首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The identification of sources of cerebral activity is investigated, and the resulting methodology is applied to the simple case of hippocampal afterdischarges in the cat. We develop an “imagery” technique which consists in defining, in a preliminary step, the number and the power spectrum density of unknown sources (identification of sources) assumed to emit independent signals in the ill-defined noisy cerebral medium. The technique assumes the medium to be quasilinear and quasistationary, and these assumptions have to be checked. It is based upon the interspectral matrix and its diagonal form. It makes it clear that (1) the problem of estimating the number of sources is closely dependent on the estimation method used to assess the power spectrum density, and (2) the coherence matrix should be preferred to the interspectral matrix for reasons linked with the estimation variance of its elements and the proximity of the sources and sensors. In order to assess the validity of the methodology, a source of hippocampal afterdischarges has been created by threshold stimulation of the ventral hippocampus of the cat. The resulting EEG signals are used to show that there is a single source and to estimate its power density spectrum, which can then be compared with the true one.  相似文献   

2.
采用405nm紫光激发传统中药光敏剂(CpD4)发射的荧光中心波长在660nm。红色荧光能深入组织,因而能够应用在胃癌早期诊断及治疗中。本文测定了中药光敏剂的吸收光谱和发射荧光光谱,并提出了二种用于激发光敏剂的紫光光源。一种为“Hg-Xe”灯,发射峰为433nm;另一种为采用紫光LD,发射峰为405nm。这二种波长和中药光敏剂的吸收峰完全匹配。  相似文献   

3.
电针对实验性癫痫发作的影响:脑电的功率谱分析   总被引:4,自引:0,他引:4  
何晓平  沈霖霖 《生理学报》1990,42(2):141-148
以电惊厥和青霉素致痫作为实验性癲痫的动物模型。采用脑电的计算机功率谱分析技术,研究了电针作用于发作过程中脑电各频段功率百分比的变化。在安静的大鼠,脑电以δ和θ频段为主,其功率主峰在δ频段。青霉素致痫和电惊厥使δ频段功率百分比下降,α和β频段功率百分比增加,主功率频段右移,总功率亦大大增强。本实验采用的电针对背景脑电活动没有明显影响。而电针加电惊厥或青霉素致痫,δ频段功率百分比复又增加,α和β频段功率百分比则下降,主功率频段又回到δ频段,总功率也显著减少。压缩功率谱阵图直观地显示了这种变化。结果提示,电针可使大鼠脑电出现同步化趋势,可能是加强了脑的抑制过程,从而抑制了癲痫发作的。  相似文献   

4.
Phlorizin-sensitive currents mediated by a Na-glucose cotransporter were measured using intact or internally perfused Xenopus laevis oocytes expressing human SGLT1 cDNA. Using a two-microelectrode voltage clamp technique, measured reversal potentials (Vr) at high external alpha-methylglucose (alpha MG) concentrations were linearly related to In[alpha MG]o, and the observed slope of 26.1 +/- 0.8 mV/decade indicated a coupling ratio of 2.25 +/- 0.07 Na ions per alpha MG molecule. As [alpha MG]o decreased below 0.1 mM, Vr was no longer a linear function of In[alpha MG]o, in accordance with the suggested capacity of SGLT1 to carry Na in the absence of sugar (the "Na leak"). A generalized kinetic model for SGLT1 transport introduces a new parameter, Kc, which corresponds to the [alpha MG]o at which the Na leak is equal in magnitude to the coupled Na-alpha MG flux. Using this kinetic model, the curve of Vr as a function of In[alpha MG]o could be fitted over the entire range of [alpha MG]o if Kc is adjusted to 40 +/- 12 microM. Experiments using internally perfused oocytes revealed a number of previously unknown facets of SGLT1 transport. In the bilateral absence of alpha MG, the phlorizin-sensitive Na leak demonstrated a strong inward rectification. The affinity of alpha MG for its internal site was low; the Km was estimated to be between 25 and 50 mM, an order of magnitude higher than that found for the extracellular site. Furthermore, Vr determinations at varying alpha MG concentrations indicate a transport stoichiometry of 2 Na ions per alpha MG molecule: the slope of Vr versus In[alpha MG]o averaged 30.0 +/- 0.7 mV/decade (corresponding to a stoichiometry of 1.96 +/- 0.04 Na ions per alpha MG molecule) whenever [alpha MG]o was higher than 0.1 mM. These direct observations firmly establish that Na ions can utilize the SGLT1 protein to cross the membrane either alone or in a coupled manner with a stoichiometry of 2 Na ions per sugar, molecule.  相似文献   

