首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sedimentation equilibrium and sedimentation velocity measurements were carried out on cytochrome P-450LM2 from phenobarbital-treated rabbit liver and on cytochrome P-450LM4 from 5,6-benzoflavone-treated rabbit liver in the presence of the nonionic detergent 1-O-n-octyl-β-D-glucopyranoside. P-450LM2 was monomeric with a molecular weight of 48,800 and a Stokes radius of 3.1 nm in 7 g/l detergent and P-450LM4 was monomeric with a molecular weight of 49,800 and a Stokes radius of 2.6 nm at 5 g/l detergent. Both particles were spherical in shape under these conditions. Neither cytochrome was irreversibly denatured at these detergent concentrations as indicated by the ability to form substantial amounts (>60%) of the CO adduct with an absorption maximum at 451 nm (P-450LM2) or 448 nm (P-450LM4) when diluted into detergent-free buffer containing CO and sodium dithionite.  相似文献   

2.
To measure cytochrome P-450 (P-450) content in hepatocyte cytoplasm, we developed a dual monochromator-equipped microphotometry system (KWSP-1). Simultaneous measurements of absorbance at 450 and 490 nm with narrow band width (0.5 nm) and small spot size (2 microns) were accomplished by this system. Corresponding fields in serial sections could be easily and rapidly identified under the Nomarski imaging mode of KWSP-1. Photometric accuracy and repeatability of wavelength setting of KWSP-1 were also satisfactory for measurement of P-450. With this system, it is thus possible to measure the extinction of P-450 from many small measuring areas and to precisely determine P-450 content in the cytoplasm of rat hepatocytes. A microphotometric method was developed using cuvette slides and two serial 10-microns thick sections (mapping method). The intracellular distribution of P-450 in individual hepatocytes could be visualized by the mapping method with KWSP-1. However, this method was not applicable to tissue sections containing hemoglobin larger than 4 microM.  相似文献   

3.
Reduction of cytochrome P-450S21 (SF) (SF, substrate-free; purified from bovine adrenocortical microsomes) with sodium dithionite (Na2S2O4) in the presence of phenylisocyanide produced a ferrous cytochrome P-450S21 (SF)-phenylisocyanide complex with Soret absorbance maxima at 429 and 456 nm. On the other hand, when a preformed ferric cytochrome P-450S21 (SF)-NADPH-cytochrome-P-450 reductase (Fp2) complex was reduced chemically or enzymatically under the same conditions, the absorbance spectrum of the ferrous cytochrome P-450S21 (SF)-phenylisocyanide complex changed drastically, as characterized by an increase in absorbance intensity at 429 nm and a decrease at 456 nm. Similar spectral changes were observed by addition of reduced Fp2 to the preformed ferrous cytochrome P-450S21 (SF)-phenylisocyanide complex. Experiments to reduce a ferric cytochrome P-450S21 (SF)-phenylisocyanide complex with sodium dithionite in the presence of various amounts of Fp2 showed that; (1), the spectral change reached maxima for both absorption increase at 429 nm and decrease at 456 nm when cytochrome P-450S21 and Fp2 were previously mixed at the cytochrome P-450S21:Fp2 ratio of 1:5; (2), the spectral change was suppressed in 300 mM potassium phosphate buffer (pH 7.4). These results suggest that the absorbance spectral change is due to a conformational change around the heme moiety induced by association with reduced Fp2.  相似文献   

4.
Rat liver sections were incubated with antibodies (100-1000 micrograms IgG/ml) against microsomal cytochromes P-450a, P-450b, and P-450c, and epoxide hydrolase. Inhibition of indirect immunofluorescence, which progressed with higher concentrations of primary antibody, corresponded with antigen-enriched tissue in frozen liver sections from male and female rats. It was found in liver sections from phenobarbital-treated rats incubated with anti-P-450b and anti-epoxide hydrolase and from 3-methylcholanthrene-treated rats incubated with anti-P-450c. No inhibition was found in sections from untreated rats or rats receiving treatments that did not induce the specific antigen. No inhibition was found in sections incubated with anti-P-450a. Inhibition of immunofluorescence was abolished in frozen sections subjected to dehydration-rehydration protocols known to extract antigens, and was prevented by certain solvents and detergent-wash. Inhibition of immunofluorescence provides a unique method for confirming the antigen-rich regions of the liver lobules specific for microsomal expoxide hydrolase and the cytochrome P-450s.  相似文献   

