首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vascular endothelial growth factor A (VEGFA) plays a pivotal role in the first steps of endothelial and haematopoietic development in the yolk sac, as well as in the establishment of the cardiovascular system of the embryo. At the onset of gastrulation, VEGFA is primarily expressed in the yolk sac visceral endoderm and in the yolk sac mesothelium. We report the generation and analysis of a Vegf hypomorphic allele, Vegf(lo). Animals heterozygous for the targeted mutation are viable. Homozygous embryos, however, die at 9.0 dpc because of severe abnormalities in the yolk sac vasculature and deficiencies in the development of the dorsal aortae. We find that providing 'Vegf wild-type' visceral endoderm to the hypomorphic embryos restores normal blood and endothelial differentiation in the yolk sac, but does not rescue the phenotype in the embryo proper. In the opposite situation, however, when Vegf hypomorphic visceral endoderm is provided to a wild-type embryo, the 'Vegf wild-type' yolk sac mesoderm is not sufficient to support proper vessel formation and haematopoietic differentiation in this extra-embryonic membrane. These findings demonstrate that VEGFA expression in the visceral endoderm is absolutely required for the normal expansion and organisation of both the endothelial and haematopoietic lineages in the early sites of vessel and blood formation. However, normal VEGFA expression in the yolk sac mesoderm alone is not sufficient for supporting the proper development of the early vascular and haematopoietic system.  相似文献   

2.
Yolk sac and placenta are required to sustain embryonic development in mammals, yet our understanding of the genes and processes that control morphogenesis of these extraembryonic tissues is still limited. The chato mutation disrupts ZFP568, a Krüppel-Associated-Box (KRAB) domain Zinc finger protein, and causes a unique set of extraembryonic malformations, including ruffling of the yolk sac membrane, defective extraembryonic mesoderm morphogenesis and vasculogenesis, failure to close the ectoplacental cavity, and incomplete placental development. Phenotypic analysis of chato embryos indicated that ZFP568 does not control proliferation or differentiation of extraembryonic lineages but rather regulates the morphogenetic events that shape extraembryonic tissues. Analysis of chimeric embryos showed that Zfp568 function is required in embryonic-derived lineages, including the extraembryonic mesoderm. Depleting Zfp568 affects the ability of extraembryonic mesoderm cells to migrate. However, explanted Zfp568 mutant cells could migrate properly when plated on appropriate extracellular matrix conditions. We show that expression of Fibronectin and Indian Hedgehog are reduced in chato mutant yolk sacs. These data suggest that ZFP568 controls the production of secreted factors required to promote morphogenesis of extraembryonic tissues. Our results support previously undescribed roles of the extraembryonic mesoderm in yolk sac morphogenesis and in the closure of the ectoplacental cavity and identify a novel role of ZFP568 in the development of extraembryonic tissues.  相似文献   

3.
We previously demonstrated that a member of the Hedgehog gene family, Indian hedgehog (Ihh), is expressed in the visceral endoderm of EC and ES cell embryoid bodies and mouse embryos. Overexpression studies suggested that Ihh was involved in visceral endoderm differentiation. We now provide evidence for a Hh response in the embryoid body core and in the mesothelial layer of the visceral yolk sac. We also demonstrate that treatment of ES embryoid bodies with the Hh antagonists cAMP and forskolin results in downregulation of the Hh response and altered embryoid body differentiation. The outer endoderm layer undergoes a transition to parietal endoderm while formation of an embryonic ectoderm layer surrounding a cavity is inhibited. These treatments also result in a decrease in the expression of markers for the mesoderm derivatives, blood and endothelial cells. We present a model to explain how Ihh and BMP signaling may regulate extraembryonic endoderm and embryonic ectoderm differentiation.  相似文献   

4.
We have examined the role of germline-specific chromosomal determinants of development in the mouse. Studies were carried out using aggregation chimaeras between androgenetic----fertilized embryos and compared with similar parthenogenetic----fertilized chimaeras. Several adult chimaeras were found with parthenogenetic cells but none were found with androgenetic cells. Analysis of chimaeras at mid-gestation showed that parthenogenetic cells were detected in the embryo and yolk sac but that androgenetic cells were found only in the trophoblast and yolk sac and not in the embryo. The contribution of parthenogenetic cells to the embryo and yolk sac was increased by aggregating 2-cell parthenogenetic and 4-cell fertilized embryos but the contribution of parthenogenetic cells in extraembryonic tissues remained negligible even after aggregation of 4-cell parthenogenetic and 2-cell fertilized embryos. Furthermore, parthenogenetic cells were primarily found in the yolk sac mesoderm and not in the yolk sac endoderm. These results suggest that maternal chromosomes in parthenogenetic cells permit their participation in the primitive ectoderm lineage but these cells are presumably eliminated by selective pressure or autonomous cell lethality from the primitive endoderm and trophectoderm lineages. Conversely paternal chromosomes in androgenetic cells confer opposite properties since the embryonic cells can be detected in the trophoblast and the yolk sac but not in the embryos, presumably because they are eliminated from the primitive ectoderm lineage. The spatial distribution of cells with different parental chromosomes may occur partly because of differential expression of some genes, such as proto-oncogenes, and partly due to their ability to respond to a variety of diffusible growth factors.  相似文献   

