首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The insulin receptor (IR) is an important hub in insulin signaling and its activation is tightly regulated. Upon insulin stimulation, IR is activated through autophosphorylation, and consequently phosphorylates several insulin receptor substrate (IRS) proteins, including IRS1-6, Shc and Gab1. Certain adipokines have also been found to activate IR. On the contrary, PTP, Grb and SOCS proteins, which are responsible for the negative regulation of IR, are characterized as IR inhibitors. Additionally, many other proteins have been identified as IR substrates and participate in the insulin signaling pathway. To provide a more comprehensive understanding of the signals mediated through IR, we reviewed the upstream and downstream signal molecules of IR, summarized the positive and negative modulators of IR, and discussed the IR substrates and interacting adaptor proteins. We propose that the molecular events associated with IR should be integrated to obtain a better understanding of the insulin signaling pathway and diabetes.  相似文献   

2.
A report on the RNAi symposium at the Cambridge Healthtech Institute 'Beyond Genome' Conference, San Francisco, USA, 21-24 June 2004.  相似文献   

3.
Proteins of the GFP (green fluorescent protein) family are widely used as passive reporters for live cell imaging. In the present study we used H2B (histone H2B)-tKR (tandem KillerRed) as an active tool to affect cell division with light. We demonstrated that H2B-tKR-expressing cells behave normally in the dark, but transiently cease proliferation following green-light illumination. Complete light-induced blockage of cell division for approx. 24 h was observed in cultured mammalian cells that were either transiently or stably transfected with H2B-tKR. Illuminated cells then returned to normal division rate. XRCC1 (X-ray cross complementing factor 1) showed immediate redistribution in the illuminated nuclei of H2B-tKR-expressing cells, indicating massive light-induced damage of genomic DNA. Notably, nondisjunction of chromosomes was observed for cells that were illuminated during metaphase. In transgenic Xenopus embryos expressing H2B-tKR under the control of tissue-specific promoters, we observed clear retardation of the development of these tissues in green-light-illuminated tadpoles. We believe that H2B-tKR represents a novel optogenetic tool, which can be used to study mitosis and meiosis progression per se, as well as to investigate the roles of specific cell populations in development, regeneration and carcinogenesis in vivo.  相似文献   

4.
5.
RNAi for insect-proof plants   总被引:9,自引:0,他引:9  
  相似文献   

6.
A Place for RNAi   总被引:3,自引:0,他引:3  
Processing bodies (P bodies) are discrete cytoplasmic foci to which mRNA is routed for degradation. In mammalian cells, they are also associated with miRNA-induced translational silencing and siRNA-induced mRNA degradation. In a recent issue of Molecular Cell, Ding and coworkers described an argonaute-interacting protein that appears to promote the assembly of P bodies in C. elegans (Ding et al., 2005).  相似文献   

7.
Background:

The wide availability of genome-scale data for several organisms has stimulated interest in computational approaches to gene function prediction. Diverse machine learning methods have been applied to unicellular organisms with some success, but few have been extensively tested on higher level, multicellular organisms. A recent mouse function prediction project (MouseFunc) brought together nine bioinformatics teams applying a diverse array of methodologies to mount the first large-scale effort to predict gene function in the laboratory mouse.

Results:

In this paper, we describe our contribution to this project, an ensemble framework based on the support vector machine that integrates diverse datasets in the context of the Gene Ontology hierarchy. We carry out a detailed analysis of the performance of our ensemble and provide insights into which methods work best under a variety of prediction scenarios. In addition, we applied our method to Saccharomyces cerevisiae and have experimentally confirmed functions for a novel mitochondrial protein.

Conclusion:

Our method consistently performs among the top methods in the MouseFunc evaluation. Furthermore, it exhibits good classification performance across a variety of cellular processes and functions in both a multicellular organism and a unicellular organism, indicating its ability to discover novel biology in diverse settings.