5.
The aerobic metabolism of benzphetamine by liver microsomes, during a cytochrome P-450-catalyzed mixed-function oxidation reaction, results in the formation of an easily detected spectral complex with an absorption band maximum at 456 nm. Electron paramagnetic resonance studies, as well as studies with the chemical reductant, sodium dithionite, or the oxidant, potassium ferricyanide, indicate that the spectral complex results from the formation of a product adduct with reduced cytochrome P-450. The spectral properties of this product complex of cytochrome P-450 have been compared to those observed with carbon monoxide, metyrapone, and ethylisocyanide. The reaction of these reagents to specific pools of microsomal cytochrome P-450 permits the identification of at least two major and two minor types of cytochrome P-450 in liver microsomes prepared from phenobarbital-treated rats.  相似文献   

6.
The reduction of highly purified cytochrome P-450 from rabbit liver microsomes under anaerobic conditions requires 2 electrons per molecule. Similar results were obtained with dithionite, NADPH in the presence of NADPH-cytochrome P-450 reductase, or a photochemical system as the electron donor, with CO or other ligands, with substrate or phosphatidylcholine present, after denaturation to form cytochrome P-420, or with cytochrome P-450 partially purified from rat or mouse liver microsomes. The reduced cytochrome P-450 donates 2 electrons to dichlorophenolindophenol or to cytochrome c. Reoxidation of reduced cytochrome P-450 by molecular oxygen restores a state where 2 electrons from dithionite are required for re-reduction. Although these unexpected findings indicate the presence of an electron acceptor in addition to the heme iron atom, significant amounts of non-heme iron, other metals or cofactors, or disulfide bonds were not found, and free radicals were not detected by electron paramagnetic resonance spectrometry. Resolution of the cytochrome with acetone and acid yielded the apoenzyme, which did not accept electrons, and ferriprotoporphyrin IX, which accepted a single electron. A reconstituted hemoprotein preparation with the spectral characteristics of cytochrome P-420 accepted as much as 0.7 extra electron equivalent per heme. The midpoint oxidation-reduction potential of purified cytochrome P-450 from rabbit liver microsomes at pH 7.0 is -330 mv, and with CO present this value is changed to about -150 mv. The oxidation-reduction potential is unaffected by the presence of phosphatidylcholine or benzphetamine, a typical substrate. Laurate, aminopyrine, and benzphetamine undergo hydroxylation in the presence of chemically reduced cytochrome P-450 and molecular oxygen. Neither NADPH nor the reductase is required for substrate hydroxylation under these conditions.  相似文献   

7.
A method for measuring the content of two groups of microsomal cytochrome P-450 isozymes--cytochromes P-450W and P-450L--with the active sites directed into the water phase and membrane lipids, respectively, has been developed. The method is based on the ability of the xanthine oxidase-menadione complex to reduce microsomal cytochromes b5 and P-450 under anaerobic conditions by transferring electrons to hemoproteins with the active sites directed into the water phase. Cytochrome b5 is completely reduced (to the dithionite level) and cytochrome P-450 is reduced partially (only a group of cytochromes P-450W). The amount of cytochromes P-450L is estimated using the difference between the total content of cytochrome P-450 reduced by sodium dithionite and the content of cytochromes P-450W. The possibility of controlling the ratio of these two isozyme groups in cytochrome P-450 in vivo in membranes of the endoplasmic reticulum by pretreatment of animals with a variety of chemicals has been demonstrated. The ratio of cytochromes P-450W and P-450L has been shown to decrease two-fold 18 days after three injections of phenobarbital into mice. Carbon tetrachloride and cyclophosphamide also decrease this ratio in vivo.  相似文献   

