal sorting signals with unique sequence motifs that are cleaved by sortase enzymes and linked to the cell wall peptidoglycan of vegetative forms or spores. The sorting signals of pilin precursors are cleaved by pilus-specific sortases, which generate covalent bonds between proteins leading to the assembly of fimbrial structures. Other precursors harbour surface (S)-layer homology domains (SLH), which fold into a three-pronged spindle structure and bind secondary cell wall polysaccharides, thereby associating with the surface of specific Gram-positive microbes. Type VII secretion is a non-canonical secretion pathway for WXG100 family proteins in mycobacteria. Gram-positive bacteria also secrete WXG100 proteins and carry unique genes that either contribute to discrete steps in secretion or represent distinctive substrates for protein transport reactions.  相似文献   

4.
DivIVA proteins and their GpsB homologues are late cell division proteins found in Gram‐positive bacteria. DivIVA/GpsB proteins associate with the inner leaflet of the cytosolic membrane and act as scaffolds for other proteins required for cell growth and division. DivIVA/GpsB proteins comprise an N‐terminal lipid‐binding domain for membrane association fused to C‐terminal domains supporting oligomerization. Despite sharing the same domain organization, DivIVA and GpsB serve different cellular functions: DivIVA plays diverse roles in division site selection, chromosome segregation and controlling peptidoglycan homeostasis, whereas GpsB contributes to the spatiotemporal control of penicillin‐binding protein activity. The crystal structures of the lipid‐binding domains of DivIVA from Bacillus subtilis and GpsB from several species share a fold unique to this group of proteins, whereas the C‐terminal domains of DivIVA and GpsB are radically different. A number of pivotal features identified from the crystal structures explain the functional differences between the proteins. Herein we discuss these structural and functional relationships and recent advances in our understanding of how DivIVA/GpsB proteins bind and recruit their interaction partners, knowledge that might be useful for future structure‐based DivIVA/GpsB inhibitor design.  相似文献   

5.
Jones G  Dyson P 《Journal of bacteriology》2006,188(21):7470-7476
Members of a family of serine/threonine protein kinases (STPKs), unique to gram-positive bacteria, comprise an intracellular kinase domain and reiterated extracellular PASTA (for "penicillin-binding protein and serine/threonine kinase associated") domains. PASTA domains exhibit low affinity for beta-lactam antibiotics that are structurally similar to their likely normal ligands: stem peptides of unlinked peptidoglycan. The PASTA-domain STPKs are found in the actinobacteria and firmicutes and, as exemplified by PknB of Mycobacterium tuberculosis, they are functionally implicated in aspects of growth, cell division, and development. Whereas the kinase domains are well conserved, there is a wide divergence in the sequences of the multiple PASTA domains. Closer inspection reveals position-dependent evolution of individual PASTA domains: a domain at one position within a gene has a close phylogenetic relationship with a domain at a similar position in an orthologous gene, whereas neighboring domains have clearly diverged one from one another. A similar position-dependent relationship is demonstrated in the second family of proteins with multiple PASTA domains: the high-molecular-weight type II penicillin-binding protein (PBP2x) family. These transpeptidases are recruited to the division site by a localized pool of unlinked peptidoglycan. We infer that protein localization is guided by low-affinity interactions between structurally different unlinked peptidoglycan stem peptides and individual PASTA domains. The STPKs possess a greater multiplicity and diversity of PASTA domains, allowing interactions with a wider range of stem-peptide ligands. These interactions are believed to activate the intracellular kinase domain, allowing an STPK to coordinate peptidoglycan remodeling and reproduction of a complex cell wall structure.  相似文献   

6.
The WxL domain is found on the cell surface of many bacteria, most of which are commensal gut bacteria. Its functions are generally identified as being related to virulence and/or peptidoglycan attachment, but there is so far no clear function or structure for this domain. Here, a range of bioinformatics tools were used to clarify the structure and function. These indicate that WxL domains occur in cell surface-associated gene clusters that always contain a small WxL, large WxL and DUF916 domain; and that the small and large WxL proteins have distinct structure despite sharing two conserved WxL motifs. The two WxL motifs form a hydrophobic surface buried inside the protein. The likely function of the WxL domain is to attach to bacterial peptidoglycan, forming a platform to allow associated domains in the cluster to interact with host proteins.  相似文献   