  相似文献   

8.
Challenges for RNAi in vivo   总被引:8,自引:0,他引:8  
Synthetic small interfering RNA (siRNA) has become a valuable tool for investigating gene function in cell culture. This success has led to high expectations for siRNA as a tool for in vivo investigation and as a platform for therapeutic development. siRNA in cell culture owes much of its success to years of development of traditional antisense oligonucleotides, and in vivo applications will also benefit from previous experience in this regard. However, the duplex nature of siRNA presents significant obstacles that will need to be overcome. Here, we discuss the current status of in vivo siRNA technology and describe some of the barriers to widespread application of RNAi-mediated gene silencing in mammals.  相似文献   

9.
《TARGETS》2003,2(4):130-131
  相似文献   

10.
Mammalian RNAi for the masses   总被引:58,自引:0,他引:58  
Just a couple of years ago, only biologists working with plants or Caenorhabditis elegans could use RNA-mediated interference (RNAi) technology to gain insight into gene function. However, the recent groundbreaking discovery that in vitro synthesized, 21- to 23-nucleotide, double-stranded RNAs can act as small interfering RNAs (siRNAs) to elicit gene-specific inhibition in mammalian cells has made RNAi possible in mammalian systems too. Reported only a year ago, mammalian RNAi is already changing our way of studying gene function in higher eukaryotes. And, a recent exciting advance allows delivery of siRNAs into mammalian cells by a DNA vector. In addition to providing a low-cost alternative to the chemically synthesized siRNAs, this DNA-vector-based strategy is capable of mediating stable target gene inhibition, thus allowing gene function analysis over an extended period of time.  相似文献   

11.
RNAi for plant functional genomics   总被引:9,自引:0,他引:9  
A major challenge in the post-genome era of plant biology is to determine the functions of all the genes in the plant genome. A straightforward approach to this problem is to reduce or knock out expression of a gene with the hope of seeing a phenotype that is suggestive of its function. Insertional mutagenesis is a useful tool for this type of study, but it is limited by gene redundancy, lethal knock-outs, nontagged mutants and the inability to target the inserted element to a specific gene. RNA interference (RNAi) of plant genes, using constructs encoding self-complementary 'hairpin' RNA, largely overcomes these problems. RNAi has been used very effectively in Caenorhabditis elegans functional genomics, and resources are currently being developed for the application of RNAi to high-throughput plant functional genomics.  相似文献   

12.
13.
In predicting hierarchical protein function annotations, such as terms in the Gene Ontology (GO), the simplest approach makes predictions for each term independently. However, this approach has the unfortunate consequence that the predictor may assign to a single protein a set of terms that are inconsistent with one another; for example, the predictor may assign a specific GO term to a given protein ('purine nucleotide binding') but not assign the parent term ('nucleotide binding'). Such predictions are difficult to interpret. In this work, we focus on methods for calibrating and combining independent predictions to obtain a set of probabilistic predictions that are consistent with the topology of the ontology. We call this procedure 'reconciliation'. We begin with a baseline method for predicting GO terms from a collection of data types using an ensemble of discriminative classifiers. We apply the method to a previously described benchmark data set, and we demonstrate that the resulting predictions are frequently inconsistent with the topology of the GO. We then consider 11 distinct reconciliation methods: three heuristic methods; four variants of a Bayesian network; an extension of logistic regression to the structured case; and three novel projection methods - isotonic regression and two variants of a Kullback-Leibler projection method. We evaluate each method in three different modes - per term, per protein and joint - corresponding to three types of prediction tasks. Although the principal goal of reconciliation is interpretability, it is important to assess whether interpretability comes at a cost in terms of precision and recall. Indeed, we find that many apparently reasonable reconciliation methods yield reconciled probabilities with significantly lower precision than the original, unreconciled estimates. On the other hand, we find that isotonic regression usually performs better than the underlying, unreconciled method, and almost never performs worse; isotonic regression appears to be able to use the constraints from the GO network to its advantage. An exception to this rule is the high precision regime for joint evaluation, where Kullback-Leibler projection yields the best performance.  相似文献   