5.
Furin, the mammalian prototype of a family of serine proteases, is required for ventral closure and axial rotation, and formation of the yolk sac vasculature. Here we show additionally that left-sided expression of pitx2 and lefty-2 are also perturbed in Furin-deficient embryos. These tissue abnormalities are preceded by a marked delay in the expansion of the definitive endoderm during gastrulation. Using a chimera approach, we show that Furin activity is required in epiblast derivatives, including the primitive heart, gut and extraembryonic mesoderm, whereas it is nonessential in the visceral endoderm. Thus, chimeric embryos, derived by injecting wild-type embryonic stem (ES) cells into fur(-/-) blastocysts, develop normally until at least 9.5 d.p.c. In contrast, Furin-deficient chimeras developing in the context of wild-type visceral endoderm fail to undergo ventral closure, axial rotation and yolk sac vascularization. Fur(-/-) cells are recruited into all tissues examined, including the yolk sac vasculature and the midgut, even though these structures fail to form in fur mutants. The presence of wild-type cells in the gut strikingly correlates with the ability of chimeric embryos to undergo turning. Overall, we conclude that Furin activity is essential in both extraembryonic and precardiac mesoderm, and in definitive endoderm derivatives.  相似文献   

6.
7.
Development of the yolk sac of squamate reptiles (lizards and snakes) differs from other amniote lineages in the pattern of growth of extraembryonic mesoderm, which produces a cavity, the yolk cleft, within the yolk. The structure of the yolk cleft and the accompanying isolated yolk mass influence development of the allantois and chorioallantoic membrane. The yolk cleft of viviparous species of the Eugongylus group of scincid lizards is the foundation for an elaborate yolk sac placenta; development of the yolk cleft of oviparous species has not been studied. We used light microscopy to describe the yolk sac and chorioallantoic membrane in a developmental series of an oviparous member of this species group, Oligosoma lichenigerum. Topology of the extraembryonic membranes of late stage embryos differs from viviparous species as a result of differences in development of the yolk sac. The chorioallantoic membrane encircles the egg of O. lichenigerum but is confined to the embryonic hemisphere of the egg in viviparous species. Early development of the yolk cleft is similar for both modes of parity, but in contrast to viviparous species, the yolk cleft of O. lichenigerum is transformed into a tube‐like structure, which fills with cells. The yolk cleft originates as extraembryonic mesoderm is diverted from the periphery of the egg into the yolk sac cavity. As a result, a bilaminar omphalopleure persists over the abembryonic surface of the yolk. The bilaminar omphalopleure is ultimately displaced by intrusion of allantoic mesoderm between ectodermal and endodermal layers. The resulting chorioallantoic membrane has a similar structure but different developmental history to the chorioallantoic membrane of the embryonic hemisphere of the egg. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Reexamination of presomite human and rhesus monkey embryos in the Carnegie Collection provides no evidence to corroborate the hypothesis that the trophoblast is the source of all extraembryonic tissues in these embryos. Instead, the present study indicates that the developmental pattern of the yolk sac and extraembryonic mesoderm is homologous to that in other eutharian mammals. The primary yolk sac of 10- to 11-day human blastocysts is partially filled with a meshwork of extraembryonic endoderm, whereas such a meshwork is absent in the rhesus monkey. It is suggested that this endodermal meshwork develops as the result of interstitial implantation in the human embryo. A small secondary yolk sac develops in 12- to 13-day human and macaque embryos as the result of pinching off of a portion of the larger primary yolk sac. Development of a secondary yolk sac in higher primates appears to be related causally to differential rates of expansion of the blastocyst and primary yolk sac within the simplex uterus. The caudal margin of the primitive streak develops precociously in 12- to 14-day human and macaque embryos, and this appears to be the source of all the extraembryonic mesoderm of the chorion, chorionic villi, and body stalk. It is suggested that the peripheral spread of extraembryonic mesoderm plays in inductive role in the development of chorionic villi, similar to other types of epithelial-mesenchymal inductive interactions. In contrast to previous hypotheses, the human and macaque trophoblasts appear to give rise only to additional trophoblast.  相似文献   