7.
Pathogenesis by Bacillus anthracis requires coordination between two distinct activities: plasmid-encoded virulence factor expression (which protects vegetative cells from immune surveillance during outgrowth and replication) and chromosomally encoded sporulation (required only during the final stages of infection). Sporulation is regulated by at least five sensor histidine kinases that are activated in response to various environmental cues. One of these kinases, BA2291, harbors a sensor domain that has ~35% sequence identity with two plasmid proteins, pXO1-118 and pXO2-61. Because overexpression of pXO2-61 (or pXO1-118) inhibits sporulation of B. anthracis in a BA2291-dependent manner, and pXO2-61 expression is strongly up-regulated by the major virulence gene regulator, AtxA, it was suggested that their function is to titrate out an environmental signal that would otherwise promote untimely sporulation. To explore this hypothesis, we determined crystal structures of both plasmid-encoded proteins. We found that they adopt a dimeric globin fold but, most unusually, do not bind heme. Instead, they house a hydrophobic tunnel and hydrophilic chamber that are occupied by fatty acid, which engages a conserved arginine and chloride ion via its carboxyl head group. In vivo, these domains may therefore recognize changes in fatty acid synthesis, chloride ion concentration, and/or pH. Structure-based comparisons with BA2291 suggest that it binds ligand and dimerizes in an analogous fashion, consistent with the titration hypothesis. Analysis of newly sequenced bacterial genomes points to the existence of a much broader family of non-heme, globin-based sensor domains, with related but distinct functionalities, that may have evolved from an ancestral heme-linked globin.  相似文献   

8.
Crystal structure of the PH-BEACH domains of human LRBA/BGL   总被引:1,自引:0,他引:1  
Gebauer D  Li J  Jogl G  Shen Y  Myszka DG  Tong L 《Biochemistry》2004,43(47):14873-14880
The beige and Chediak-Higashi syndrome (BEACH) domain defines a large family of eukaryotic proteins that have diverse cellular functions in vesicle trafficking, membrane dynamics, and receptor signaling. The domain is the only module that is highly conserved among all of these proteins, but the exact functions of this domain and the molecular basis for its actions are currently unknown. Our previous studies showed that the BEACH domain is preceded by a novel, weakly conserved pleckstrin homology (PH) domain. We report here the crystal structure at 2.4 A resolution of the PH-BEACH domain of human LRBA/BGL. The PH domain has the same backbone fold as canonical PH domains, despite sharing no sequence homology with them. However, our binding assays demonstrate that the PH domain in the BEACH proteins cannot bind phospholipids. The BEACH domain contains a core of several partially extended peptide segments that is flanked by helices on both sides. The structure suggests intimate association between the PH and the BEACH domains, and surface plasmon resonance studies confirm that the two domains of the protein FAN have high affinity for each other, with a K(d) of 120 nM.  相似文献   

9.
LysM, a widely distributed protein motif for binding to (peptido)glycans   总被引:4,自引:0,他引:4  
Bacteria retain certain proteins at their cell envelopes by attaching them in a non-covalent manner to peptidoglycan, using specific protein domains, such as the prominent LysM (Lysin Motif) domain. More than 4000 (Pfam PF01476) proteins of both prokaryotes and eukaryotes have been found to contain one or more Lysin Motifs. Notably, this collection contains not only truly secreted proteins, but also (outer-)membrane proteins, lipoproteins or proteins bound to the cell wall in a (non-)covalent manner. The motif typically ranges in length from 44 to 65 amino acid residues and binds to various types of peptidoglycan and chitin, most likely recognizing the N-acetylglucosamine moiety. Most bacterial LysM-containing proteins are peptidoglycan hydrolases with various cleavage specificities. Binding of certain LysM proteins to cells of Gram-positive bacteria has been shown to occur at specific sites, as binding elsewhere is hindered by the presence of other cell wall components such as lipoteichoic acids. Interestingly, LysM domains of certain plant kinases enable the plant to recognize its symbiotic bacteria or sense and induce resistance against fungi. This interaction is triggered by chitin-like compounds that are secreted by the symbiotic bacteria or released from fungi, demonstrating an important sensing function of LysMs.  相似文献   

10.
Domains are considered as the basic units of protein folding, evolution, and function. Decomposing each protein into modular domains is thus a basic prerequisite for accurate functional classification of biological molecules. Here, we present ADDA, an automatic algorithm for domain decomposition and clustering of all protein domain families. We use alignments derived from an all-on-all sequence comparison to define domains within protein sequences based on a global maximum likelihood model. In all, 90% of domain boundaries are predicted within 10% of domain size when compared with the manual domain definitions given in the SCOP database. A representative database of 249,264 protein sequences were decomposed into 450,462 domains. These domains were clustered on the basis of sequence similarities into 33,879 domain families containing at least two members with less than 40% sequence identity. Validation against family definitions in the manually curated databases SCOP and PFAM indicates almost perfect unification of various large domain families while contamination by unrelated sequences remains at a low level. The global survey of protein-domain space by ADDA confirms that most large and universal domain families are already described in PFAM and/or SMART. However, a survey of the complete set of mobile modules leads to the identification of 1479 new interesting domain families which shuffle around in multi-domain proteins. The data are publicly available at ftp://ftp.ebi.ac.uk/pub/contrib/heger/adda.  相似文献   

