首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Investigations were undertaken to study the effect of in vitro addition of testosterone (0.3 mM) on the release of luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin (PRL) by pituitary-hypothalamus complex (PHC) or the whole pituitary (PI) incubated for 72 hr, with incubation media changed every 24 hr. PHC or PI were from adult intact or castrated (7 days post castration) rats. The tissues incubated with or without testosterone were further exposed to 0.1 nM luteinizing hormone-releasing hormone (LHRH) for 4 hr. Incubation media and the pituitary were analyzed for PRL and gonadotrophin content. While PHC from normal and castrated rats released increasing amounts of LH with diminishing amounts of FSH and PRL at different periods of incubation, PI showed a decrease in the amounts of gonadotrophin and PRL released. Co-incubation of PHC or PI of intact or castrated rats with testosterone stimulated the release of LH and FSH during the first or second-24 hr incubation but inhibited the release of PRL in all the three incubations of 24 hr each. The extent of PRL inhibition increased with increasing incubation period. Testosterone had no effect on LHRH induced release of PRL but inhibited LHRH induced release of LH and FSH by pituitaries from constructs of normal rats. Testosterone reduced intrapituitary contents of PRL and FSH of intact and castrated rats. The data are interpreted to suggest that hypothalamus is essential for the maintenance of functional pituitary in vitro and that intrinsic differences exist in mechanisms regulating the secretion of LH, FSH and PRL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
There are situations in which adult female rats release increased amounts of follicle-stimulating hormone (FSH) independent of increased luteinizing hormone (LH) release. This results from, at least in part, a selective increase in the basal FSH release rate. We investigated whether an increase in the basal FSH release rate is contributory to the rise in serum FSH levels which occurs independent of a rise in serum LH levels in the immature female rat. Rats had high serum FSH concentrations on days 7 and 15 after birth, low serum FSH levels on day 23, and low serum LH levels on all three days. In contrast, anterior pituitary gland (APG) FSH and LH concentrations and contents increased from day 7 to day 15 and the contents increased further from day 15 to day 23. Similarly, basal FSH and LH release rates per mg APG or per APG, as assessed by measurement of FSH and LH released into culture medium containing APG(s) from different aged rats, increased from day 7 to day 15 but did not increase further between days 15 and 23. The results indicate that unlike situations observed to date in adult female rats, a mechanism(s) other than an increase in the basal FSH release rate is involved in selective FSH release in the immature female rat.  相似文献   

3.
The role of the serotoninergic system in the control of LH, FSH and prolactin secretion was analyzed in control and neonatally estrogenized male rats. Animals injected s.c. with 500 micrograms of estradiol benzoate (EB) on day 1 of life, or their corresponding sham-treated controls, were divided on day 75 into the following groups: (1) orchidectomized; (2) injected intraventricularly with 5,7-dihydroxytryptamine (5,7-DHT); (3) orchidectomized and treated with 5,7-DHT, and (4) sham operated. 15 days later, the animals were decapitated and their FHS, LH and prolactin plasma values measured by specific RIA systems. After the treatment with 5,7-DHT, control animals showed a decline in basal prolactin levels but no modification in basal LH and FSH values. After castration, 5,7-DHT-treated animals showed a reduced LH increase and a more marked prolactin decrease. In neonatal estrogen-treated animals, the 5,7-DHT injection did not change FSH, LH or prolactin levels but did partially or completely abolish the post-castration rise in FSH and LH levels, respectively. These data seem to indicate that neonatal estrogenization induced a modification of the serotoninergic role in the control of LH, FSH and prolactin.  相似文献   