5.
Excitation of Nitella internodal cell was investigated as an example of the phase transition in an open system far more thermal equilibrium. The power density spectrum of the membrane potential fluctuation had a bulge in a frequency range lower than 1 Hz at the resting state and a peak at approximately 0.03 Hz at a depolarized state near the threshold. A critical oscillation in the membrane potential was observed when threshold was gradually approached from the resting state. Repetitive firing was observed under a step-current of the superthreshold value. The frequency of spectral peaking, critical oscillation, and repetitive firing agree well with each other. The result suggests that the hard-mode instability occurs in the Nitella internodal cell. The membrane impedance had no peak in the same frequency region as the peak of the voltage spectrum. The spectral peak may be ascribed to be electrogenic pump modulated by the metabolic feedback system in photosynthesis.  相似文献   

6.
A double exogenous autoregressive (XXAR) causal parametric model was used to estimate the baroreflex gain (alpha(XXAR)) from spontaneous R-R interval and systolic arterial pressure (SAP) variabilities in conscious dogs. This model takes into account 1) effects of current and past SAP variations on the R-R interval (i.e., baroreflex-mediated influences), 2) specific perturbations affecting R-R interval independently of baroreflex circuit (e.g., rhythmic neural inputs modulating R-R interval independently of SAP at frequencies slower than respiration), and 3) influences of respiration-related sources acting independently of baroreflex pathway (e.g., rhythmic neural inputs modulating R-R interval independently of SAP at respiratory rate, including the effect of stimulation of low-pressure receptors). Under control conditions, alpha(XXAR) = 14.7 +/- 7.2 ms/mmHg. It decreases after nitroglycerine infusion and coronary artery occlusion, even though the decrease is significant only after nitroglycerine, and it is completely abolished by total arterial baroreceptor denervation. Moreover, alpha(XXAR) is comparable to or significantly smaller than (depending on the experimental condition) the baroreflex gains derived from sequence, power spectrum [at low frequency (LF) and high frequency (HF)], and cross-spectrum (at LF and HF) analyses and from less complex causal parametric models, thus demonstrating that simpler estimates may be biased by the contemporaneous presence of regulatory mechanisms other than baroreflex mechanisms.  相似文献   

7.
Role of voltage-sensitive receptors in nicotinic transmission.   总被引:6,自引:0,他引:6       下载免费PDF全文
This paper compares the conductance induced by bath-applied acetyl-choline (ACh) and by the same transmitter released from nerve terminals at Electrophorus electroplaques. For the former case, dose-response relations are characterized by the maximal agonist-induced conductance, rgamma (130 mmho/cm2), and by the concentration which induces half this conductance; this concentration is termed Kapp and equals 50 micron at -85 mV. For the latter case, neurally evoked postsynaptic currents (PSCs) are characterized by the peak conductance during strongly facilitated release, gPSC, and by the rate constant for decay, alpha. Since gPSC roughly equals rgamma, it is concluded that the PSC activates nearly all available receptor channels. These and other data agree with recent estimates that during the growth phase of the quantal response, (a) the ACh concentration is at least several hundred micromolar; and (b) most nearby channels are activated. However both alpha and Kapp increase during depolarization, at a rate of about e-fold per 86 mV. These observations on voltage sensitivity suggest that a suprathreshold synaptic event is rapidly terminated because the action potential abruptly releases ACh molecules from receptors.  相似文献   