11.
MOTIVATION: An estimated 25% of all eukaryotic proteins contain repeats, which underlines the importance of duplication for evolving new protein functions. Internal repeats often correspond to structural or functional units in proteins. Methods capable of identifying diverged repeated segments or domains at the sequence level can therefore assist in predicting domain structures, inferring hypotheses about function and mechanism, and investigating the evolution of proteins from smaller fragments. RESULTS: We present HHrepID, a method for the de novo identification of repeats in protein sequences. It is able to detect the sequence signature of structural repeats in many proteins that have not yet been known to possess internal sequence symmetry, such as outer membrane beta-barrels. HHrepID uses HMM-HMM comparison to exploit evolutionary information in the form of multiple sequence alignments of homologs. In contrast to a previous method, the new method (1) generates a multiple alignment of repeats; (2) utilizes the transitive nature of homology through a novel merging procedure with fully probabilistic treatment of alignments; (3) improves alignment quality through an algorithm that maximizes the expected accuracy; (4) is able to identify different kinds of repeats within complex architectures by a probabilistic domain boundary detection method and (5) improves sensitivity through a new approach to assess statistical significance. AVAILABILITY: Server: http://toolkit.tuebingen.mpg.de/hhrepid; Executables: ftp://ftp.tuebingen.mpg.de/pub/protevo/HHrepID  相似文献   

12.
In eukaryotes, the Src homology domain 3 (SH3) is a very important motif in signal transduction. SH3 domains recognize poly-proline-rich peptides and are involved in protein-protein interactions. Until now, the existence of SH3 domains has not been demonstrated in prokaryotes. However, the structure of the C-terminal domain of DtxR clearly shows that the fold of this domain is very similar to that of the SH3 domain. In addition, there is evidence that the C-terminal domain of DtxR binds to poly-proline-rich regions. Other bacterial proteins have domains that are structurally similar to the SH3 domain but whose functions are unknown or differ from that of the SH3 domain. The observed similarities between the structures of the C-terminal domain of DtxR and the SH3 domain constitute a perfect system to gain insight into their function and information about their evolution. Our results show that the C-terminal domain of DtxR shares a number of conserved key hydrophobic positions not recognizable from sequence comparison that might be responsible for the integrity of the SH3-like fold. Structural alignment of an ensemble of such domains from unrelated proteins shows a common structural core that seems to be conserved despite the lack of sequence similarity. This core constitutes the minimal requirements of protein architecture for the SH3-like fold.  相似文献   

13.
Many proteins consist of several structural domains. These multi-domain proteins have likely been generated by selective genome growth dynamics during evolution to perform new functions as well as to create structures that fold on a biologically feasible time scale. Domain units frequently evolved through a variety of genetic shuffling mechanisms. Here we examine the protein domain statistics of more than 1000 organisms including eukaryotic, archaeal and bacterial species. The analysis extends earlier findings on asymmetric statistical laws for proteome to a wider variety of species. While proteins are composed of a wide range of domains, displaying a power-law decay, the computation of domain families for each protein reveals an exponential distribution, characterizing a protein universe composed of a thin number of unique families. Structural studies in proteomics have shown that domain repeats, or internal duplicated domains, represent a small but significant fraction of genome. In spite of its importance, this observation has been largely overlooked until recently. We model the evolutionary dynamics of proteome and demonstrate that these distinct distributions are in fact rooted in an internal duplication mechanism. This process generates the contemporary protein structural domain universe, determines its reduced thickness, and tames its growth. These findings have important implications, ranging from protein interaction network modeling to evolutionary studies based on fundamental mechanisms governing genome expansion.  相似文献   