9.
The prospective fate of cells in the primitive streak was examined at early, mid and late stages of mouse gastrula development to determine the order of allocation of primitive streak cells to the mesoderm of the extraembryonic membranes and to the fetal tissues. At the early-streak stage, primitive streak cells contribute predominantly to tissues of the extraembryonic mesoderm as previously found. However, a surprising observation is that the erythropoietic precursors of the yolk sac emerge earlier than the bulk of the vitelline endothelium, which is formed continuously throughout gastrula development. This may suggest that the erythropoietic and the endothelial cell lineages may arise independently of one another. Furthermore, the extraembryonic mesoderm that is localized to the anterior and chorionic side of the yolk sac is recruited ahead of that destined for the posterior and amnionic side. For the mesodermal derivatives in the embryo, those destined for the rostral structures such as heart and forebrain mesoderm ingress through the primitive streak early during a narrow window of development. They are then followed by those for the rest of the cranial mesoderm and lastly the paraxial and lateral mesoderm of the trunk. Results of this study, which represent snapshots of the types of precursor cells in the primitive streak, have provided a better delineation of the timing of allocation of the various mesodermal lineages to specific compartments in the extraembryonic membranes and different locations in the embryonic anteroposterior axis.  相似文献   

10.
11.
Zonula occludens (ZO)-1/2/3 are the members of the TJ-MAGUK family of membrane-associated guanylate kinases associated with tight junctions. To investigate the role of ZO-1 (encoded by Tjp1) in vivo, ZO-1 knockout (Tjp1(-/-)) mice were generated by gene targeting. Although heterozygous mice showed normal development and fertility, delayed growth and development were evident from E8.5 onward in Tjp1(-/-) embryos, and no viable Tjp1(-/-) embryos were observed beyond E11.5. Tjp1(-/-) embryos exhibited massive apoptosis in the notochord, neural tube area, and allantois at embryonic day (E)9.5. In the yolk sac, the ZO-1 deficiency induced defects in vascular development, with impaired formation of vascular trees, along with defective chorioallantoic fusion. Immunostaining of wild-type embryos at E8.5 for ZO-1/2/3 revealed that ZO-1/2 were expressed in almost all embryonic cells, showing tight junction-localizing patterns, with or without ZO-3, which was confined to the epithelial cells. ZO-1 deficiency depleted ZO-1-expression without influence on ZO-2/3 expression. In Tjp1(+/+) yolk sac extraembryonic mesoderm, ZO-1 was dominant without ZO-2/3 expression. Thus, ZO-1 deficiency resulted in mesoderms with no ZO-1/2/3, associated with mislocalization of endothelial junctional adhesion molecules. As a result, angiogenesis was defected in Tjp1(-/-) yolk sac, although differentiation of endothelial cells seemed to be normal. In conclusion, ZO-1 may be functionally important for cell remodeling and tissue organization in both the embryonic and extraembryonic regions, thus playing an essential role in embryonic development.  相似文献   

12.
13.
14.
小鼠的造血系统起源于胚胎发育7d的卵黄囊胚外中胚层,研究表明胚胎干细胞(Embryonic stem cells, ES cells)体外分化模型能够模拟卵黄囊造血的发生过程;此外,诱导ES细胞体外定向造血细胞分化对于建立治疗性克隆以治愈多种血液病具有重要的研究和应用价值。高增殖潜能集落形成细胞(High proliferative potential colonyforming cells, HPPCFC)是体外培养的最原始的多潜能造血前体细胞之一。本研究发现:小鼠ES细胞在体外分化5~14d形成的拟胚体中含有HPP-CFC。其再生潜能与胚胎期9d的卵黄囊来源的HPP-CFC相似,与骨髓来源则不同。RT-PCR分析表明:ES细胞来源的HPP-CFC表达与造血干细胞增殖相关的特异性转录因子和多种造血生长因子受体。但分化12d的拟胚体细胞和HPP-CFC集落细胞移植受致死剂量照射的小鼠不能产生典型的脾结节。因此,ES细胞来源的HPP-CFC在体外和体内造血活性的差异值得更深入地研究。  相似文献   

15.
During mouse gastrulation, the primitive streak is formed on the posterior side of the embryo. Cells migrate out of the primitive streak to form the future mesoderm and endoderm. Fate mapping studies revealed a group of cell migrate through the proximal end of the primitive streak and give rise to the extraembryonic mesoderm tissues such as the yolk sac blood islands and allantois. However, it is not clear whether the formation of a morphological primitive streak is required for the development of these extraembryonic mesodermal tissues. Loss of the Cripto gene in mice dramatically reduces, but does not completely abolish, Nodal activity leading to the absence of a morphological primitive streak. However, embryonic erythrocytes are still formed and assembled into the blood islands. In addition, Cripto mutant embryos form allantoic buds. However, Drap1 mutant embryos have excessive Nodal activity in the epiblast cells before gastrulation and form an expanded primitive streak, but no yolk sac blood islands or allantoic bud formation. Lefty2 embryos also have elevated levels of Nodal activity in the primitive streak during gastrulation, and undergo normal blood island and allantois formation. We therefore speculate that low level of Nodal activity disrupts the formation of morphological primitive streak on the posterior side, but still allows the formation of primitive streak cells on the proximal side, which give rise to the extraembryonic mesodermal tissues formation. Excessive Nodal activity in the epiblast at pre‐gastrulation stage, but not in the primitive streak cells during gastrulation, disrupts extraembryonic mesoderm development.  相似文献   