8.
Octyl methyl-, butyl methyl- and pentamethylene sulfide react with about 50% of oxidized cytochrome P-450 in liver microsomes from phenobarbital-pretreated rats by formation of optical difference spectra with maxima at 435 and 552 nm and concomitant shifts in the electron paramagnetic resonance spectrum. Reduction by NADPH or sodium dithionite yielded a Soret absorption band at 449 nm and alpha and beta bands at 573 and 545 nm, respectively. The ligand metyrapone and the substrate n-octane competitively inhibited the formation of these difference spectra and pentamethylene sulfide was a strong competitive inhibitor of the 0-deakylation of 7-ethoxycoumarin. These results indicate a direct ligand binding of the sulfides to cytochrome P-450 with concomitant blocking of the hydrophobic substrate binding site. Some sulfides did not interact as ligands but as substrates, in variation, however, with the source of microsomes.  相似文献   

9.
Lipophilic thiol compounds interact spectrally with liver microsomes from phenobarbital-pretreated rats by formation of unusual optical difference spectra with peaks at 378, 471, 522 and 593 nm in the oxidized state. The binding kinetics were biphasic. The EPR spectrum of cytochrome P-450 was slightly modified but the magnitude of the low-spin signal was unchanged. n-Octanethiol competitively displaced metyrapone and n-octane from the active site of cytochrome P-450. Other thiols behaved similarly with variations in the magnitude and the affinity of the binding process. Tertiary thiols caused the formation of the high-spin cytochrome P-450 substrate complex, and model studies with myoglobin revealed that steric hindrance prevented the liganding of the tertiary thiol group to the ferric cytochrome P-450. Addition of thiols to dithionite reduced microsomes resulted in relatively small spectral changes with maxima at 449 nm typical for ligand complexes of the ferrous cytochrome. It was concluded that lipophilic thiols can be bound as ligands by at least two species of oxidized cytochrome P-450 which represent, however, not more than about one fifth of the total cytochrome P-450 content in liver microsomes from phenobarbital-pretreated rats.  相似文献   

10.
Purified hepatic NADPH-cytochrome P-450 reductase, which was reconstituted with dilauroylphosphatidylcholine, catalyzed a one-electron reductive denitrosation of 1-(2-[14C]-chloroethyl)-3-(cyclohexyl)-1-nitrosourea ([14C]CCNU) to give 1-(2-[14C]-chloroethyl)-3-(cyclohexyl)urea at the expense of NADPH. Ambient oxygen or anoxic conditions did not alter the rates of [14C]CCNU denitrosation catalyzed by NADPH-cytochrome P-450 reductase with NADPH. Electron equivalents for reduction could be supplied by NADPH or sodium dithionite. However, the turnover number with NADPH was slightly greater than with sodium dithionite. Enzymatic denitrosation with sodium dithionite or NADPH was observed in anaerobic incubation mixtures which contained NADPH-cytochrome P-450 reductase with or without cytochrome P-450 purified from livers of phenobarbital (PB)-treated rats; PB cytochrome P-450 alone did not support catalysis. PB cytochrome P-450 stimulated reductase activity at molar concentrations approximately equal to or less than NADPH-cytochrome P-450 reductase concentration, but PB cytochrome P-450 concentrations greater than NADPH-cytochrome P-450 reductase inhibited catalytic denitrosation. Cytochrome c, FMN, and riboflavin demonstrated different degrees of stimulation of NADPH-cytochrome P-450 reductase-dependent denitrosation. Of the flavins tested, FMN demonstrated greater stimulation than riboflavin and FAD had no observable effect. A 3-fold stimulation by FMN was not observed in the absence of NADPH-cytochrome P-450 reductase. These studies provided evidence which establish NADPH-cytochrome P-450 reductase rather than PB cytochrome P-450 as the enzyme in the hepatic endoplasmic reticulum responsible for CCNU reductive metabolism.  相似文献   

11.
经苯巴比妥钠诱导的雄性大白鼠的肝微粒体纯化的细胞色素P-450同功酶组份,经SDS-PAGE鉴定呈电泳纯,分子量为55kD。部分纯化的NADPH-细胞色素P-450还原酶,含72和77kD两个蛋白质组分。上述细胞色素P-450和NADPH-细胞色素P-450还原酶与卵磷脂制备的脂质体重组后的活性试验表明,对艾氏剂有环氧化作用,对环已烷有羟化作用,对溴氰菊酯的羟化作用微弱。当重组系统中缺少细胞色素P-450组份时,对环已烷不再起作用。同时还研究了纯化的细胞色素P-450的光谱特性。  相似文献   