14.
MltA is a lytic transglycosylase of Gram-negative bacteria that cleaves the beta-1,4 glycosidic linkages between N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) in peptidoglycan. We have determined the crystal structures of MltA from Neisseria gonorrhoeae and Escherichia coli (NgMltA and EcMltA), which have only 21.5% sequence identity. Both proteins have two main domains separated by a deep groove. Domain 1 shows structural similarity with the so-called double-psi barrel family of proteins. Comparison of the two structures reveals substantial differences in the relative positions of domains 1 and 2 such that the active site groove in NgMltA is much wider and appears more able to accommodate peptidoglycan substrate than EcMltA, suggesting that domain closure occurs after substrate binding. Docking of a peptidoglycan molecule into the structure of NgMltA reveals a number of conserved residues that are likely involved in substrate binding, including a potential binding pocket for the peptidyl moieties. This structure supports the assignment of Asp405 as the acid catalyst responsible for cleavage of the glycosidic bond. In EcMltA, the equivalent residue is Asp328, which has been identified previously. The structures also suggest a catalytic role for Asp393 (Asp317 in EcMltA) in activating the C6 hydroxyl group during formation of the 1,6-anhydro linkage. Finally, in comparison to EcMltA, NgMltA contains a unique third domain that is an insertion within domain 2. The domain is beta in structure and may mediate protein-protein interactions that are specific to peptidoglycan metabolism in N.gonorrhoeae.  相似文献   

15.
Civera C  Simon B  Stier G  Sattler M  Macias MJ 《Proteins》2005,58(2):354-366
Pleckstrin1 is a major substrate for protein kinase C in platelets and leukocytes, and comprises a central DEP (disheveled, Egl-10, pleckstrin) domain, which is flanked by two PH (pleckstrin homology) domains. DEP domains display a unique alpha/beta fold and have been implicated in membrane binding utilizing different mechanisms. Using multiple sequence alignments and phylogenetic tree reconstructions, we find that 6 subfamilies of the DEP domain exist, of which pleckstrin represents a novel and distinct subfamily. To clarify structural determinants of the DEP fold and to gain further insight into the role of the DEP domain, we determined the three-dimensional structure of the pleckstrin DEP domain using heteronuclear NMR spectroscopy. Pleckstrin DEP shares main structural features with the DEP domains of disheveled and Epac, which belong to different DEP subfamilies. However, the pleckstrin DEP fold is distinct from these structures and contains an additional, short helix alpha4 inserted in the beta4-beta5 loop that exhibits increased backbone mobility as judged by NMR relaxation measurements. Based on sequence conservation, the helix alpha4 may also be present in the DEP domains of regulator of G-protein signaling (RGS) proteins, which are members of the same DEP subfamily. In pleckstrin, the DEP domain is surrounded by two PH domains. Structural analysis and charge complementarity suggest that the DEP domain may interact with the N-terminal PH domain in pleckstrin. Phosphorylation of the PH-DEP linker, which is required for pleckstrin function, could regulate such an intramolecular interaction. This suggests a role of the pleckstrin DEP domain in intramolecular domain interactions, which is distinct from the functions of other DEP domain subfamilies found so far.  相似文献   

16.
Diversity and evolution of the thyroglobulin type-1 domain superfamily   总被引:1,自引:0,他引:1  
Multidomain proteins are gaining increasing consideration for their puzzling, flexible utilization in nature. The presence of the characteristic thyroglobulin type-1 (Tg1) domain as a protein module in a variety of multicellular organisms suggests pivotal roles for this building block. To gain insight into the evolution of Tg1 domains, we performed searches of protein, expressed sequence tag, and genome databases. Tg1 domains were found to be Metazoa specific, and we retrieved a total of 170 Tg1 domain-containing protein sequences. Their architectures revealed a wide taxonomic distribution of proteins containing Tg1 domains followed or preceded by secreted protein, acidic, rich in cysteines (SPARC)-type extracellular calcium-binding domains. Other proteins contained lineage-specific domain combinations of peptidase inhibitory modules or domains with different biological functions. Phylogenetic analysis showed that Tg1 domains are highly conserved within protein structures, whereas insertion into novel proteins is followed by rapid diversification. Seven different basic types of protein architecture containing the Tg1 domain were identified in vertebrates. We examined the evolution of these protein groups by combining Tg1 domain phylogeny with additional analyses based on other characteristic domains. Testicans and secreted modular calcium binding protein (SMOCs) evolved from invertebrate homologs by introduction of vertebrate-specific domains, nidogen evolved by insertion of a Tg1 domain into a preexisting architecture, and the remaining four have unique architectures. Thyroglobulin, Trops, and the major histocompatibility complex class II-associated invariant chain are vertebrate specific, while an insulin-like growth factor-binding protein and nidogen were also identified in urochordates. Among vertebrates, we observed differences in protein repertoires, which result from gene duplication and domain duplication. Members of five groups have been characterized at the molecular level. All exhibit subtle differences in their specificities and function either as peptidase inhibitors (thyropins), substrates, or both. As far as the sequence is concerned, only a few conserved residues were identified. In combination with structural data, our analysis shows that the Tg1 domain fold is highly adaptive and comprises a relatively well-conserved core surrounded by highly variable loops that account for its multipurpose function in the animal kingdom.  相似文献   