4.
Exposure to short days for 8 weeks suppressed mean serum concentrations of FSH, LH and prolactin compared to hamsters kept in long days. Hamsters in short days exhibited a small afternoon rise in serum FSH, but serum LH and prolactin did not exhibit 24-h variations. In hamsters under long days, a late afternoon-early evening increase was evident for circulating prolactin but none was detected for the gonadotrophins. A fall in testes weights rapidly occurred by 14-28 days after transfer to short days. This was accompanied or preceded by a decrease in serum gonadotrophins and prolactin. Reductions in serum FSH and LH occurred in short days in blood samples taken at 09:00 h or 15:00 h. However, the nadir in serum prolactin was first achieved (at 09:00 h), at least 7 days before that at 15:00 h (i.e. Day 14 versus Day 21 of short photoperiod, respectively). The ability to secrete gonadotrophins was further tested in hamsters that had undergone gonadal regression. Castration of hamsters exposed to short days or injected with melatonin in the afternoon, a treatment known to mimic short day effects, induced a 3- to 5-fold increase in serum gonadotrophins. However, this rise in FSH and LH was significantly attenuated compared to the 10-fold response in controls in long days. The results indicate that gonadal involution induced by short days may be mediated by the decline in mean gonadotrophin secretion which, in turn, is regulated by responsiveness to steroids, as well as a mechanism independent of the negative feedback action of gonadal steroids.  相似文献   

5.
Suckling may prolong the anovulatory period postpartum by 1) a neural-mediated inhibition of luteinizing hormone-releasing hormone (LHRH)-induced gonadotropin secretion, or 2) an inhibitory effect of hormones released by suckling on gonadotropin secretion and/or action at the ovary. In the present investigation we considered whether a suckling event caused 1) acute inhibition of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion, and 2) release of glucocorticoids and/or prolactin (PRL). Six Hereford cows remained intact and six were ovariectomized (ovx) on day 7 postpartum. Calves remained with their dams continuously. Cows were bled at 10-min intervals during 6 consecutive hr on days 14, 28 and 42 postpartum. Both LH and FSH were released episodically by day 14 in intact and ovx cows, but suckling did not acutely affect LH and FSH secretion. A PRL release accompanied suckling 67, 96 and 95% of the time. However, among all instances where PRL was released on days 14, 28 and 42 postpartum, 67, 29 and 37% occurred independent of a suckling event. Glucocorticoids were not released by suckling in intact cows but were released in ovx cows. We conclude that suckling does not acutely affect LH or FSH concentrations in serum of cows postpartum, that PRL concentrations usually increase in serum coincident with suckling but can be released at other times, and suckling-induced glucocorticoid release depends upon the presence of the ovary.  相似文献   

6.
Our previous work has suggested that glucocorticoid pretreatment suppresses the enhanced responsiveness to GnRH seen in serum LH 12 h after castration. By contrast, serum FSH continues to show the castration-induced hypersensitivity to GnRH. Our attempts to replicate this LH suppression in static pituitary culture in vitro were not successful. This suggested to us the possibility that corticoids in vivo might be preventing castration-induced increases in pituitary GnRH receptor levels. We tested this at 24 h post-castration and, in fact, corticoids did not suppress the increase in GnRH receptors. In addition to the aforementioned effects of corticoids, we have seen that cortisol reverses the castration-induced drop in pituitary FSH content. It does this for 7 days post-castration, even though it no longer has an effect in suppressing serum LH. Thus, our accumulated data reveal that glucocorticoids have a differential effect on LH and FSH synthesis and secretion. Further studies are needed to clarify the site(s) of action of glucocorticoids in gonadotropin secretion and synthesis. Glucocorticoids may well prove to be a key in unlocking the mystery of the mechanism of differential control of regulation of LH and FSH.  相似文献   

7.
The feedback effects of dihydrotestosterone (DHT) on gonadotropin secretion in rams were investigated using DHT-implanted castrate rams (wethers) infused with intermittent pulsatile luteinizing hormone-releasing hormone (LHRH) for 14 days. Castration, as anticipated, reduced both serum testosterone and DHT but elevated serum LH and follicle-stimulating hormone (FSH). Dihydrotestosterone implants raised serum DHT in wethers to intact ram levels and blocked the LH and FSH response to castration. The secretory profile of these individuals failed to show an endogenous LH pulse during any of the scheduled blood sampling periods, but a small LH pulse was observed following a 5-ng/kg LHRH challenge injection. Dihydrotestosterone-implanted wethers given repeated LHRH injections beginning at the time of castration increased serum FSH and yielded LH pulses that were temporally coupled to exogenous LHRH administration. While the frequency of these secretory episodes was comparable to that observed for castrates, amplitudes of the induced LH pulses were blunted relative to those observed for similarly infused, testosterone-implanted castrates. Dihydrotestosterone was also shown to inhibit LH and FSH secretion and serum testosterone concentrations in intact rams. In summary, it appears that DHT may normally participate in feedback regulation of LH and FSH secretion in rams. These data suggest androgen feedback is regulated by deceleration of the hypothalamic LHRH pulse generator and direct actions at the level of the adenohypophysis.  相似文献   