14.
Minimizing outputs: treatment   总被引:6,自引:0,他引:6  
Many methods are available for the treatment of industrial wastewaters. The pollutant concentrations from aquaculture facilities are often low, but occur in high flow rates. Consequently, much care must be taken to transfer suitable technology. Of the four main types of treatment unit processes, i.e. biological, chemical, mechanical and gravitational, the latter two types are most commonly employed in flow-through aquaculture facilities in Europe. This paper identifies the properties of the wastewater upon which the units operate, the efficiency of selected examples and their suitability for various applications. Relevant strategies are recommended. A combination of screening to remove suspended particles, followed by sedimentation to thicken the resulting sludge appears, at resent, to be the most appropriate primary treatment strategy for flow-through facilities. Various other secondary or even tertiary techniques can be employed to further treat tie main effluent. These can, however, prove prohibitively expensive in high flow situations and can produce negligible improvements in environmental protection.  相似文献   

15.
利用人H1 RNA启动子、EGFP基因及Neomycin抗性基因,构建用于禽类细胞基因持续沉默和快速筛选的实用型RNAi载体。在将pCDNA3.1(+)载体上的SV40启动子替换为鸡源的β-actin启动子后,装入EGFP基因表达框以及用于驱动外源shRNA转录的人H1 RNA启动子,构建成同时具有EGFP和Neomycin抗性双标记的RNAi载体,并为载体引入独特设计的含媒介序列的多克隆位点以方便外源shRNA编码小片断插入后的快速筛选,载体设计非常实用。插入靶向EGFP和sIgM λ基因的shRNA编码序列后分别瞬时转染DF-1和DT40细胞,结果显示靶基因表达得到了明显抑制。联用EGFP和Neomycin双标记快速筛选sIgM λ轻链基因稳定沉默的DT40细胞克隆的结果也证实,H1启动子转录shRNA的干扰效果是高效的,双标记筛选策略不仅有效而且方便、快捷。  相似文献   

16.
Approaches for chemically synthesized siRNA and vector-mediated RNAi   总被引:20,自引:0,他引:20  
Amarzguioui M  Rossi JJ  Kim D 《FEBS letters》2005,579(26):5974-5981
  相似文献   

17.
RNAi for revealing and engineering plant gene functions   总被引:1,自引:0,他引:1  
  相似文献   

18.
Vectors for RNAi technology in poplar   总被引:7,自引:0,他引:7  
Abstract: The potential of double-stranded RNA interference (RNAi) technology was studied for down-regulation of gene expression in poplar. A set of vectors was constructed generating RNAs capable of duplex formation of sequences specific for the β-glucuronidase (GUS) reporter gene system. These gene cassettes are driven by the CaMV-35S promoter. To address the question of gene silencing, we tested the functionality of these vectors, both in transient assays by transforming protoplasts with the RNAi constructs, and in stably transformed GUSexpressing poplar plants. Agrobacterium -mediated transformation of those GUS-expressing plants with a GUS-specific RNAi construct showed a strong down-regulation of the reporter gene. From these results we conclude that RNAi is also functional in poplar.  相似文献   

19.
20.
Insects display an impressive variety of daily rhythms, which are most evident in their behaviour. Circadian timekeeping systems that generate these daily rhythms of physiology and behaviour all involve three interacting elements: the timekeeper itself (i.e. the clock), inputs to the clock through which it entrains and otherwise responds to environmental cues such as light and temperature, and outputs from the clock through which it imposes daily rhythms on various physiological and behavioural parameters. In insects, as in other animals, cellular clocks are embodied in clock neurons capable of sustained autonomous circadian rhythmicity, and those clock neurons are organized into clock circuits. Drosophila flies spend their entire lives in small areas near the ground, and use their circadian brain clock to regulate daily rhythms of rest and activity, so as to organize their behaviour appropriately to the daily rhythms of their local environment. Migratory locusts and butterflies, on the other hand, spend substantial portions of their lives high up in the air migrating long distances (sometimes thousands of miles) and use their circadian brain clocks to provide time-compensation to their sun-compass navigational systems. Interestingly, however, there appear to be substantial similarities in the cellular and network mechanisms that underlie circadian outputs in all insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号