12.
Summary To reveal distribution patterns of phenobarbital-and 3-methylcholanthrene-inducible cytochromes P-450 (PB and MC) and NADPH-cytochrome P-450 reductase (P-450red) within the liver acinus of untreated rats, and their variations over 24 h, hepatic samples were examined by immunohistochemistry and image-analyzer at evenly spaced six time points over 24 h. When examined in semi-thin sections obtained from Epon-embedded, freeze-dried, and paraformaldehyde vapor-phase fixed materials, the immunoreactivity for these enzymes showed different distribution patterns within the liver acinus. Immunodeposits for PB were predominantly distributed in perivenous hepatocytes, whereas those for MC and P-450red were slightly more intense in periportal hepatocytes at each time point. The immunoreactivity for PB and MC in both perivenous and periportal hepatocytes increased during the dark period, peaking early in the light period. These variations coincide well with our previous morphometric results (Uchiyama and Asari, 1984); the volume and surface densities of rough endoplasmic reticulum (rER) in hepatocytes increased during the dark period. On the other hand, weak fluctuation was demonstrated in the immunoreactivity for P-450red in hepatocytes of both zones. These results suggest that PB and MC are retained in rER rather than smooth endoplasmic reticulum (sER) of hepatocytes obtained from untreated rats. These enzymes in sER may be short in their half-life spans.  相似文献   

13.
To reveal distribution patterns of phenobarbital- and 3-methylcholanthrene-inducible cytochromes P-450 (PB and MC) and NADPH-cytochrome P-450 reductase (P-450red) within the liver acinus of untreated rats, and their variations over 24 h, hepatic samples were examined by immunohistochemistry and image-analyzer at evenly spaced six time points over 24 h. When examined in semi-thin sections obtained from Epon-embedded, freeze-dried, and paraformaldehyde vapor-phase fixed materials, the immunoreactivity for these enzymes showed different distribution patterns within the liver acinus. Immunodeposits for PB were predominantly distributed in perivenous hepatocytes, whereas those for MC and P-450red were slightly more intense in periportal hepatocytes at each time point. The immunoreactivity for PB and MC in both perivenous and periportal hepatocytes increased during the dark period, peaking early in the light period. These variations coincide well with our previous morphometric results (Uchiyama and Asari, 1984); the volume and surface densities of rough endoplasmic reticulum (rER) in hepatocytes increased during the dark period. On the other hand, weak fluctuation was demonstrated in the immunoreactivity for P-450red in hepatocytes of both zones. These results suggest that PB and MC are retained in rER rather than smooth endoplasmic reticulum (sER) of hepatocytes obtained from untreated rats. These enzymes in sER may be short in their half-life spans.  相似文献   

14.
Immunocytochemical studies with a monoclonal antibody (MAb-HL3), which recognises a major isozyme of human hepatic cytochrome P-450, have demonstrated this cytochrome in both cryostat and formalin-fixed paraffin-embedded sections of normal human adult liver. Prior trypsin digestion of the formalin-fixed sections prevented staining. There was a zonal distribution of immunoreactive cytochrome P-450, with localization predominantly in the hepatocytes of zone 3 of the hepatic acinus (the centrilobular region). Cytochrome P-450 was also demonstrated in foetal liver, but all foetal hepatocytes contained immunoreactive cytochrome P-450 and there was no zonal distribution of the protein. The biliary epithelium of adult liver contained a small amount of immunoreactive cytochrome P-450 whereas there was no immunoreactivity in the epithelium of foetal bile ducts.  相似文献   