8.
Hara K  Terasaki O  Okubo Y 《Life sciences》2000,67(10):1163-1173
Using a dipole tracing method based on the two-dipole model, the purpose of the present study was to investigate alcohol-induced changes in the alpha band of electroencephalogram (EEG) and its equivalent current dipoles (ECDs) in 12 healthy male volunteers, who were genetically typed for mitochondrial aldehyde dehydrogenase-2 (ALDH2). The alpha power and the mean interval dipolarity, which represents the goodness of fit of alpha EEG with the two-dipole model, increased at 30 min after 0.75 ml/kg of alcohol ingestion, when breath alcohol concentration showed its peak. However, the location of ECDs and distribution of alpha EEG did not change after alcohol ingestion. These findings indicate that alcohol enhances alpha EEG but does not change the location of its electrical sources. Interestingly, the time course of alcohol-induced EEG changes differed significantly according to the aversive flushing reaction after its intake. From 60 to 120 min, the non-flushing group which had homozygous ALDH2* 1 (active type) displayed significant increase not only in the alpha power but also in the interval dipolarity compared to the baseline, whereas the flushing group with heterozygous ALDH2*1/2*2 (inactive type) did not exhibit this significant increase. The difference in the time course was discussed from the viewpoint of the protective effect of ALDH2*2 allele against the risk for alcoholism. These results suggest that the dipole tracing method could provide an alternative neurophysiological marker for the risk for alcoholism.  相似文献   

9.
Numerical simulations of flow in straight elastic (moving wall) tubes subjected to a sinusoidal pressure gradient were performed for conditions prevailing in large and medium sized arteries. The effects of varying the phase angle between the pressure gradient and the tube radius, the amplitude of wall motion, and the unsteadiness parameter (alpha) on flow rate and wall shear stress were investigated. Mean and peak flow rates and shear stresses were found to be strongly affected by the phase angle between the pressure gradient and the tube radius with greater sensitivity at higher diameter variation and higher alpha. In large artery simulations (alpha = 12), means flow rate was found to be 60% higher and peak flow rate to be 73% higher than corresponding rigid tube values for certain phase angles, while a threefold increase in mean wall shear stress and sevenfold increase in peak wall shear stress were observed in a sensitive phase angle range. Significant reversal in the wall shear stress direction occurred in the sensitive phase angle range even when there was negligible flow rate reversal. All effects were greatly diminished in simulations of medium sized vessels (alpha = 4). Some experimental evidence to support the predictions of a strong effect of phase angle on wall shear stress in large vessels is presented. Finally, physiological implications of the present work are discussed from a basis of aortic input impedance data, and a physical explanation for the extreme sensitivity of the flow field to small amplitude wall motion at high alpha is given.  相似文献   

10.
The power spectral analysis of R-R interval variability (RRV) has been estimated by means of an autoregressive method in seven sedentary males at rest, during steady-state cycle exercise at 21 percent maximal oxygen uptake (%VO2max), SEM 2%, 49% VO2max, SEM 2% and 70% VO2max, SEM 2% and during recovery. The RRV, i.e. the absolute power of the spectrum, decreased 10, 100 and 500 times in the three exercise intensities, returning to resting value during recovery. In the RRV power spectrum three components have been identified: (1) high frequency peak (HF), central frequency about 0.24 Hz at rest and recovery, and 0.28 Hz, SEM 0.02, 0.37 Hz, SEM 0.03 and 0.48 Hz, SEM 0.06 during the three exercise intensities, respectively; (2) low frequency peak (LF), central frequency about 0.1 Hz independent of the metabolic state; (3) very low frequency component (VLF), less than 0.05 Hz, no peak observed. The HF peak power, as a percentage of the total power (HF%), averaged 16%, SEM 5% at rest and did not change during exercise, whereas during recovery it decreased to 5%-10%. The LF% and VLF% were about 50% and 35% at rest and during low exercise intensity, respectively. At higher intensities, LF% decreased to 16% and VLF% increased to 70%. During recovery a return to resting values occurred. The HF component may reflect the increased respiratory rate and the LF peak changes the resetting of the baroreceptor reflex with exercise. The hypothesis is made that VLF fluctuations in heart rate might be partially mediated by the sympathetic system.  相似文献   