16.
The homeobox gene Mixl1 is expressed in the primitive streak of the gastrulating embryo, and marks cells destined to form mesoderm and endoderm. The role of Mixl1 in development of haematopoietic mesoderm was investigated by analysing the differentiation of ES cells in which GFP was targeted to one (Mixl1(GFP/w)) or both (Mixl1(GFP/GFP)) alleles of the Mixl1 locus. In either case, GFP was transiently expressed, with over 80% of cells in day 4 embryoid bodies (EBs) being GFP(+). Up to 45% of Mixl1(GFP/w) day 4 EB cells co-expressed GFP and the haemangioblast marker FLK1, and this doubly-positive population was enriched for blast colony forming cells (BL-CFCs). Mixl1-null ES cells, however, displayed a haematopoietic defect characterised by reduced and delayed Flk1 expression and a decrease in the frequency of haematopoietic CFCs. These data indicated that Mixl1 was required for efficient differentiation of cells from the primitive streak stage to blood. Differentiation of ES cells under serum-free conditions demonstrated that induction of Mixl1- and Flk1-expressing haematopoietic mesoderm required medium supplemented with BMP4 or activin A. In conclusion, this study has revealed an important role for Mixl1 in haematopoietic development and demonstrates the utility of the Mixl1(GFP/w) ES cells for evaluating growth factors influencing mesendodermal differentiation.  相似文献   

17.
The visceral yolk sac (VYS), composed of extraembryonic mesoderm and visceral endoderm, is the initial site of blood cell development and serves important nutritive and absorptive functions. In the mouse, the visceral endoderm becomes a morphologically distinct tissue at the time of implantation (E4.5), while the extraembryonic mesoderm arises during gastrulation (E6.5–8.5). To isolate genes differentially expressed in the developing yolk sac, polymerase chain reaction (PCR) methods were used to construct cDNA from late primitive streak to neural plate stage (E7.5) murine VYS mesoderm and VYS endoderm tissues. Differential screening led to the identification of six VYS mesoderm-enriched clones: ribosomal protein L13a, the heat shock proteins hsc 70 and hsp 86, guanine-nucleotide binding protein-related gene, cellular nucleic acid binding protein, and ã-enolase. One VYS endoderm-specific cDNA was identified as apolipoprotein C2. In situ hybridization studies confirmed the differential expression of these genes in E7.5 yolk sac tissues. These results indicate that representative cDNA populations can be obtained from small numbers of cells and that PCR methodologies permit the study of gene expression during early mammalian postimplantation development. While all of the mesoderm-enriched genes were ubiquitously expressed in the embryo proper, apolipoprotein C2 expression was confined to the visceral endoderm. These results are consistent with the hypothesis that at E7.5, the yolk sac endoderm provides differentiated liver-like functions, while the newly developing extraembryonic mesoderm is still a largely undifferentiated tissue. © 1995 wiley-Liss, Inc.  相似文献   

18.
19.
HoxA3 is an apical regulator of haemogenic endothelium   总被引:1,自引:0,他引:1  
  相似文献   

20.
Definitive hematopoietic progenitor cells have been thought to develop from the vascular endothelium located in the aorta-gonad-mesonephros region of the mouse embryo. However, several recent findings have suggested that most hematopoietic progenitors are derived from non-endothelial precursor cells expressing CD41. We characterized two distinct precursor populations of definitive hematopoietic cell lineages, vascular endothelial (VE)-cadherin(+) CD41(-) CD45(-) endothelial cells and CD41(+) CD45(-) non-endothelial progenitors, both of which are derived from lateral mesoderm. VE-cadherin(+) endothelial cells obtained from cultures of differentiating embryonic stem cells possessed hematopoietic potential encompassing erythroid, myeloid and B lymphoid lineages, whereas CD41(+) progenitors lacked the B lymphopoietic potential. VE-cadherin(+) endothelial cells in the lower trunk of the embryo proper showed a significant potential for initiating B lymphopoiesis in cultures, while endothelial cells in the yolk sac appeared to have a bias for myeloerythropoietic differentiation. CD41(+) progenitors isolated from yolk sac and embryo proper were capable of generating multiple hematopoietic lineages, although mast cell precursors were exclusively enriched in CD41(+) progenitors in the yolk sac. These results suggest that hemogenic endothelial cells and CD41(+) progenitors possess distinct hematopoietic potential depending on the tissues in which they reside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号