15.
The aim of this study was to determine the effects of ionic strength and pH on the different pathways of testosterone oxidation catalyzed by rat liver microsomes. The catalytic activity of cytochromes P-450a (IIA1), P-450b (IIB1), P-450h (IIC11) and P-450p (IIIA1) was measured in liver microsomes from mature male rats and phenobarbital-treated rats as testosterone 7 alpha-, 16 beta-, 2 alpha- and 6 beta-hydroxylase activity, respectively. An increase in the concentration of potassium phosphate (from 25 to 250 mM) caused a marked decrease in the catalytic activity of cytochromes P-450a (to 8%), P-450b (to 22%) and P-450h (to 23%), but caused a pronounced increase in the catalytic activity of cytochrome P-450p (up to 4.2-fold). These effects were attributed to changes in ionic strength, because similar but less pronounced effects were observed with Tris-HCl (which has approximately 1/3 the ionic strength of phosphate buffer at pH 7.4). Testosterone oxidation by microsomal cytochromes P-450a, P-450b, P-450h and P-450p was also differentially affected by pH (over the range 6.8-8.0). The pH optima ranged from 7.1 (for P-450a and P-450h) to 8.0 (for P-450p), with an intermediate value of 7.4 for cytochrome P-450b. Increasing the pH from 6.8 to 8.0 unexpectedly altered the relative amounts of the 3 major metabolites produced by cytochrome P-450h. The decline in testosterone oxidation by cytochromes P-450a, P-450b and P-450h that accompanied an increase in ionic strength or pH could be duplicated in reconstitution systems containing purified P-450a, P-450b or P-450h, equimolar amounts of NADPH-cytochrome P-450 reductase and optimal amounts of dilauroylphosphatidylcholine. This result indicated that the decline in testosterone oxidation by cytochromes P-450a, P-450b and P-450h was a direct effect of ionic strength and pH on these enzymes, rather than a secondary effect related to the increase in testosterone oxidation by cytochrome P-450p. Similar studies with purified cytochrome P-450p were complicated by the atypical conditions needed to reconstitute this enzyme. However, studies on the conversion of digitoxin to digitoxigenin bisdigitoxoside by liver microsomes, which is catalyzed specifically by cytochrome P-450p, provided indirect evidence that the increase in catalytic activity of cytochrome P-450p was also a direct effect of ionic strength and pH on this enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Summary A method for the measurement of cytochrome P450 in unfixed cryostat sections is described. The sections are incubated for 10 minutes at room temperature in a buffered solution containing polyvinyl alcohol and sodium dithionite. Two incubations are performed on serial sections, one in nitrogen and the other in carbon monoxide. Readings are taken on a Vickers M85 microdensitometer fitted with a high sensitivity photomultiplier amplifier system, the measurements being made on corresponding fields in the serial sections. Subtraction of the nitrogen values from the carbon monoxide values, after allowing for an absorption shift, gives the absolute spectrum of cytochrome P450. The subtraction corrects for the tissue content of other haem-containing proteins. The cytochrome P450 spectrum shows a sharp maximum at 450 nm, and two other minor components absorbing at 444 nm and 458 nm. The content of cytochrome P450 in animals fed with phenobarbitone was 2.4 times greater than in control animals.  相似文献   

17.
The conditions for the preparation of the ferricytochrome a-ferrocytochrome a3-carbon monoxide complex (a3+, a3(2)+CO) of cytochrome oxidase [EC 1.9.3.1] by the ferricyanide-reoxidation method and some properties of the prepared complex were studied. The addition of a small volume of concentrated ferricyanide solution to the dithionite-reduced and carbon monoxide-treated cytochrome oxidase preparation was required to obtain the (a3+, a3(2)+CO) spectrum showing absorption maxima at 590, 545, and 429 nm. The addition of larger volumes of ferricyanide solution, thus introducing larger amounts of oxygen into the preparation, caused decomposition of the carbon monoxide complex. A part of the added ferricyanide was immediately reduced by dithionite whereas the remainder was gradually reduced by partial oxidation product(s) of dithionite. The (a3+, a3(2)+CO) complex was stable only when excess ferricyanide remained in the reaction mixture. The formation of the (a3+, a3(2)+CO) spectrum was observed when sodium citrate, phosphate or borate buffer containing either cholate or a non-ionic detergent was employed as the solvent buffer, but not with the buffers containing sodium dodecyl sulfate (SDS) or cetyltrimethyl-ammonium bromide (CETAB). The formation was considerably inhibited by trishydroxymethyl-aminomethane(Tris)-HCl buffer. The (a3+, a3(2)+CO) spectrum appeared with maximal intensity at around pH 7. The pH-dependency of the intensity of the spectrum was not in parallel with the pH-dependent change of the polymerization state of the cytochrome oxidase preparation. On freezing to liquid nitrogen temperature, the (a3+, a3(2)+CO) complex prepared in usual solvent buffers was mostly converted to the oxidized form of cytochrome oxidase (a3+, a3(3)+. However, when prepared in the phosphate buffer, pH 8.0, containing 1.2% (w/v) sodium cholate and with 20% saturation with ammonium sulfate, the complex mostly remained unchanged after the freezing. Based on the results obtained, the stability of the juxta-heme structure of cytochrome a3 was also discussed.  相似文献   