8.
Male rats treated chronically with high doses of Valium (50mg/ Kg/day; 10 days) failed to exhibit changes in their reproductive system. Testicular and prostate weights, serum testosterone (T) and LH were unaffected. Testes and pituitary tissue stimulated invitro with LH and GnRH, respectively, released normal amounts of T, LH and FSH. Brain benzodiazepine receptors were slightly but significantly elevated by Valium treatment as well as by castration. We conclude that the male reproductive system is resistant to chronic Valium treatment even though the brain levels of benzodiazepine receptors are not.  相似文献   

9.
Sexually mature rams were left intact, castrated (wethers), castrated and implanted with testosterone, or castrated, implanted with testosterone and pulse-infused every hour with LHRH. Serum concentrations of LH increased rapidly during the first week after castration and at 14 days had reached values of 13.1 +/- 2.2 ng/ml (mean +/- s.e.m.) and were characterized by a rhythmic, pulsatile pattern of secretion (1.6 +/- 0.1 pulses/h). Testosterone prevented the post-castration rise in serum LH in wethers (1.0 +/- 0.5 ng/ml; 0 pulses/h), but a castrate-type secretory pattern of LH was obtained when LHRH and testosterone were administered concurrently (10.7 +/- 0.8 ng/ml; 1.0 pulse/h). We conclude that the hypothalamus (rather than the pituitary) is a principal site for the negative feedback of androgen in rams and that an increased frequency of LHRH discharge into the hypothalamo-hypophysial portal system contributes significantly to the post-castration rise in serum LH.  相似文献   

10.
This study examined the impact of the gonadotrophin-releasing hormone (GnRH) antagonist Antarelix on LH, FSH, ovarian steroid hormone secretion, follicular development and pituitary response to LHRH in cycling gilts. Oestrous cycle of 24 Landrace gilts was synchronised with Regumate (for 15 days) followed by 800 IU PMSG 24h later. In experiment 1, Antarelix (n=6 gilts) was injected i.v. (0.5mg per injection) twice daily on four consecutive days from day 3 to 6 (day 0=last day of Regumate feeding). Control gilts (n=6) received saline. Blood was sampled daily, and every 20 min for 6h on days 2, 4, 6, 8 and 10. In experiment 2, gilts (n=12) were assigned to the following treatments: Antarelix; Antarelix + 50 microg LHRH on day 4; Antarelix + 150 microg LHRH on day 4 or control, 50 microg LHRH only on day 4. Blood samples were collected daily and every 20 min for 6h on days 2, 4 and 6 to assess LH pulsatility. Ovarian follicular development was evaluated at slaughter.Antarelix suppressed (P<0.05) serum LH concentrations. The amount of LH released on days 4-9 (experiment 1) was 8.80 versus 36.54 ngml(-1) (S.E.M.=6.54). The pattern of FSH, and the preovulatory oestradiol rise was not affected by GnRH antagonist. Suppression of LH resulted in a failure (P<0.05) of postovulatory progesterone secretion. Exogenous LHRH (experiment 2) induced a preovulatory-like LH peak, however in Antarelix treated gilts the LH surge started earlier and its duration was less compared to controls (P<0.01). Furthermore, the amount of LH released from day 4 to 5 was lower (P<0.01) in Antarelix, Antarelix + 50 and Antarelix + 150 treated animals compared to controls. No differences were estimated in the number of LH pulses between days and treatment. Pulsatile FSH was not affected by treatment. Mean basal LH levels were lower (P<0.05) after antagonist treatment compared to controls. Antarelix blocked the preovulatory LH surge and ovulation, but the effects of Antarelix were reduced by exogenous LHRH treatment. The development of follicles larger than 4mm was suppressed (P<0.05) by antagonist treatment.In conclusion, Antarelix treatment during the follicular phase blocked preovulatory LH surge, while FSH and oestradiol secretion were not affected. Antarelix failed to alter pulsatile LH and FSH secretor or pituitary responsiveness to LHRH during the preovulatory period.  相似文献   