11.
Changes in the EMG power spectrum during static fatiguing contractions are often attributed to changes in muscle fibre action potential conduction velocity. Mathematical models of the EMG power spectrum, which have been empirically confirmed, predict that under certain conditions a distinct maximum occurs in the low-frequency part of the spectrum, indicating the dominant firing rate of the motor units. The present study investigated the influence of this firing rate peak on the spectral changes during a static fatiguing contraction at 50% of maximum EMG amplitude in the frontalis and corrugator supercilii muscles. An exponential decrease of the median frequency (MF) of the EMG power spectrum was observed when the firing rate peak was absent. When the firing rate peak was present, an exaggerated decrease of MF in the beginning of the contraction was found, which was associated with an increase in firing rate peak magnitude. In later stages of the contraction, a partial recovery of MF occurred, concomitant with a decrease in firing rate peak magnitude. The influence of the firing rate peak on MF was also investigated during nonfatiguing contractions of the frontalis muscle at 20, 40, 60, and 80% of maximum EMG amplitude. A curvilinear relationship between MF and contraction strength was found, whether firing rate peaks were present or absent. The presence of firing rate peaks, however, was associated with a decrease in MF which was inversely related to contraction strength, due to the inverse relationship between firing rate peak magnitude and contraction strength.  相似文献   

12.
A method has been developed for the production, isolation, and quantitation of 15 marker peptides from the three globular domains (G1, G2, and G3) and the interglobular domain of bovine aggrecan (aggregating cartilage proteoglycan). Three of the peptides are from G1, two are from the interglobular domain, four are from G2, and six are from G3. The method involves separation of tryptic peptides by sequential anion-exchange, cation-exchange, and reversed-phase high performance liquid chromatography and quantitation by absorbance at 220 nm. The values obtained (peak area per microgram of core protein) were a function of the molar yield and also the size and aromatic residue content of individual peptides. This procedure has been applied to aggrecan purified from fresh calf articular cartilage and to aggrecan isolated from the medium and tissue compartments of cartilage explant cultures, maintained in basal medium for 15 days without and with interleukin-1 alpha. These analyses indicate that aggrecan which is released into explant medium has a reduced content of the G1 domain, but has a normal content of the G2 domain, the COOH-terminal region of the interglobular domain, and also the G3 domain. On the other hand, aggrecan which is retained by the cartilage during 15 days of culture has a normal content of G1, interglobular domain, and G2 domains, but, in the presence of interleukin-1 alpha, it has a reduced content of the G3 domain. The percentage of medium molecules which retained the G1 domain was higher in control cultures (about 35%) than in interleukin cultures (about 20%), and this was consistent with the relative aggregability of these samples. Taken together these results suggest that catabolism of aggrecan in articular cartilage involves a specific proteolysis of the core protein at a site which is within the interglobular domain and NH2-terminal to the sequence LPGG. This process occurs in control cultures but is accelerated by the addition of interleukin-1 alpha. Degraded molecules which lack the G1 domain are released preferentially into the medium; however, these molecules carry both the G2 and G3 domains, indicating that these domains do not confer strong matrix binding properties on aggrecan. The method described here for the isolation of peptides from bovine aggrecan should have wide application to structural and biosynthetic studies on this molecule in species such as human and rat, since many of the marker peptides are from highly conserved regions of the aggrecan core protein.  相似文献   

