首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The genomic RNA of retroviruses exists within the virion as a noncovalently linked dimer. Previously, we identified a mutant of the viral matrix (MA) protein of Rous sarcoma virus that disrupts viral RNA dimerization. This mutant, Myr1E, is modified at the N terminus of MA by the addition of 10 amino acids from the Src protein, resulting in the production of particles containing monomeric RNA. Dimerization is reestablished by a single amino acid substitution that abolishes myristylation (Myr1E-). To distinguish between cis and trans effects involving Myr1E, additional mutations were generated. In Myr1E.cc and Myr1E-.cc, different nucleotides were utilized to encode the same protein as Myr1E and Myr1E-, respectively. The alterations in RNA sequence did not change the properties of the viral mutants. Myr1E.ATG- was constructed so that translation began at the gag AUG, resulting in synthesis of the wild-type Gag protein but maintenance of the src RNA sequence. This mutant had normal infectivity and dimeric RNA, indicating that the src sequence did not prevent dimer formation. All of the src-containing RNA sequences formed dimers in vitro. Examination of MA-green fluorescent protein fusion proteins revealed that the wild-type and mutant MA proteins Myr1E.ATG-, Myr1E-, and Myr1E-.cc had distinctly different patterns of subcellular localization compared with Myr1E and Myr1E.cc MA proteins. This finding suggests that proper localization of the MA protein may be required for RNA dimer formation and infectivity. Taken together, these results provide compelling evidence that the genomic RNA dimerization defect is due to a trans-acting effect of the mutant MA proteins.  相似文献   

2.
SE21Q1b, a Rous sarcoma virus mutant which packages cellular rather than viral RNA, is competent for infection of quail cells and can transmit defective transforming retrovirus genes. Stably transformed recipient clones have been obtained by using this mutant.  相似文献   

3.
Cells doubly infected with two mutants of the Schmidt-Ruppin strain of Rous sarcoma virus (RSV), ts68, which is temperature sensitive for cell transformation (srcts), and a deletion mutant, N8, which is deficient in the envelope glycoprotein (env-), produced a recombinant which carried the defects of both parents. The frequency of formation of such a recombinant was exceptionally high and made up 45 to 55% of the progeny carrying the srcts marker. By contrast, the reciprocal recombinant, which is wild type in transformation (srcts) and contains the subgroup A envelope glycoprotein (envA), was almost undetectable. This remarkable difference in the frequency of the formation of the two possible recombinants suggests that a unique mechanism may be involved in the genetic interaction of the two virus genomes, one of which has a large deletion. When an RNA-dependent DNA polymerase-negative variant of the N8 (N8alpha) was crinants also became deficient in the polymerase. Cells infected by the srctsenv- recombinant were morphologically normal at the nonpermissive temperature (41 degrees C) and susceptible to all subgroups of RSV. The rate by which the wild-type RSV transformed the recombinant-preinfected cells was indistinguishable from that of transformation of uninfected chicken cells by the same wild-type virus. This indicates that no detectable interference exists at postpenetration stages between the preinfected and superinfecting virus genomes and confirms that the expression of the transformed state is dominant over the suppressed state.  相似文献   

4.
We have found that the LA23 t/s mutant of Rous sarcoma virus (phenotype Prague B), even when passaged repeatedly at high multiplicity of infection, does not give rise to transformation defective deletion mutants comparable to those derived from RSV. In view of this fact and of the high rate of production of this mutant at 41 degrees C, we have undertaken a detailed analysis of the genome of this virus by ordering all large T1 oligonucleotides and by determining their nucleotide sequences. The results indicate a high degree of mutation in the onc gene as compared to that of Pr-A or Pr-B.  相似文献   

5.
The subcellular localization in chicken Rous sarcoma of nucleotide sequence, complementary to Rous sarcoma virus RNA was examined by RNA/RNA molecular hybridization. The preparations of radioiodinated virion RNA were annealed with RNAs from different fractions (nuclei, mitochondria, free and membrane-bound polyribosomes) isolated from chicken Rous sarcoma. Formation of RNA-ase resistant hybrids between the viral 125I-RNA and RNA from the mitochondria and membrane-bound polyribosomes was revealed. The latter were characterized by a higher relative redundancy of nucleotide sequences complementary to virion RNA than that in the former, by factor 446. The role of complementary ribonucleotide sequences is discussed.  相似文献   

6.
Structure-function relationship of Rous sarcoma virus leader RNA.   总被引:20,自引:4,他引:20       下载免费PDF全文
J L Darlix  M Zuker    P F Spahr 《Nucleic acids research》1982,10(17):5183-5196
Cells infected by RSV synthesize viral 35S RNA as well as subgenomic 28S and 22S RNAs coding for the Env and Src genes respectively. In addition, at least the 5' 101 nucleotides of the leader are also conserved and we have shown previously that this sequence contains a strong ribosome binding site (J.-L. Darlix et al., J. Virol. 29, 597). We now report the RNA sequence of Rous Sarcoma virus (RSV) leader RNA and propose a folding of this 5' untranslated region which brings the Cap, the initiation codon for Gag and the strong ribosome binding site close to each other. We also show that ribosomes protect a sequence just upstream from initiator Aug of Gag in vitro, and believed to interact with part of the strong ribosome binding site according to the folding proposed for the leader RNA.  相似文献   