11.
This study evaluates the influence of testicular secretions during development in male hamsters on peripubertal gonadotropin levels. Castration or sham operations were performed on the day of birth (Day 1), Day 5, 10, or 20 of life. Repeated plasma samples on Days 20-60 at 10-day intervals were taken via orbital sinus puncture. Castrated animals received a subcutaneous testosterone capsule on Day 60 and were killed on Day 70. In addition, seminal vesicles and ventral prostate weights were taken in all animals at Day 70. Castrated animals, regardless of day of castration, had higher gonadotropin levels and suppressed sexual accessory organ weights. Animals castrated on the day of birth had lower luteinizing hormone (LH) levels than animals castrated on other days. Castration on Day 10 resulted in lower follicle stimulating hormone (FSH) levels. Males castrated on Day 20 were most sensitive to the negative feedback effect of testosterone on LH secretion, while Day 10 castrates had elevated FSH levels after testosterone exposure. Sexual accessory weights also differed depending upon the day of castration. Results point out the importance of testicular secretions on the developmental processes as well as the differing ages at which various systems may be influenced.  相似文献   

12.
Summary Serum concentration of follicle-stimulating hormone (FSH) in the juvenile female rat increases independently from that of luteinizing hormone (LH). The objective of this study was to determine whether this increase in serum FSH is accompanied by a proliferation of FSH-cells greater than the proliferation of LH-cells. Thus, we measured circulating FSH and LH in female rats on days 3, 10, 13, 17, and 20, calculated the percentages of adenohypophyseal cells that contained FSH or LH on days 3, 10, and 20, and determined whether cells containing only FSH existed on day 10. Serum FSH concentrations on days 10 and 13 were significantly greater than those on days 3, 17, or 20. No differences existed in serum LH concentrations. Cells containing FSH or LH were distributed throughout the entire adenohypophyses of 3, 10, and 20-day-old females. Clusters of these cells were observed in the ventral regions of adenohypophyses of 3-day-old females. The percentages of adenohypophyseal cells containing FSH increased significantly from 9% in 3-day-old rats to 17% in 10-day-old rats and then decreased to 14% in 20-day-old animals. At all ages the percentages of adenohypophyseal cells containing FSH were similar to the percentages of cells containing LH. At 10 days of age, all cells containing FSH also contained LH and all cells containing LH also contained FSH. These data suggest that the increase in serum FSH in the juvenile female rat is associated with an increase in the percentage of adenohypophyseal cells containing FSH and that at this time all cells containing FSH also contain LH.  相似文献   

13.
To elucidate the role of prolactin on testicular function, we treated mature rats with ovine prolactin (oPRL) and investigated the dose and time-dependent changes in testicular LH, FSH and prolactin receptors as well as in serum gonadotropin and steroid levels. Twelve week-old rats were injected sc with a single dose of various amounts of oPRL (0.2, 1 and 5 IU) and killed on the first, second and third days after the treatment. Testicular LH receptor decreased to 59% of the control level as a function of time while prolactin receptor increased to 244% maximally of the control level on the second day. In contrast, FSH receptor changed in a different fashion. Smaller amounts of oPRL (0.2 and 1 IU) raised the receptor level to 193% of the control level on the first day whereas a larger amount (5 IU) did not change the receptor, which tended to remain in a low level throughout the experimental period. The serum FSH level significantly increased in every group on the second day, then returned to the control range by the third day. On the other hand, the serum testosterone level changed in a characteristic manner, decreased significantly in every group on the first day though not in a dose-dependent fashion, returned to normal on the second day and significantly increased in the 0.2 IU group on the third day (p less than 0.01). Similarly, the serum estradiol level decreased in the oPRL-treated groups on the first day and was restored on the second day.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Site of feedback control of FSH secretion in the male rat was studied by measuring changes in serum LH, FSH and hypothalamic LH-RH by radioimmunoassay in rats after castration and after 500 rad X-irradiation to the testis. The rise in serum LH and FSH in castrated animals was associated with a significant fall in hypothalamic LH-RH 16 and 24 days after castration. Serum FSH rose significantly after X-irradiation without a significant change in serum LH or hypothalamic LH-RH content up to 30 days after irradiation. When pituitary halves from X-irradiated animals were incubated in vitro in the presence or absence of synthetic LH-RH, there was a significant rise in FSH (but not LH) released in the incubation medium in the absence of added LH-RH. The response of the pituitaries to LH-RH was, however, not different between control and irradiated rats. It is concluded that the testicular FSH-inhibitory substance acts predominantly at the pituitary gland on the LH-RH independent release of FSH.  相似文献   