17.
Penicillin-binding protein 5 (PBP5) is a DD-carboxypeptidase, which cleaves the terminal D-alanine from the muramyl pentapeptide in the peptidoglycan layer of Escherichia coli and other bacteria. In doing so, it varies the substrates for transpeptidation and plays a key role in maintaining cell shape. In this study, we have analyzed the oligomeric state of PBP5 in detergent and in its native environment, the inner membrane. Both approaches indicate that PBP5 exists as a homo-oligomeric complex, most likely as a homo-dimer. As the crystal structure of the soluble domain of PBP5 (i.e., lacking the membrane anchor) shows a monomer, we used our experimental data to generate a model of the homo-dimer. This model extends our understanding of PBP5 function as it suggests how PBP5 can interact with the peptidoglycan layer. It suggests that the stem domains interact and the catalytic domains have freedom to move from the position observed in the crystal structure. This would allow the catalytic domain to have access to pentapeptides at different distances from the membrane.  相似文献   

18.
The fruiting body development of Myxococcus xanthus consists of two separate but interacting pathways: one for aggregation of many cells to form raised mounds and the other for sporulation of individual cells into myxospores. Sporulation of individual cells normally occurs after mound formation, and is delayed at least 30 h after starvation under our laboratory conditions. This suggests that M. xanthus has a mechanism that monitors progress towards aggregation prior to triggering sporulation. A null mutation in a newly identified gene, espA (early sporulation), causes sporulation to occur much earlier compared with the wild type (16 h earlier). In contrast, a null mutation in an adjacent gene, espB, delays sporulation by about 16 h compared with the wild type. Interestingly, it appears that the espA mutant does not require raised mounds for sporulation. Many mutant cells sporulate outside the fruiting bodies. In addition, the mutant can sporulate, without aggregation into raised mounds, under some conditions in which cells normally do not form fruiting bodies. Based on these observations, it is hypothesized that EspA functions as an inhibitor of sporulation during early fruiting body development while cells are aggregating into raised mounds. The aggregation-independent sporulation of the espA mutant still requires starvation and high cell density. The espA and espB genes are expressed as an operon and their translations appear to be coupled. Expression occurs only under developmental conditions and does not occur during vegetative growth or during glycerol-induced sporulation. Sequence analysis of EspA indicates that it is a histidine protein kinase with a fork head-associated (FHA) domain at the N-terminus and a receiver domain at the C-terminus. This suggests that EspA is part of a two-component signal transduction system that regulates the timing of sporulation initiation.  相似文献   

19.
Intra-cellular membrane fusion is facilitated by the association of SNAREs from opposite membranes into stable alpha-helical bundles. Many SNAREs, in addition to their alpha-helical regions, contain N-terminal domains that likely have essential regulatory functions. To better understand this regulation, we have determined the 2.4-A crystal structure of the 130-amino acid N-terminal domain of mouse Sec22b (mSec22b), a SNARE involved in endoplasmic reticulum/Golgi membrane trafficking. The domain consists of a mixed alpha-helical/beta-sheet fold that resembles a circular permutation of the actin/poly-proline binding protein, profilin, and the GAF/PAS family of regulatory modules. The structure is distinct from the previously characterized N-terminal domain of syntaxin 1A, and, unlike syntaxin 1A, the N-terminal domain of mSec22b has no effect on the rate of SNARE assembly in vitro. An analysis of surface conserved residues reveals a potential protein interaction site. Key residues in this site are distinct in two mammalian Sec22 variants that lack SNARE domains. Finally, sequence analysis indicates that a similar domain is likely present in the endosomal/lysosomal SNARE VAMP7.  相似文献   

20.
Coggill P  Bateman A 《PloS one》2012,7(5):e35575
We have identified a new bacterial protein domain that we hypothesise binds to peptidoglycan. This domain is called the YARHG domain after the most highly conserved sequence-segment. The domain is found in the extracellular space and is likely to be composed of four alpha-helices. The domain is found associated with protein kinase domains, suggesting it is associated with signalling in some bacteria. The domain is also found associated with three different families of peptidases. The large number of different domains that are found associated with YARHG suggests that it is a useful functional module that nature has recombined multiple times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号