7.
8.
9.
The interactions between Rous Sarcoma virus (RSV) RNA and the viral proteins in the virus have been analysed by Sen & Todaro (1977) using ultraviolet light irradiation; they showed that the major protein ultraviolet light cross-linked to the viral RNA was P19 as identified by polyacrylamide gel electrophoresis. We report here that it is not viral protein P19 but P12 that binds tightly to RSV RNA upon ultraviolet light irradiation of the virus. Therefore, the binding sites of the viral protein along RSV RNA that we have characterized previously should be correctly attributed now to P12 and not P19.  相似文献   

10.
Inhibition of Rous sarcoma virus replication by antisense RNA.   总被引:10,自引:3,他引:10       下载免费PDF全文
Previous results have indicated that Rous sarcoma virus env gene expression is specifically inhibited by antisense RNA (L.-J. Chang and C. M. Stoltzfus, Mol. Cell. Biol. 5:2341-2348, 1985). In this study, we compare the extents of inhibition by antisense RNA derived from different parts of the Rous sarcoma virus genome, and we show that antisense constructs containing the 3'-end noncoding region inhibit env expression to a similar extent as those containing the 5'-end noncoding region or coding region. Furthermore, we show that antisense RNA inhibits virus replication at other levels in addition to translation.  相似文献   

11.
12.
13.
Regulation of Rous sarcoma virus RNA splicing and stability.   总被引:30,自引:10,他引:30       下载免费PDF全文
  相似文献   

14.
A mutant derived from a temperature-sensitive mutant of Rous sarcoma virus ( tsNY68 ) which showed extremely low infectivity was characterized. Infection of chicken embryo fibroblast cells with the mutant, TK15 , induced two types of transformants, mutant-producing 15c (+) and nonvirus -producing 15c (-) transformants. 15c (+) cells expressed all four viral genes normally and produced a normal level of virus particles. No complementation was observed between the mutant and avian leukosis viruses. However, when 15c (+) cells were cocultured with nonvirus -producing cells transformed by Y73, a replication-defective avian sarcoma virus, a high titer of Y73 virus was recovered. From its biological properties, the mutant seemed to have a defect(s) outside the viral genes. Biochemical analysis of the TK15 mutant (T. Koyama , F. Harada, and S. Kawai , J. Virol. 51:154-162, 1984) revealed that it had a defect in packaging its own genomic RNA. During replication of TK15 virus, the TK15 mutant appeared to segregate at high frequency more defective variants that induced 15c (-) transformants, in most of which only the src gene was expressed. The mechanism for the segregation of 15c (-) transformants is discussed with respect to the defect of the mutant.  相似文献   

15.
As also found for other retroviruses, the Rous sarcoma virus structural protein Gag is necessary and sufficient for formation of virus-like particles (VLPs). Purified polypeptide fragments comprising most of Gag spontaneously assemble in vitro at pH 6.5 into VLPs lacking a membrane, a process that requires nucleic acid. We showed previously that the minimum length of a DNA oligonucleotide that can support efficient assembly is 16 nucleotides (nt), twice the protein's binding site size. This observation suggests that the essential role of nucleic acid in assembly is to promote the formation of Gag dimers. In order to gain further insight into the role of dimerization, we have studied the assembly properties of two proteins, a nearly full-length Gag (deltaMBDdeltaPR) capable of proper in vitro assembly and a smaller Gag fragment (CTD-NC) capable of forming only irregular aggregates but with the same pH and oligonucleotide length requirements as for assembly with the larger protein. In analyses by sedimentation velocity and by cross-linking, both proteins remained monomeric in the absence of oligonucleotides or in the presence of an oligonucleotide of length 8 nt (GT8). At pH 8, which does not support assembly, binding to GT16 induced the formation of dimers of deltaMBDdeltaPR but not of CTD-NC, implying that dimerization requires the N-terminal domain of the capsid moiety of Gag. Assembly of VLPs was induced by shifting the pH of dimeric complexes of deltaMBDdeltaPR and GT16 from 8 to 6.5. An analogue of GT16 with a ribonucleotide linkage in the middle also supported dimer formation at pH 8. Even after quantitative cleavage of the oligonucleotide by treatment of the complex with RNase, these dimers could be triggered to undergo assembly by pH change. This result implies that protein-protein interactions stabilize the dimer. We propose that binding of two adjacent Gag molecules on a stretch of nucleic acid leads to protein-protein interactions that create a Gag dimer and that this species has an exposed surface not present in monomers which allows polymerization of the dimers into a spherical shell.  相似文献   