15.
To test the hypothesis that the synthesis and secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are differentially regulated after depletion by oestradiol, circulating concentrations of oestradiol were maintained at approximately 30 pg/ml for 16 days in each of 35 ovariectomized ewes. Five other ovariectomized ewes that did not receive oestradiol implants served as controls. After treatment with oestradiol, implants were removed and pituitary glands were collected from each of 5 ewes at 0, 2, 4, 8, 12, 16 and 32 days thereafter and amounts of mRNA for gonadotrophin subunits and contents of LH and FSH were quantified. Before collection of pituitary glands, blood samples were collected at 10-min intervals for 6 h. Treatment with oestradiol reduced (P less than 0.05) steady-state concentrations of LH beta- and FSH beta-subunit mRNAs and pituitary and serum concentrations of these hormones. At the end of treatment the amount of mRNA for FSH beta-subunit was reduced by 52% whereas that for LH beta-subunit was reduced by 93%. Steady-state concentrations of mRNA for FSH beta-subunit returned to control values within 2 days of removal of oestradiol, but 8 days were required for concentrations of FSH in the pituitary and serum to return to control values. Steady-state concentrations of mRNA for LH beta-subunit and mean serum concentrations of LH returned to control values by Day 8, but pituitary content of LH may require as long as 32 days to return to control levels. Therefore, replenishment of FSH beta-subunit mRNA preceded increases in pituitary and serum concentrations of FSH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Heifers between Days 6 and 10 of the cycle were allocated at random to groups of 8 and treated with (i) a 4% progesterone-releasing intravaginal device (PRID) + oestrogen capsule for 12 days; (ii) 4% PRID for 12 days; (iii) 20% PRID for 12 days; (iv) 4% for 14 days; or (v) 20% PRID for 14 days. Blood was obtained daily during treatment and at 2- or 4-h intervals for 72 h after removal of PRIDs. Some animals were sampled every 20 min for 4.676 h on the 3rd day after PRID insertion, and 1 day before and 36 h after removal of the PRID insertion, and 1 day before and 36 h after removal of the PRID. During progesterone treatment there was: (i) no correlation between concentrations of progesterone and LH within days; (ii) a significant negative correlation between progesterone and days (P less than 0.01) and also between progesterone and LH over days (P less than 0.01); (iii) the overall correlation co-efficient between LH and days was positive (P less than 0.05). The amplitude of LH or FSH episodes was not affected as progesterone concentrations declined during PRID treatment, but the number of LH (but not FSH) episodes was increased (p less than 0.01). After PRID removal, the amplitude of both LH and FSH episodes increased (P less than 0.01). We suggest that progesterone is part of a negative feedback complex on LH secretion in cattle and that this effect is apparently mediated through frequency of episodic LH release.  相似文献   