13.
Demodulation of amplitude modulated radio frequency (RF) energy has been proposed as a mechanism for the biological responses to these fields. The experiment proposed here tests whether the electric and magnetic structures of biological cells exhibit the nonlinear responses necessary for demodulation. A high Q cavity and very low noise amplification can be used to detect ultraweak nonlinear responses that appear as a second harmonic of a RF field incident on the sample. Nonlinear fields scattered from metabolically active biological cells grown in monolayer or suspended in medium can be distinguished from nonlinearities of the apparatus. Estimates for the theoretical signal sensitivity and analysis of system noise indicate the possibility of detecting a microwave signal at 1.8 GHz (2nd harmonic of 900 MHz) as weak as one microwave photon per cell per second. The practical limit, set by degradation of the cavity Q, is extremely low compared to the much brighter thermal background, which has its peak in the infrared at a wavelength of about 17 microm and radiates 10(10) infrared photons per second per cell in the narrow frequency band within 0.5% of the peak. The system can be calibrated by introduction of known quantities of nonlinear material, e.g., a Schottky diode. For an input power of 160 microW at 900 MHz incident on such biological material, the apparatus is estimated to produce a robust output signal of 0.10 mV at 1.8 GHz if detected with a spectrum analyzer and a 30-dB gain low noise amplifier. The experimental threshold for detection of nonlinear interaction phenomena is 10(10) below the signal produced by a Schottky diode, giving an unprecedented sensitivity to the measurement of nonlinear energy conversion processes in living tissue.  相似文献   

14.
In contrast to its lethargy at physiological pH, horse heart cytochrome c can be oxidized at room temperature by the axial inner sphere oxidant bromomalononitrile (BMN) at higher acidities. The following stoichiometry obtains: 2Fe11 c + BrCH(CN2) + H+ leads to 2FeIII c + CH2(CN)2 + Br-, and the rate law is given by: rate = k2(FeIIc)(BMN). At an ionic strength of 1.0 (KCl), second-order rate constants vary from 300 l. per mol per sec (pH 2-3) to 0(pH 9). Below pH 6 there is a noticeable increase in rate with ionic strength while there is no specific salt effect for the process. At pH 7.4 there is no influence of added salt (0.01-1.0 M) upon the slow rate of reaction. The vast changes in rate occur over a pH region (3-6) in which only very minor changes in the visible spectrum of the cytochrome are manifest. The results are interpreted in terms of a conformational isomerism of cytochrome c in which the effective redox geometry alters from a predominantly "short C" form (in which an axial position is available for substitution) at lower pH's to a predominantly "C" form (axial positions encumbered) in the physiological region. At 5 degrees, pH 7.4, both hemes of beef heart cytochrome oxidase are oxidized by the addition of BMN (k2 = 29 plus or minus 3 l. per mol per sec). However, the reaction is inhibited by potassium cyanide and the protein containing iron(II) cyt alpha along with the cyano adduct of iron(II) or iron(III) cyt alpha3 is inert. The results demonstrate cytochrome alpha3 as the site of reaction and that alpha reduces alpha3 in the process. Cytochrome oxidase does catalyze the oxidation of cytochrome c with BMN as substrate. Taken together the results provide additional support for a recent theory and they demonstrate BMN to be an efficient probe for the effective redox geometry of a hemoprotein in solution.  相似文献   

15.
Diploid Saccharomyces cerevisiae cells heterozygous for the mating type locus (MATa/MAT alpha) undergo meiosis and sporulation when starved for nitrogen in the presence of a poor carbon source such as potassium acetate. Diploid yeast adenine auxotrophs sporulated well at high cell density (10(7) cells per ml) under these conditions but failed to differentiate at low cell density (10(5) cells per ml). The conditional sporulation-deficient phenotype of adenine auxotrophs could be complemented by wild-type yeast cells, by medium from cultures that sporulate at high cell density, or by exogenously added adenine (or hypoxanthine with some mutants). Adenine and hypoxanthine in addition to guanine, adenosine, and numerous nucleotides were secreted into the medium, each in its unique temporal pattern, by sporulating auxotrophic and prototrophic yeast strains. The major source of these compounds was degradation of RNA. The data indicated that differentiating yeast cells cooperate during sporulation in maintaining sufficiently high concentrations of extracellular purines which are absolutely required for sporulation of adenine auxotrophs. Yeast prototrophs, which also sporulated less efficiently at low cell density (10(3) cells per ml), reutilized secreted purines in preference to de novo-made purine nucleotides whose synthesis was in fact inhibited during sporulation at high cell density. Adenine enhanced sporulation of yeast prototrophs at low cell density. The behavior of adenine auxotrophs bearing additional mutations in purine salvage pathway genes (ade apt1, ade aah1 apt1, ade hpt1) supports a model in which secretion of degradation products, uptake, and reutilization of these products is a signal between cells synchronizing the sporulation process.  相似文献   