16.
T Koyama  F Harada    S Kawai 《Journal of virology》1984,51(1):154-162
The accompanying paper (S. Kawai and T. Koyama , J. Virol. 51:147-153, 1984) describes the isolation and biological properties of a mutant, TK15 , derived from a Rous sarcoma virus mutant, tsNY68 . The cis-acting defect of the mutant is analyzed biochemically in this paper. TK15 virions released from virus-producing 15c (+) cells were deficient in viral genomic 39S RNA, although comparable amounts of viral RNAs were transcribed in 15c (+) and tsNY68 -infected cells. Analysis of provirus DNA occurring in 15c (+) cells suggested that the mutant genome had a deletion of ca. 250 bases near the 5' end of the genome somewhere between the primer binding site and the 5' end of the gag-coding region. These findings indicate that at least part of the sequence lost in the TK15 genome is indispensable for packaging viral genomic RNA into virions. TK15 induces nonvirus -producing 15c (-) transformants at high frequency. Southern blot analysis of DNAs from those 15c (-) clone cells revealed that TK15 -derived proviruses contained various extents of internal deletions. Many 15c (-) clones had a provirus carrying only the src gene with long terminal repeat sequences at both ends. The mechanism for the segregation of 15c (-) cells is discussed.  相似文献   

17.
Summary Prompted by our observation that a reduction in junctional permeance is one of the earlier events in the process of neoplastic transformation of a cell line by Rous sarcoma virus, we analyzed the gap junctions, from these cells to determine if the basis of the reduction is a loss of junctional channels. The cells (normal rat kidney, or NRK) are infected with a temperature-sensitive mutant of Rous sarcoma virus, allowing one easily to manipulate the cells into and out of the transformed state, and hence also to manipulate the junctional permeance. Using freeze-fracture electron microscopy, we found that the number and size of the junctions did not change in parallel with the permeance changes we had previously characterized. There is, however, a significant rearrangement of the junctional particles to a more random configuration when the cells are transformed and a reversal to the more ordered pattern when the cells are shifted back to the normal phenotype. These changes do parallel the changes in junctional permeance. We conclude that the permeance of existing junctional channels is modified and that the change in permeance may involve a change in the interaction of the junctional channels with each other and/or the surrounding lipid domain.  相似文献   

18.
Rous sarcoma virus encodes a transcriptional activator   总被引:33,自引:0,他引:33  
S Broome  W Gilbert 《Cell》1985,40(3):537-546
  相似文献   

19.
Site-directed mutagenesis has shown that the nucleocapsid (NC) protein of Rous sarcoma virus (RSV) is required for packaging and dimerization of viral RNA. However, it has not been possible to demonstrate, in vivo or in vitro, specific binding of viral RNA sequences by NC. To determine whether specific packaging of viral RNA is mediated by NC in vivo, we have constructed RSV mutants carrying sequences of Moloney murine leukemia virus (MoMuLV). Either the NC coding region alone, the psi RNA packaging sequence, or both the NC and psi sequences of MoMuLV were substituted for the corresponding regions of a full-length RSV clone to yield chimeric plasmid pAPrcMNC, pAPrc psi M, or pAPrcM psi M, respectively. In addition, a mutant of RSV in which the NC is completely deleted was tested as a control. Upon transfection, each of the chimeric mutants produced viral particles containing processed core proteins but were noninfectious. Thus, MoMuLV NC can replace RSV NC functionally in the assembly and release of mature virions but not in infectivity. Surprisingly, the full-deletion mutant showed a strong block in virus release, suggesting that NC is involved in virus assembly. Mutant PrcMNC packaged 50- to 100-fold less RSV RNA than did the wild type; in cotransfection experiments, MoMuLV RNA was preferentially packaged. This result suggests that the specific recognition of viral RNA during virus assembly involves, at least in part, the NC protein.  相似文献   

20.
We determined the sites at which ribosomes form initiation complexes on Rous sarcoma virus RNA in order to determine how initiation of Pr76gag synthesis at the fourth AUG codon from the 5' end of Rous sarcoma virus strain SR-A RNA occurs. Ribosomes bind almost exclusively at the 5'-proximal AUG codon when chloride is present as the major anion added to the translational system. However, when chloride is replaced with acetate, ribosomes bind at the two 5'-proximal AUG codons, as well as at the initiation site for Pr76gag. We confirmed that the 5'-proximal AUG codon is part of a functional initiation site by identifying the seven-amino acid peptide encoded there. Our results suggest that (i) translation in vitro of Rous sarcoma virus virion RNA results in the synthesis of at least two polypeptides; (ii) the pattern of ribosome binding observed for Rous sarcoma virus RNA can be accounted for by the modified scanning hypothesis; and (iii) the interaction between 40S ribosomal subunits or 80S ribosomal complexes is stronger at the 5'-proximal AUG codon than at sites farther downstream, including the initiation site for the major viral proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号