17.
The effect of gonadotropin pretreatment of hypophysectomized male rats on LH stimulated serum testosterone concentrations was studied. A 5 day pretreatment period began 2 days after hypophysectomy at 21 or 24 days of age. On the day following the pretreatment period the animals received an intraperitoneal injection of saline or LH 60 min before blood collection. Animals pretreated with NIH-FSH-B1, or with doses of LH approximating the amount present in the NIH-FSH, had increased testosterone concentrations after LH stimulation compared to similarly stimulated saline pretreated animals. Pretreatment with more highly purified FSH Ex 199C at a lower dose than the minimum effective dose of NIH-FSH was also effective. There was no synergistic or additive effect when FSH Ex 199C and LH pretreatments were combined. FSH Ex 199C is more potent and contains appreciably less LH contamination than NIH-FSH-B1. The results obtained using FSH Ex 199C indicate that FSH, independent of LH contamination, can increase testes response to LH stimulation.  相似文献   

18.
Blood was collected from each of four mares at approximately 60, 90 and 120 days of pregnancy. Pregnant mare serum gonadotrophin (PMSG) was prepared in a relatively impure form from each serum sample. Biological activities of FSH (Follicle Stimulating Hormone) and LH (Luteinizing Hormone) were determined for each sample. FSH activity was greatest at 60 days of gestation and was reduced by day 90; this reduction persisted through day 120. LH activity was highly variable among mares at 60 and 120 days, and variability and mean values were lowest at 90 days. The mean ratio of FSH to LH was greatest at 90 days. The mean ratio of FSH to LH was greatest at 90 days and somewhat lower at both 60 and 120 days. The results suggest that the composition and biological activity of PMSG, as prepared and assayed by these procedures, may vary during gestation as well as among mares.  相似文献   

19.
Two experiments were performed to test the hypothesis that the seasonal suppression of gonadotrophin pulse frequency in anoestrous horse mares reflects inhibitory neural mechanisms. In a preliminary experiment (Exp. 1) conducted in February, 4 anoestrous mares were sedated by repeated intravenous injections of xylazine, an alpha 2-adrenergic receptor agonist. On the day of treatment, 1-2 LH pulses were observed in xylazine-treated mares. In contrast, during a 12-h period only 1/8 untreated control mares exhibited a LH pulse. In Exp. 2, the effect of xylazine-induced sedation on pulsatile gonadotrophin release was examined in 4 anoestrous mares on two occasions before (18 November and 9 December) and after (23 December and 6 January) an abrupt, artificial increase in day length. Treatment with xylazine was associated with an overall increased FSH (P less than 0.01) and LH (P less than 0.05) pulse frequency, compared with that observed during 12-h pretreatment periods. To evaluate an effect of treatment at the various time during the experimental period, the change in FSH pulse frequency was analysed, since occasionally FSH pulses were unaccompanied by a change in serum LH values indicative of a LH pulse. On two occasions before increased daylength only 1/4 and 3/4 mares exhibited an increase in FSH pulses; in contrast, 14 days after increased daylength (23 December), 4/4 mares exhibited increased FSH pulse frequency associated with treatment. After 27 days of increased daylength (6 January), endogenous FSH pulse frequency was greater than before increased daylength and treatment with xylazine was unaccompanied by a further increase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Three experiments were conducted to study changes in pulsatile secretion of LH and FSH during the breeding season or anoestrus in ovariectomized Ile-de-France ewes fed different amounts of the phyto-oestrogen coumestrol. In Exp. 1, conducted during the breeding season, ewes (3-4 per group) were fed lucerne supplying 4, 18 or 30 mg coumestrol per ewe per day for 15 days. Experiments 2 and 3 were conducted during seasonal anoestrus. In Exp. 2, ewes (4 per group) were fed lucerne supplying coumestrol concentrations ranging from 4 to 38 mg/ewe/day for 15 days. In Exp. 3, ewes (10 per group) were fed lucerne supplying 14 or 125 mg coumestrol/ewe/day for 15 days. During the breeding season, an increased concentration of coumestrol in the diet significantly decreased the amplitude of LH pulses. There were no effects on LH pulse frequency or on FSH concentrations. During seasonal anoestrus, there were no significant effects on LH pulse frequency, or amplitude and no significant effect on FSH concentration. These results show that high concentrations of coumestrol in lucerne diets would not explain seasonal variation in LH pulse frequency in ovariectomized ewes. However, lucerne diets with increased coumestrol concentrations can influence LH release during the breeding season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号