18.
M Tsubaki  A Hiwatashi  Y Ichikawa 《Biochemistry》1989,28(25):9777-9784
Reduction of cytochrome P-450scc(SF) (SF, substrate free) purified from bovine adrenocortical mitochondria with sodium dithionite (Na2S2O4) or with beta-NADPH mediated by catalytic amounts of adrenodoxin and adrenodoxin reductase in the presence of phenyl isocyanide produced a ferrous cytochrome P-450scc(SF)-phenyl isocyanide complex with Soret absorbance maximum at 455 nm having a shoulder at 425 nm. On the other hand, when a preformed cytochrome P-450scc(SF)-adrenodoxin complex was reduced chemically or enzymatically under the same conditions, the absorbance spectrum showed drastic changes, i.e., an increase in intensity at 425 nm and a concomitant decrease in intensity at 455 nm. Similar spectral changes could be produced by addition of the same amount of reduced adrenodoxin afterward to the ferrous cytochrome P-450scc(SF)-phenyl isocyanide complex. Titration experiments with adrenodoxin showed that (1) a 1:1 stoichiometric saturation of the spectral change was obtained for both the absorbance increase at 425 nm and the absorbance decrease at 455 nm, (2) there was no spectral change in the presence of 0.35 M NaCl, and (3) there was no spectral change for cytochrome P-450scc(SF) whose Lys residue(s) essential to the interaction with adrenodoxin had been covalently modified with PLP. These results suggest that ternary complex formation of ferrous cytochrome P-450scc(SF)-phenyl isocyanide with reduced adrenodoxin caused a conformational change around the ferrous heme moiety. By analysis of temperature and pH dependencies of the spectral change of the ternary complex, it was suggested that this conformational change may reflect the essential step for electron transfer from reduced adrenodoxin to the ferrous-dioxygen complex of cytochrome P-450scc.  相似文献   

19.
20.
Cholesterol 7 alpha-hydroxylase (cholesterol, NADPH: oxygen oxidoreductase, 7 alpha-hydroxylating, EC 1.14.13.17) was purified from liver microsomes of cholestryramine-fed male rats by using high-performance ion-exchange chromatography. The purified enzyme showed a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr = 52,000), and its dithionite-reduced CO complex exhibited an absorption maximum at 450 nm. The specific content of the enzyme was 9 nmol of cytochrome P-450/mg of protein. Upon reconstitution with NADPH-cytochrome P-450 reductase, the enzyme showed a high activity of cholesterol 7 alpha-hydroxylation with the turnover number of 50 min-1 at 37 degrees C. The reaction was inhibited neither by aminoglutethimide nor by metyrapone, but inhibited markedly by iodoacetamide and disulfiram. The reaction was also inhibited significantly by CO. The enzyme catalyzed hydroxylation of cholesterol with strict regio- and stereoselectivity and was inert toward other sterols which are intermediates in the conversion of cholesterol to bile acids, i.e. 7 alpha-hydroxy-4-cholesten-3-one (12 alpha-hydroxylation), 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol (25-hydroxylation), and taurodeoxycholate (7 alpha-hydroxylation). Unlike other cytochromes P-450 isolated from rat liver microsomes, the enzyme showed no activity toward testosterone and xenobiotics such as 7-ethoxycoumarin and benzo[a] pyrene. The NH2-terminal amino acid sequence of the enzyme was Met-Phe-Glu-Val(Ile)-Ser-Leu-, which was distinct from those of any other cytochromes P-450 of rat liver microsomes hitherto reported. These results indicate that the enzyme is a novel species of cytochrome P-450 so far not isolated from liver microsomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号