16.
Phospholipase D (PLD) is an important enzyme involved in signal transduction, vesicle trafficking and membrane metabolism. In this study, large amounts of a recombinant plant PLD alpha were secreted into the culture medium of baculovirus-infected insect cells and purified to homogeneity in the form of a fully active enzyme. The transient production of recombinant PLD alpha yielded a protein (rPLD alpha a, 88 kDa) together with a shorter form (rPLD alpha b, 87 kDa), which accumulated in the medium. N-Terminal amino acid sequencing of the rPLD alpha a and rPLD alpha b showed that rPLD alpha b resulted from proteolytic cleavage at Gly8-Ile9. Immunoblotting showed that both rPLD alpha a and rPLD alpha b are recognized by a polyclonal antibody previously raised against native soybean PLD alpha. One-step calcium-dependent octyl-Sepharose chromatography was used to obtain the two highly purified forms of rPLD alpha, as attested by gel electrophoresis, N-terminal amino acid sequence and mass spectrometry. The N-terminal region of PLD alpha is homologous with the C2 domains which are present in a number of enzymes known to be involved in signal transduction and/or phospholipid metabolism. The truncated rPLD alpha b lacks the first acidic amino acid in its N-terminus, which is probably involved in the calcium binding site. The rPLD alpha b was thus easily eluted from the octyl-Sepharose column by decreasing the calcium concentration of the buffer from 50 to 30 mM, whereas, the rPLD alpha a was eluted after chelating calcium ions with EDTA. The purified rPLD alpha yield reached a level of 10 mg per liter of serum-free culture medium. The availability of baculovirus-derived rPLD alpha constitutes a valuable source of enzyme for future crystallographic studies to determine its three-dimensional structure.  相似文献   

17.
A mathematical model of short-term cardiovascular regulation is used to investigate how heart period variability reflects the action of the autonomic regulatory mechanisms (vagal and sympathetic). The model includes the pulsating heart, the systemic (splanchnic and extrasplanchnic) and pulmonary circulation, the mechanical effect of respiration on venous return, two groups of receptors (arterial baroreceptors and lung stretch receptors), the sympathetic and vagal efferent branches, and a very low-frequency (LF) vasomotor noise. All model parameters were given on the basis of physiological data from the literature. We used data from humans whenever possible, whereas parameters for the regulation loops are derived from dog experiments. The model, with basal parameter values, produces a heart period power spectrum with two distinct peaks [a high frequency (HF) peak at the respiratory rate and a LF peak at approximately 0.1 Hz]. Sensitivity analysis on the mechanism gains suggests that the HF peak is mainly affected by the vagal mechanism, whereas the LF peak is increased by a high sympathetic gain and reduced by a high vagal gain. Moreover, the LF peak depends significantly on the reactivity of resistance vessels and is affected by noise, amplified by the sympathetic control loop at its resonance frequency. The model may represent a new tool to study alterations in the heart period spectrum on the basis of quantitative physiological hypotheses.  相似文献   

18.
Metallothioneins (MTs) are cysteine-rich, metal-binding proteins known to provide protection against cadmium toxicity in mammals. Metal exchange of Zn(2+) ions for Cd(2+) ions in metallothioneins is a critical process for which no mechanistic or structural information is currently available. The recombinant human alpha domain of metallothionein isoform 1a, which encompasses the metal-binding cysteines between Cys33 and Cys60 of the alpha domain of native human metallothionein 1a, was studied. Characteristically this fragment coordinates four Cd(2+) ions to the 11 cysteinyl sulfurs, and is shown to bind an additional Cd(2+) ion to form a novel Cd(5)alpha-MT species. This species is proposed here to represent an intermediate in the metal-exchange mechanism. The ESI mass spectrum shows the appearance of charge state peaks corresponding to a Cd(5)alpha species following addition of 5.0 molar equivalents of Cd(2+) to a solution of Cd(4)alpha-MT. Significantly, the structurally sensitive CD spectrum shows a sharp monophasic peak at 254 nm for the Cd(5)alpha species in contrast to the derivative-shaped spectrum of the Cd(4)alpha-MT species, with peak maxima at 260 nm (+) and 240 nm (-), indicating Cd-induced disruption of the exciton coupling between the original four Cd(2+) ions in the Cd(4)alpha species. The (113)Cd chemical shift of the fifth Cd(2+) is significantly shielded (approximately 400 p.p.m.) when compared with the data for the Cd(2+) ions in Cd(4)alpha-MT by both direct and indirect (113)Cd NMR spectroscopy. Three of the four original NMR peaks move significantly upon binding the fifth cadmium. Evidence from indirect (1)H-(113)Cd HSQC NMR spectra suggests that the coordination environment of the additional Cd(2+) is not tetrahedral to four thiolates, as is the case with the four Cd(2+) ions in the Cd(4)alpha-MT, but has two thiolate ligands as part of its ligand environment, with additional coordination to either water or anions in solution.  相似文献   

19.
Circular dichroism in the near ultraviolet wavelength range was employed to examine conformational features of CRP (a dimer with a chain of 209 amino acids) and of its subtilisin core -alpha CRP- which retains the cAMP binding site (a dimer spanning the sequence 1-117). Binding of the ligand cAMP (allosteric activator), as well as cGMP was also investigated. The well resolved transitions could be assigned to the various classes of aromatic amino acid residues in the two proteins. In addition to signals which are attributable to the missing aromatic residues (Phe-136 and Tyr-206) the difference spectrum (CRP minus alpha CRP) shows a significant perturbation of a tryptophanyl contribution centred at 296 nm. From the available X-ray structure of the cAMP-CRP complex we are led to conclude that a conformational reorganisation takes place in the alpha CRP. A very large negative maximum is observed at 255 nm when cAMP binds to CRP and to alpha CRP. The maximum effect is observed in both cases at a ratio of one ligand bound per protomer. In the 280-300 nm wavelength range a smaller but significant perturbation affects specifically the spectra and reveals different cAMP-induced conformational changes in the two proteins. We propose that the major (255 nm) contribution to the perturbation spectrum of bound cAMP, and the qualitatively similar signal for cGMP, reflects an immobilisation of the sugar and adenine moieties of the bound ligand in an almost anti-conformation for both CRP and alpha CRP.  相似文献   

20.
Cytochrome b562-o complex, a terminal oxidase in the respiratory chain of aerobically grown Escherichia coli K12, was isolated in a highly purified form. The purified oxidase is composed of equimolar amounts of two polypeptides, with Mr = 33,000 and 55,000, determined by gel electrophoresis in the presence of sodium dodecyl sulfate. It contains 19.5 nmol of heme and 16.8 nmol of copper/mg of protein, but no detectable nonheme iron, phospholipid, ubiquinone, or menaquinone. In the difference spectrum at room temperature, the oxidase shows a single alpha absorption peak at 560 nm and at 77 K it shows two alpha absorption peaks at 555 and 562 nm. This oxidase combines with CO and the CO difference spectrum at room temperature has a peak at 416 nm and a trough at 430 nm in the Soret region. Its oxidation-reduction potential is estimated to be 125 mV (pH 7.4) and it is pH-dependent (-60 mV/pH) in medium of pH 6.0 to 7.4. It catalyzes electron transport to oxygen via ubiquinol and ascorbate in the presence of phenazine methosulfate or N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride. This oxidase activity depends on phospholipids and is sensitive to respiratory inhibitors, such as 2-heptyl-4-hydroxyquinoline N-oxide, piericidin A, KCN and NaN3. The divalent cations Zn2+, Cd2+, and Co2+ inhibit the oxidase activity extensively. The oxidase activity of the cytochrome b562-o complex was inhibited by photoinactivation with rose bengal, suggesting that the inhibition by zinc ion results from modification of a histidine residue of cytochrome o.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号